Auswahl der wissenschaftlichen Literatur zum Thema „Imaging systems“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Imaging systems" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Imaging systems":

1

Brace, Barry D. „Computer imaging systems“. Journal of the American Dental Association 118, Nr. 6 (Juni 1989): 682. http://dx.doi.org/10.14219/jada.archive.1989.0159.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

King, P. H. „Medical imaging systems“. Proceedings of the IEEE 74, Nr. 2 (1986): 382. http://dx.doi.org/10.1109/proc.1986.13476.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Völkel, R., M. Eisner und K. J. Weible. „Miniaturized imaging systems“. Microelectronic Engineering 67-68 (Juni 2003): 461–72. http://dx.doi.org/10.1016/s0167-9317(03)00102-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Agema Infrared System Ltd. „Thermal imaging systems“. NDT & E International 27, Nr. 3 (Juni 1994): 173–74. http://dx.doi.org/10.1016/0963-8695(94)90752-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hucheng He, Hucheng He, und Yiqun Ji and Weimin Shen Yiqun Ji and Weimin Shen. „Polarization aberration of optical systems in imaging polarimetry“. Chinese Optics Letters 10, s1 (2012): S11102–311104. http://dx.doi.org/10.3788/col201210.s11102.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Yang, Wuqiang, George Giakos, Konstantina Nikita, Matteo Pastorino und Dimitrios Karras. „Imaging systems and techniques“. Measurement Science and Technology 20, Nr. 10 (04.09.2009): 100101. http://dx.doi.org/10.1088/0957-0233/20/10/100101.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Giakos, George, Wuqiang Yang, M. Petrou, K. S. Nikita, M. Pastorino, A. Amanatiadis und G. Zentai. „Imaging Systems and Techniques“. Measurement Science and Technology 22, Nr. 11 (01.10.2011): 110101. http://dx.doi.org/10.1088/0957-0233/22/11/110101.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Jassal, B. S., und S. C. Jain. „Imaging Technology and Systems .“ Defence Science Journal 45, Nr. 4 (01.01.1995): 293–302. http://dx.doi.org/10.14429/dsj.45.4136.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Pereira, Ana Carolina, und Angel Ariel Caputi. „Imaging in electrosensory systems“. Interdisciplinary Sciences: Computational Life Sciences 2, Nr. 4 (Dezember 2010): 291–307. http://dx.doi.org/10.1007/s12539-010-0049-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Catrysse, Peter B., Francisco H. Imai, Dale C. Linne von Berg und John T. Sheridan. „Imaging systems and applications“. Applied Optics 52, Nr. 7 (28.02.2013): ISA1. http://dx.doi.org/10.1364/ao.52.00isa1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Imaging systems":

1

Luo, Yuan. „Novel Biomedical Imaging Systems“. Diss., The University of Arizona, 2008. http://hdl.handle.net/10150/193907.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The overall purpose of the dissertation is to design and develop novel optical imaging systems that require minimal or no mechanical scanning to reduce the acquisition time for extracting image data from biological tissue samples. Two imaging modalities have been focused upon: a parallel optical coherence tomography (POCT) system and a volume holographic imaging system (VHIS). Optical coherence tomography (OCT) is a coherent imaging technique, which shows great promise in biomedical applications. A POCT system is a novel technology that replaces mechanically transverse scanning in the lateral direction with electronic scanning. This will reduce the time required to acquire image data. In this system an array with multiple reduced diameter (15μm) single mode fibers (SMFs) is required to obtain an image in the transverse direction. Each fiber in the array is configured in an interferometer and is used to image one pixel in the transverse direction. A VHIS is based on volume holographic gratings acting as Bragg filters in conjunction with conventional optical imaging components to form a spatial-spectral imaging system. The high angular selectivity of the VHIS can be used to obtain two-dimensional image information from objects without the need for mechanical scanning. In addition, the high wavelength selectivity of the VHIS can provide spectral information of a specific area of the object that is being observed. Multiple sections of the object are projected using multiplexed holographic gratings in the same volume of the Phenanthrenquinone- (PQ-) doped Poly (methyl methacrylate) (PMMA) recording material.
2

