Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Imagerie par résonance magnétique – Limites“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Imagerie par résonance magnétique – Limites" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Imagerie par résonance magnétique – Limites"
Gamondès, Delphine. „Imagerie par résonance magnétique“. Revue du Podologue 9, Nr. 49 (Januar 2013): 22–24. http://dx.doi.org/10.1016/j.revpod.2012.12.006.
Der volle Inhalt der QuelleErnst, Olivier, Christophe Leroy und Brigitte Laurens. „Cholangiographie par imagerie par résonance magnétique“. EMC - Hépatologie 17, Nr. 3 (2002): 1–7. https://doi.org/10.1016/s1155-1976(02)00061-x.
Der volle Inhalt der QuelleGarel, Catherine, Guy Sebag, Patricia Hornoy, Monique Elmaleh und Max Hassan. „Imagerie par résonance magnétique fœtale“. EMC - Radiologie et imagerie médicale - Génito-urinaire - Gynéco-obstétricale - Mammaire 1, Nr. 1 (Januar 2006): 1–7. http://dx.doi.org/10.1016/s1879-8543(06)73980-5.
Der volle Inhalt der QuelleMonnier-Cholley, L., und L. Arrivé. „Imagerie par résonance magnétique thoracique“. EMC - Pneumologie 2, Nr. 1 (Februar 2005): 1–8. http://dx.doi.org/10.1016/j.emcpn.2004.09.001.
Der volle Inhalt der QuelleArrivé, Lionel. „Imagerie par résonance magnétique thoracique“. EMC - Pneumologie 10, Nr. 3 (1999): 1–4. https://doi.org/10.1016/s1155-195x(20)30219-x.
Der volle Inhalt der QuelleRoy, C. „Imagerie par résonance magnétique du rein“. EMC - Néphrologie 1, Nr. 1 (Januar 2006): 1–9. http://dx.doi.org/10.1016/s1762-0945(09)49040-5.
Der volle Inhalt der QuelleNaggara, N., und P. Y. Brillet. „Imagerie par résonance magnétique du thorax“. EMC - Radiologie et imagerie médicale - Cardiovasculaire - Thoracique - Cervicale 7, Nr. 2 (Mai 2012): 1–10. http://dx.doi.org/10.1016/s1879-8535(12)52728-5.
Der volle Inhalt der QuelleBazot, M., C. Bornier, A. Cortez, S. Uzan und E. Daraï. „Imagerie par résonance magnétique et endométriose“. EMC - Gynécologie 2, Nr. 1 (Januar 2007): 1–9. http://dx.doi.org/10.1016/s0246-1064(07)44640-0.
Der volle Inhalt der QuelleVignaux, Olivier. „Imagerie par résonance magnétique (IRM) cardiaque“. La Presse Médicale 33, Nr. 13 (Juli 2004): 891–95. http://dx.doi.org/10.1016/s0755-4982(04)98779-9.
Der volle Inhalt der QuelleRodrigo, S., M. C. Henry-Feugeas, C. Oppenheim, M. Verny, J. F. Meder und D. Fredy. „Imagerie des démences par résonance magnétique“. La Presse Médicale 33, Nr. 15 (September 2004): 1027–33. http://dx.doi.org/10.1016/s0755-4982(04)98832-x.
Der volle Inhalt der QuelleDissertationen zum Thema "Imagerie par résonance magnétique – Limites"
Mattei, Jean-Pierre. „Approches cliniques du métabolisme énergétique musculaire par spectrométrie de résonance magnétique du phosphore-31 : avantages, limites et perspectives“. Aix-Marseille 2, 2002. http://www.theses.fr/2002AIX20688.
Der volle Inhalt der QuelleMartin, Jean-Michel. „IRM du sein : valeur et limites des produits du gadolinium : à propos de 170 cas“. Montpellier 1, 1990. http://www.theses.fr/1990MON11270.
Der volle Inhalt der QuelleKurtz, Samuel. „Caractérisation et limitation des biais de mesure de l’élastographie par résonance magnétique“. Electronic Thesis or Diss., Université de Montpellier (2022-....), 2023. http://www.theses.fr/2023UMONS023.