O'Such, William R. „Information theoretic analysis of multi-stage communication/imaging systems /“. Online version of thesis, 1988. http://hdl.handle.net/1850/10568.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Olsson, CJ. „Imaging imagining actions“. Doctoral thesis, Umeå : Section for Physiology, Department of Integrative Medical Biology, Umeå University, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1910.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Wang, Lulu. „Virtual imaging system“. Click here to access this resource online, 2009. http://hdl.handle.net/10292/668.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The main purpose of this research project was to implement a combination of computer graphics and processing to generate displays that will aid in the visualization of the colour rendering properties of a range of light sources, including the new generation of high-output LEDs (light emitting diodes) that are becoming widely adopted in general lighting service. The CIE (International Commission on Illumination) has developed a colour appearance model CIECAM02 for use in colour imaging and colour management, and this model is utilized in this work. This thesis describes the design and construction of a computer-based model that can be used as a research tool for the simulation and demonstration of the colour rendering properties of various artificial light sources. It is a comprehensive study of the colour models and measurement procedures currently in use in the lighting industry, as recommended by the CIE. This research project focused on the display of a set of surface colour patches as if they were illuminated by a specific light source, and the simultaneous display of two such sets to demonstrate the surface colour differences arising from the use of the two different light sources. A VIS (virtual imaging system) has been developed to display the colour properties of a series of test colour samples under different light sources. This thesis describes the computer models developed for the representation and display of surface colours in general, and colour rendering in particular. The designed system computes and displays the colour of each sample from a knowledge of the light-source spectrum and the spectral reflectance of each surface. It can simultaneously display the colours resulting from illumination by two different sources. In addition, the system computes the colour appearance differences for two sets of colours using the CIECAM02 colour appearance model. Subjective and objective tests were taken to validate the computed results. The VIS has been designed and implemented. It also has been tested by 21 observers and we believe that it will be a powerful research tool for the lighting industry, especially in relation to colour rendering.
5

WOOD, LYNNETTE. „RESTORATION FOR SAMPLED IMAGING SYSTEMS“. Diss., The University of Arizona, 1986. http://hdl.handle.net/10150/183994.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Digital image restoration requires some knowledge of the degradation phenomena in order to attempt an inversion of that degradation. Typically, degradations which are included in the restoration process are those resulting from the optics and electronics of the imaging device. Occasionally, blurring caused by an intervening atmosphere, uniform motion or defocused optics is also included. Recently it has been shown that sampling, the conversion of the continuous output of an imaging system to a discrete array, further degrades or blurs the image. Thus, incorporating sampling effects into the restoration should improve the quality of the restored image. The system transfer function (the Fourier transform of the point spread function), was derived for the Landset Multi-Spectral Scanner and Thematic Mapper systems. Sampling effects were included, along with the relevant optical, instantaneous field of view and electronic filter data, in the system analysis. Using the system transfer function, a least squares (Wiener) filter was then derived. A Wiener filter requires the ratio of the power spectra of the scene and noise, which is often, for simplicity, assumed to be a constant over frequency. The restoration method used here includes models for the power spectra which are based on the study of several different types of Landsat scenes. The Wiener filter is then inverse Fourier transformed to find a restoration filter which is spatially windowed to suppress ringing. Qualitative and quantitative evaluations are made of the restored imagery. Comparisons are made to the approaches taken by other investigators, in particular, to one who has had success restoring the same type of imagery. It is found that the restoration method used here compares favorably with this previous work.
6

Sukhija, Ruchi. „Document imaging application“. CSUSB ScholarWorks, 2007. https://scholarworks.lib.csusb.edu/etd-project/3217.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The purpose of this project was to develop a document imaging application. By scanning the documents into an electronic repository, medical staff will be able to more easily store and locate these records. To make the application user friendly and facilitate staff access to patient medical records, the application is wed-based and uses the Oracle Application Server to implement a multitiered model.
7

Feller, Alex J. „Instrument systems for imaging spectro-polarimetry“. Göttingen Cuvillier, 2007. http://d-nb.info/988229595/04.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Feller, Alex Jean. „Instrument systems for imaging spectro-polarimetry /“. Göttingen : Cuvillier, 2008. http://d-nb.info/988229595/04.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Blackband, S. J. „NMR imaging of liquid-solid systems“. Thesis, University of Nottingham, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Phan, Long N. 1976. „Automated rapid thermal imaging systems technology“. Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/75664.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 266-276).
A major source of energy savings occurs on the thermal envelop of buildings, which amounts to approximately 10% of annual energy usage in the United States. To pursue these savings, energy auditors use closed loop energy auditing processes that include infrared thermography inspection as an important tool to assess deficiencies and identify hot thermal gradients. This process is prohibitively expensive and time consuming. I propose fundamentally changing this approach by designing, developing, and deploying an Automated Rapid Thermal Imaging Systems Technology (ARTIST) which is capable of street level drive-by scanning in real-time. I am doing for thermal imaging what Google Earth did for visual imaging. I am mapping the world's temperature, window by window, house by house, street by street, city by city, and country by country. In doing so, I will be able to provide detailed information on where and how we are wasting energy, providing the information needed for sound economic and environmental energy policies and identifying what corrective measures can and should be taken. The fundamental contributions of this thesis relates to the ARTIST. This thesis will focus on the following topics: * Multi-camera synthetic aperture imaging system * 3D Radiometry * Non-radiometric infrared camera calibration techniques * Image enhancement algorithms - Hyper Resolution o Kinetic Super Resolution - Thermal Signature Identification - Low-Light Signal-to-Noise Enhancement using KSR
by Long N. Phan.
Ph.D.

Bücher zum Thema "Imaging systems":

1

Maier, Andreas, Stefan Steidl, Vincent Christlein und Joachim Hornegger, Hrsg. Medical Imaging Systems. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96520-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bahram, Javidi, Hrsg. Smart imaging systems. Bellingham, Wash: SPIE Press, 2001.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Courtot, Marilyn E. Imaging standards. Silver Spring, Md: Association for Information and Image Management, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Prince, Jerry L. Medical imaging signals and systems. Upper Saddle River, NJ: Pearson Prentice Hall, 2006.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Schreiber, William F. Fundamentals of Electronic Imaging Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77847-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Schreiber, William F. Fundamentals of Electronic Imaging Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-00743-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Schreiber, William F. Fundamentals of Electronic Imaging Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-96961-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Schantz, Herbert F. Optical digital imaging text systems. Silver Spring, Md: Association for Information and Image Management, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Prince, Jerry L. Medical imaging signals and systems. Upper Saddle River, NJ: Pearson Prentice Hall, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Borsenberger, Paul M. Organic photoreceptors for imaging systems. New York: M. Dekker, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Imaging systems":

1

Berger, Zeev. „Imaging Systems“. In Satellite Hydrocarbon Exploration, 3–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78587-0_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Greenes, Robert A., und James F. Brinkley. „Imaging Systems“. In Medical Informatics, 485–538. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-0-387-21721-5_14.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Degoulet, Patrice, und Marius Fieschi. „Medical Imaging Systems“. In Introduction to Clinical Informatics, 139–52. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-0675-0_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Erickson, Bradley James, Ronald L. Arenson und Robert A. Greenes. „Imaging Information Systems“. In Health Informatics, 659–72. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6732-7_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Gupta, Ravi Prakash. „Multispectral Imaging Systems“. In Remote Sensing Geology, 75–122. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05283-9_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Yaroslavsky, Leonid P. „Correcting Imaging Systems“. In Springer Series in Information Sciences, 186–210. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-81929-2_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Weis, Serge, Michael Sonnberger, Andreas Dunzinger, Eva Voglmayr, Martin Aichholzer, Raimund Kleiser und Peter Strasser. „Functional Systems“. In Imaging Brain Diseases, 325–67. Vienna: Springer Vienna, 2019. http://dx.doi.org/10.1007/978-3-7091-1544-2_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Weis, Serge, Michael Sonnberger, Andreas Dunzinger, Eva Voglmayr, Martin Aichholzer, Raimund Kleiser und Peter Strasser. „Neurotransmitter Systems“. In Imaging Brain Diseases, 369–99. Vienna: Springer Vienna, 2019. http://dx.doi.org/10.1007/978-3-7091-1544-2_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Gross, Herbert. „Paraxial Imaging“. In Handbook of Optical Systems, 5–59. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527699223.ch2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Bartling, Sönke H., und Wolfhard Semmler. „Data Documentation Systems“. In Small Animal Imaging, 405–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-12945-2_28.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Imaging systems":