Der volle Inhalt der QuelleMagnetic Resonance Elastography (MRE) is an adapted technique of MRI for non-invasive and in vivo characterization of mechanical properties of living tissues. MRE typically involves identifying properties associated with a displacement field induced by the propagation of shear waves in the tissue medium. The fundamental interest of MRE relies in the strong contrast of the mechanical properties of soft tissues, which are relevant biomarkers for the detection and staging of pathological processes. Since its introduction in the late 1990s, MRE has established itself as a versatile medical imaging modality providing quantitative maps of the soft tissues viscoelasticity. The field of applications of MRE is vast, and the gradual growth of this technique in a clinical setting testifies to its significant interest.However, the high degree of interdisciplinarity of MRE, and the resulting interactions between actors from different communities, represent a barrier to its development. The absence of rigorous methods for integrating measurement biases is an illustrative example of this problem. This thesis work is built around addressing this bias problem.The first axis is motivated by the need to characterize biases related to MRI measurements. To do this, an optical slicing tomography device and a digital volume correlation procedure are adapted to provide three-dimensional harmonic kinematic field measurements. The validation of the device is tested by analyzing the fields obtained on different phantom materials. The consideration of different sources of measurement errors and the diversity of measurable fields make this device a metrological tool for measuring such kinematic fields in an MRI environment.The second axis focuses on limiting the impact of measurement errors in the identification model. To achieve this, a coupled formulation of the direct adjoint problem that underlies MRE is implemented in a subzone decomposition-based identification algorithm for a nearly-incompressible, isotropic, viscoelastic model. This specific formulation relies on the presence of a complementary field to avoid the indirect influence of measurement errors through their application as Dirichlet-type boundary conditions which are particularly abundant considering the subzone decomposition of the problem. It is thus demonstrated that the non-consideration of the boundary conditions contributes significantly to the quality of identifications.The developments presented in this work are compared to several studies on reconstructions of mechanical properties of in silico data, phantoms, and in vivo human brain. These applications provide a detailed evaluation of the stability gains of the algorithm and establish new standards for driving the spatial resolution of identifications in MRE. These developments are particularly useful for validating preclinical MRE studies
Le, Guen Virginie. „Lésions bénignes du sein et IRM : valeurs et limites en pratique médicale courante : à propos de 240 cas“. Montpellier 1, 1996. http://www.theses.fr/1996MON11046.
Der volle Inhalt der QuelleLamrous, Omar. „Contribution à l'étude des matériaux par spectro-imagerie RMN : limites et influence des gradients de champ“. Toulouse 3, 1989. http://www.theses.fr/1989TOU30226.
Der volle Inhalt der QuelleMazoyer, Patrick. „La spécialisation fonctionnelle dans le cerveau humain : ses limites : exemples de la perception du mouvement et des visages en imagerie fonctionnelle“. Lyon 1, 1999. http://www.theses.fr/1999LYO1T288.
Der volle Inhalt der QuelleGarnero, Line. „Reconstruction d'images tomographiques à partir d'un ensemble limite de projections“. Paris 11, 1987. http://www.theses.fr/1987PA112012.
Der volle Inhalt der QuelleMuret, Dolly-Anne. „On the limits of cortical somatosensory plasticity and their functional consequences : a novel form of cross-border plasticity“. Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10063/document.
Der volle Inhalt der QuelleTouch plays a critical role in our daily life to grasp and manipulate objects, or simply walk. The primary somatosensory areas exhibit the striking feature of being somatotopically organized, giving rise to the so-called Homunculus. While most of our body surface is represented following an order similar to its physical continuity, the Homunculus displays a major discontinuity, the hand and the face being represented next to each other. The hand-face border has been widely used as a somatotopic hallmark to study one of the most fascinating features of our brain, its capacity for reorganization. Particularly, somatosensory plasticity was found to cross the hand-face border following deprivation of inputs. While it has long been known that increasing inputs also leads to cortical changes typically associated with perceptual benefits, whether such plasticity can cross the hand-face border remains unknown. My thesis work aimed to investigate this question. A first behavioural study revealed that increasing inputs to a finger improves not only the tactile acuity at this finger, but also at the face, suggesting a transfer of plastic changes across the hand-face border. To investigate this, two additional studies were performed using two complementary brain imaging techniques, namely high-field fMRI and MEG. In agreement with our hypotheses a reorganization of both hand and face representations was found. Altogether, this work reveals that adaptive plasticity leading to perceptual benefits can spread over large cortical distances, in particular across the hand-face border, and thus opens up a new window of investigation that may have a real impact in promoting rehabilitation
Maffei, Pablo Fabian. „Développements en microscopie RMN par gradients de champ radiofréquence“. Nancy 1, 1993. http://www.theses.fr/1993NAN10017.
Der volle Inhalt der QuelleCoudert, Thomas. „IRM «fingerprint» et Intelligence Artificielle pour la prise en charge des patients victimes d'un AVC“. Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALY044.
Der volle Inhalt der QuelleStroke, a major cause of mortality and long-term disability worldwide, necessitates rapid and accurate diagnosis to optimize treatment outcomes. Current imaging techniques, particularly MRI, are critical for assessing the extent of brain injury and guiding therapeutic interventions. However, traditional MRI protocols are often time-consuming and may lack the precision required for detailed analysis of ischemic brain tissue, limiting their utility in acute stroke settings where time is of the essence.Magnetic Resonance Fingerprinting (MRF) is a relatively new solution to simultaneously map several brain quantitative parameters from fast, high-resolution acquisitions using a dictionary search approach. However, its extension for microvascular (e.g. cerebral blood volume (CBV) or blood vessel diameter (R)) and brain oxygenation estimates currently relies on the injection of exogenous contrast agents (CA) that limit the clinical application and acquisition speed. In this thesis, we aimed to address these limitations by developing a novel and integrated, artificial intelligence (AI) augmented contrast-free MRF technique tailored for stroke emergencies.First, we developed and adapted standard multiparametric MRF techniques based on spoiled gradient echo MRI sequences. Using scanner artifacts corrections, dictionary compression, and subspace reconstruction, we were able to generate fast relaxometry (T1,T2) maps and standard MRI contrasts from a single MRF sequence. However, the microvascular information provided by our new multi-compartment MRF model in human volunteers suffered from a low signal-to-noise ratio.We thus focused on a new MRF sequence design based on balanced GRE sequences and their remarkable sensitivity to magnetic field inhomogeneities. After a theoretical and textit{in-silico} study on general sequences sensitivities to the Blood Oxygen Level Dependent (BOLD) effect and the impact of MRF acquisition parameters, we designed a new MRF-bSSFP sequence that simultaneously estimate relaxometry (T1,T2,T2*,M0), magnetic fields (B1,B0), and microvascular properties (CBV,R) without the need for CA injection. Using a new pipeline for MRF simulations, the proposed method was tested in a cohort of human volunteers.Our method was further refined by developing advanced reconstruction methods for high dimensional MRF acquisitions relying on low-rank models and deep neural networks. We finally used our simulation framework combined with Recurrent Neural Networks to fasten our computation times by a factor of 800 and allow the inclusion of water-diffusion effects. This approach was tested in retrospective preclinical data including healthy and stroke animals and the results suggested that additional estimates of ADC or blood oxygenation could be measured with our new bSSFP MRF sequence.After careful validation and optimization, this methodological work could provide an efficient imaging solution that aligns with the critical time constraints of acute stroke care. Our general framework for high dimensional MRF acquisitions that include microstructure effects could also be used in various other pathologies
Bücher zum Thema "Imagerie par résonance magnétique – Limites"
A, Cabanis E., Effenterre R. van und Guiraud Chaumeil B, Hrsg. Imagerie par résonance magnétique. London: Libbey, 1988.
Den vollen Inhalt der Quelle findenD, Doyon, Hrsg. IRM: Imagerie par résonance magnétique. 4. Aufl. Paris: Masson, 2001.
Den vollen Inhalt der Quelle findenDominique, Doyon, Hrsg. IRM, imagerie par résonance magnétique. 4. Aufl. Paris: Masson, 2004.
Den vollen Inhalt der Quelle findenOlivier, Vigneaux, Hrsg. Imagerie cardiaque: Scanner et IRM. Issy-les-Moulineaux: Masson, 2005.
Den vollen Inhalt der Quelle findenComité consultatif des services médicaux et des services en établissement (Canada). Sous-comité sur les guides relatifs aux programmes institutionnels. Imagerie par résonance magnétique: Guide pour l'établissement de normes régissant les services spéciaux dans les hôpitaux. Ottawa, Ont: Direction des services de la santé, 1986.
Den vollen Inhalt der Quelle findenVion-Dury, Jean. Cours de résonance magnétique: Spectroscopie et imagerie : de la structure magnétique de la matière à la physiologie. Paris: Ellipses, 2002.
Den vollen Inhalt der Quelle findenGerhardt, Paul. Atlas de corrélations anatomiques en tomodensitométrie et imagerie par résonance magnétique. Paris: Flammarion, 1988.
Den vollen Inhalt der Quelle findenmilieu, Canada Direction de l'hygiène du. Lignes directrices sur l'exposition aux champs électromagnétiques provenant d'appareils cliniques à résonance magnétique. Ottawa, Ont: Direction de l'hygiène du milieu, 1987.
Den vollen Inhalt der Quelle findenMöller, Torsten B. Atlas de poche d'anatomie en coupes sériées: Tomodensitométrie et imagerie par résonance magnétique. 2. Aufl. Paris: Flammarion Médecine-sciences, 2001.
Den vollen Inhalt der Quelle findenEmil, Reif, und Bourjat Pierre Trad, Hrsg. Atlas de poche d'anatomie en coupes sériées: Tomodensitométrie et imagerie par résonance magnétique : Tête et cou. 3. Aufl. Paris: Flammarion médecine-sciences, 2008.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Imagerie par résonance magnétique – Limites"
Bradač, Gianni Boris, Ron Ferszt und Brian E. Kendall. „Imagerie par résonance magnétique“. In Les méningiomes intracrâniens, 25–35. Paris: Springer Paris, 1991. http://dx.doi.org/10.1007/978-2-8178-0871-0_5.
Der volle Inhalt der Quelle„Imagerie par résonance magnétique“. In Pathologies Musculosquelettiques Douloureuses, 19–21. Elsevier, 2012. http://dx.doi.org/10.1016/b978-2-294-71429-0.00006-6.
Der volle Inhalt der QuelleDillenseger, Jean-Philippe. „Imagerie par résonance magnétique“. In Guide des technologies de l'imagerie médicale et de la radiothérapie, 241–342. Elsevier, 2024. http://dx.doi.org/10.1016/b978-2-294-78317-3.00005-6.
Der volle Inhalt der QuelleGalanaud, D. „Imagerie par résonance magnétique cérébrale“. In Imagerie en réanimation, 81–91. Elsevier, 2007. http://dx.doi.org/10.1016/b978-2-84299-821-9.50004-7.
Der volle Inhalt der QuelleAnstett, P. „Techniques d'angiographie par résonance magnétique“. In Neuro-Imagerie Diagnostique, 145–78. Elsevier, 2018. http://dx.doi.org/10.1016/b978-2-294-75394-7.00004-7.
Der volle Inhalt der Quelle„Imagerie par résonance magnétique (IRM)“. In Méga Guide STAGES IFSI, 1110–11. Elsevier, 2015. http://dx.doi.org/10.1016/b978-2-294-74529-4.00346-3.
Der volle Inhalt der QuelleAlexandre, J., A. Balian, L. Bensoussan, A. Chaïb, G. Gridel, K. Kinugawa, F. Lamazou et al. „Imagerie par résonance magnétique (IRM)“. In Le tout en un révisions IFSI, 1010–11. Elsevier, 2009. http://dx.doi.org/10.1016/b978-2-294-70633-2.50338-3.
Der volle Inhalt der QuelleHallouët, Pascal. „Imagerie par résonance magnétique (IRM)“. In Mémo-guide infirmier, 451. Elsevier, 2010. http://dx.doi.org/10.1016/b978-2-294-71154-1.50094-9.
Der volle Inhalt der QuelleHallouët, Pascal. „Imagerie par résonance magnétique (IRM)“. In Méga Mémo IFSI, 334–35. Elsevier, 2016. http://dx.doi.org/10.1016/b978-2-294-74924-7.50044-0.
Der volle Inhalt der Quelle„13 Imagerie par résonance magnétique“. In Mathématiques pour l’imagerie médicale, 191–206. EDP Sciences, 2021. http://dx.doi.org/10.1051/978-2-7598-2496-0.c014.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Imagerie par résonance magnétique – Limites"
Gossiome, C., F. Rufino, G. Herve, M. Benassarou, P. Goudot, V. Descroix und G. Lescaille. „Découverte fortuite d’une lésion mandibulaire, un cas de kyste anévrismal“. In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206603020.
Der volle Inhalt der Quelle