1

Driggers, Ronald, und Gisele Bennett. „Superresolution Systems“. In Imaging Systems. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/is.2010.iwb1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kriss, Michael A. „Imaging Characteristics Of Electronic Imaging Systems“. In 1988 International Congress on Optical Science and Engineering, herausgegeben von Peter J. Hutzler und Andre J. Oosterlinck. SPIE, 1989. http://dx.doi.org/10.1117/12.950253.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Jaroszewicz, Zbigniew. „Ophthalmic Imaging Systems“. In Imaging Systems and Applications. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/isa.2013.ith1d.2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Linne von Berg, Dale C. „Navy Imaging Systems“. In Imaging Systems and Applications. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/isa.2014.im4c.1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ferwerda, James A. „Tangible imaging systems“. In IS&T/SPIE Electronic Imaging, herausgegeben von Qian Lin, Jan P. Allebach, Zhigang Fan und Jerry Liu. SPIE, 2013. http://dx.doi.org/10.1117/12.2010968.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Rees, David. „Imaging Lidar systems“. In International Conference on Space Optics — ICSO 2021, herausgegeben von Zoran Sodnik, Bruno Cugny und Nikos Karafolas. SPIE, 2021. http://dx.doi.org/10.1117/12.2600286.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Lewis, Keith. „Multifunctional imaging systems“. In Optical Engineering + Applications, herausgegeben von David P. Casasent und Stanley Rogers. SPIE, 2008. http://dx.doi.org/10.1117/12.798530.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Fienup, James R. „Coherent Lensless Imaging“. In Imaging Systems. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/is.2010.imd2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Mukherjee, Amaradri, und Chrysanthe Preza. „Computational 3D Fluorescence Microscopy Imaging“. In Imaging Systems. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/is.2010.iwc2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Diaz, Frédéric, François Goudail, Brigitte Loiseaux und Jean-Pierre Huignard. „Optimization of hybrid imaging systems including digital deconvolution in the presence of noise“. In Imaging Systems. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/is.2010.imd4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Imaging systems":

1

Antonacos, John. Thermal Imaging Systems. Fort Belvoir, VA: Defense Technical Information Center, Mai 1994. http://dx.doi.org/10.21236/ada279146.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Marleau, Peter. Advanced Imaging Algorithms for Radiation Imaging Systems. Office of Scientific and Technical Information (OSTI), Oktober 2015. http://dx.doi.org/10.2172/1225832.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Marleau, Peter, Kyle Polack und Sarah Pozzi. Advanced Imaging Algorithms for Radiation Imaging Systems. Office of Scientific and Technical Information (OSTI), September 2016. http://dx.doi.org/10.2172/1562401.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Zhong He. Fast Neutron Imaging Systems. Office of Scientific and Technical Information (OSTI), Oktober 2006. http://dx.doi.org/10.2172/895007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Rockwell, Donald. Space-Time Imaging Systems. Fort Belvoir, VA: Defense Technical Information Center, Februar 2009. http://dx.doi.org/10.21236/ada584973.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Davis, Curtiss O. Hyperspectral Imaging of River Systems. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada572752.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Davis, Curtiss O. Hyperspectral Imaging of River Systems. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada557150.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Howell, Calvin R., Chantal D. Reid und Andrew G. Weisenberger. Radionuclide Imaging Technologies for Biological Systems. Office of Scientific and Technical Information (OSTI), Mai 2014. http://dx.doi.org/10.2172/1244531.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Happer, William. Instrumentation for Improvement of Gas Imaging Systems. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada408787.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Radparvar, M. Imaging systems for biomedical applications. Final report. Office of Scientific and Technical Information (OSTI), Juni 1995. http://dx.doi.org/10.2172/192410.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie