Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Imagerie par résonance de plasmon de surface“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Imagerie par résonance de plasmon de surface" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Imagerie par résonance de plasmon de surface"
Boulade, Marine, Julien Moreau und Thierry Livache. „Imagerie par résonance des plasmons de surface : application en microbiologie“. Photoniques, Nr. 81 (April 2016): 24–27. http://dx.doi.org/10.1051/photon/20168124.
Der volle Inhalt der QuelleWilk, Randall M., Steven E. Harms und Larry M. Wolford. „Imagerie de l'articulation temporo-mandibulaire obtenue par résonance magnétique, avec une antenne de surface“. Revue d'Orthopédie Dento-Faciale 22, Nr. 3 (September 1988): 447–58. http://dx.doi.org/10.1051/odf/1988024.
Der volle Inhalt der QuelleDissertationen zum Thema "Imagerie par résonance de plasmon de surface"
Sereda, Alexandra. „Imagerie multi-spectrale par résonance des plasmons de surface : développement et applications“. Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112321/document.
Der volle Inhalt der QuelleBiodetection is at the core of the current health concerns, as shown through the variety of applications to HIV screening, food contaminant analysis or water quality monitoring. In this field, plasmonic biosensing is a well-established label-free technique on the market: commercial systems from HORIBA Scientific are currently available for both research and industrial users.Based on the surface plasmon resonance (SPR) phenomenon, plasmonic biodetection uses the high sensitivity of an evanescent wave propagating along a metallic film (forming the biochip) and the surrounding dielectric medium interface. More specifically, the adsorption of biomolecules onto the metal surface induces a strong change in the optical properties of a light beam reflected by the biochip: the main principle of plasmonic transduction consists in measuring these physical changes. Several interrogation techniques have therefore been developed to access such optical information, but they fail in meeting the most demanding user requirements for precise, real-time, high-throughput measurement.Initiated by these issues, the instrumentation work presented in this document has led to the development of a novel SPR interrogation technique, referred to as multi-spectral interrogation. Moreover, the promising results obtained have been pushed forward to propose a multi-spectral illumination system based on LEDs, providing attractive performances compared to existing configurations. The biosensing potential of the developed system, demonstrated through applications to genetic diagnosis and cancer detection, opens the door to a new generation of compact, high-performance, low-cost SPR sensors
Aoudjit, Thinhinane. „Etude des propriétés optiques de nanostructures chirales par imagerie photochimique“. Electronic Thesis or Diss., Troyes, 2022. http://www.theses.fr/2022TROY0008.
Der volle Inhalt der QuelleChiral nanostructures interact differently with right and left circularly polarized light. Moreover, they exhibit enhanced electric and magnetic near-fields leading to the so-called superchirality. This effect can be used for the detection of chiral biological objects with high enantio-sensitivity. Indeed, the optical chirality C is correlated with the rate of excitation of the chiral molecule, so that increasing the optical chirality at the location of the molecule can significantly improve its detection. We present here a subwavelength imaging approach that is based on the interaction between the highly exalted near-field of chiral nanoparticles and an azobenzene molecule (DR1, disperse red 1) grafted to a polymeric chain (i.e. PMMA). Under illumination, the azobenzene molecules (DR1) undergo photo-isomerization cycles, which induce a displacement of matter inducing measurable topographical modifications that can be tracked using atomic force microscopy. Therefore, we obtain in the polymer a map of the near-field of the chiral nanostructures. We recently demonstrated that chiral effects and field dissymmetry in plasmonic nanostructures can be imaged with this technique. Here, we apply photochemical imaging to chiral metallic nanostructures, such as chiral coupled nanorods. We show that the near-field chiral response can be imprinted in the photopolymer
Corne, Christelle. „Etude des interactions entre protéines et lésions de l'ADN par résonance plasmonique de surface par imagerie (SPRI)“. Grenoble, 2010. https://tel.archives-ouvertes.fr/tel-00505298.
Der volle Inhalt der QuelleDNA is the carrier of genetic information. DNA damage caused by various physical or chemical stresses is a challenge for cellular repair systems. These include the base excision repair system (BER) which involves several enzymes whose objectives are the recognition and removal of damaged bases, well-recognised functions for two glycosylases: prokaryotic Fpg and eukaryotic OGG1. Many approaches have been described to study DNA / protein interactions in vitro. With surface plasmon resonance imaging (SPRi), we have a real-time technique, without labeling, with which we can observe interactions in parallel for a single protein purified enzyme (Fpg, OGG1, EndoIV or Ape1) vis-à-vis various injuries to synthetic oligonucleotides immobilized on a gold surface. The damages studied were an oxidized base (8-oxoG), a cyclised base (cycloadenine) and analogues of abasic sites (THF and C3). We also studied the action of these enzymes on multiple lesions, in tandem, combining the 8-oxoG and 8-oxoA bases on the same strand of DNA. The originality of our system combines the direct analysis of the DNA / protein interaction with the indirect approach of observing its outcome by hybridization and amplification of the signal after a thermal ramp. The results obtained enable us to consider the use of our technique to observe the simultaneous repair of certain lesions by cell extracts for biochemical work, or by human tissue extracts for bio-medical work
Pillet, Flavien. „Développement d'un outil d'analyse d'interactions moléculaires basé sur la résonance plasmonique de surface (SPRi)“. Thesis, Toulouse, INSA, 2010. http://www.theses.fr/2010ISAT0029/document.
Der volle Inhalt der QuelleDuring the last decades a large number of technologies have been developed to analyze intermolecular interactions. In this context, the fluorescence biochips remain the most frequently used. Although this technology is very sensitive and multiplexed, it does not allow access to the kinetic parameters, essential to the calculation of the constants of affinity. Therefore, the research for alternative systems is essential. In this way, the Surface Plasmon Resonance imaging (SPRi) is considered as an opportunity. It is an optical detection process that can occur when a polarized light hits a prism covered by a thin metal layer. Under certain conditions free electrons at the surface of the biochip absorb incident light photons and convert them into surface plasmon waves. Perturbations at the surface of the biochip, such as an interaction between probes immobilized on the chip and targets, induce a modification of resonance conditions which can be measured. It is a label free technology which allows intermolecular interactions in real time and gives access to the kinetics parameters. However, SPRi is limited in sensitivity and multiplexing. The objectives of my PhD were to circumvent these various limits. Thus, we validated the immobilization of DNA probes on gold surface using thiol-modified oligonucleotide probes. Deposition carried out on non-modified gold surface, does not require electrical stimulation and expensive specific robotic devices. The thiol modification of the probes was shown to be very stable at room temperature, contrary to pyrrole and diazonium probes that need to be prepared just prior to their spotting. We demonstrate that thiol-modified oligonucleotide probes spotted on a gold surface of the SPRi-prisms are very robust and reproducible. We also demonstrated that this simple chemistry is compatible with high density arrays fabrication bearing more than 1000 spots using a classical spotter. Furthermore, the modification of the prism surface with gold colloids and dendrimers allowed for DNA/DNA interactions, to reach a detection limit of 2 nM. In parallel of this work, various biological applications were carried out and validate our previous developments. A first study was to screen G-quadruplex specific ligands to inhibit telomerase activity. We demonstrated that SPRi technology is particularly well adapted to the screening of interaction of small molecules with DNA probes and is sensitive enough to permit distinction between interactions with different DNA structures. The second study was on the bacterial partition complex. We study the DNA binding requirement involved in SopB-sopC specific interactions and analysed at the nucleotide level the bases involved in the binding efficiency and essential for the partition All this PhD work improved the SPRi technology and demonstrated its great potential in biological applications
Chabot, Vincent. „Plates-formes de microscopie et fluorescence par résonance de plasmons de surface appliquées à l'imagerie cellulaire“. Thèse, Université de Sherbrooke, 2013. http://hdl.handle.net/11143/6632.
Der volle Inhalt der QuelleFiche, Jean-Bernard. „Etudes thermiques des puces à ADN par imagerie de résonance des plasmons de surface (SPRi) : vers la détection de mutations ponctuelles“. Université Joseph Fourier (Grenoble), 2006. http://www.theses.fr/2006GRE10201.
Der volle Inhalt der QuelleLn the space of one decade, DNA-chips became tools which cannot be ignored in the present scientific context. Placed at the interface between traditional disciplines, th. Ey are currently used for gene expression studies, SNP detection or who le genome analysis. This work uses for the first time surface plasmon resonance imaging coupled with tempe rature control - from 20°C to 80°C - applied to DNA-chip studies. Ln the first part, we study the DNA hybridization process on a solid support from a both kinetic and thermodynamic point of view, assuming the theoretical Langmuir model, ΔH and ΔS parameters are estimated as a function of probes length and show a non-conventional behaviour compared to the theoretical prediction. We assume that it could be due to a lack of accessibility on the DNA-chip surface. The second part is dedicated to point mutation detection using tempe rature scan technique. Our results, obtained with two models (K-ras and Cycline D1), are in good agreement with theoretical predictions in solution and let assume that this method could be applied for SNPs (Single Nucleotide Polymorphism) detection on biological samples. A last application concerns the DNAglycosylase Fpg interactions with damaged DNA duplexes. Two lesions, 8-oxo-guanine and 5',8Cyclo-2'-desoxyadenosine, are used and Fpg enzymatic activity is only detected for the first one using an original thermal method
Kholodtsova, Maria. „Spectral, spatial and temporal properties of multilayered epithelial tissue in vivo in presence of metal nanoparticles in multimodal spectroscopy“. Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0031/document.
Der volle Inhalt der QuelleThe thesis work is devoted to spatially-, temporally- and spectrally- resolved laser and biological tissue interactions. The aim of the present thesis was to investigate the influence of colloidal nanoparticles embedded into multilayered biological tissues on their optical properties in order to provide deeper and/or more precise probing. To do so, the integral spectroscopic parameters and lifetime of fluorophore in vicinity of metal nanoparticles were analyzed theoretically and experimentally. Another part of the study was to propose new algorithmic solutions for improving the performance of the estimation process of the optical properties values from spatially resolved spectroscopic measurements. The last part of the thesis was the experimental and theoretical modelling of fluorophore’s kinetics in presence of colloidal gold nanoparticles. The ultra-short pico-second component (around 100 ps) was resolved and correlated to strong nanoparticles dipole field which is compensating the molecule’s dipole
Obeid, Sameh. „Analyse quantitative et qualitative sur puce de vésicules extracellulaires en milieux complexes au sein d'une plateforme nanobioanalytique“. Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD009/document.
Der volle Inhalt der QuelleExtracellular vesicles (EVs) are small vesicles (30 to 1000 nm) released from different cell types, upon activation or apoptosis, and present in most body fluids (Blood, Urine….). Based on the current state of knowledge of their biogenesis and biochemical properties, EVs can be devided into three distinct populations: exosomes (EXO), microparticles (MPs) and apoptotic bodies (APOb). EVs have been found to play important biological roles and are also biomarkers of different pathologies. […] The first step consists of the injection of the samples containing EVs onto the biochip surface. This step is accomplished by SPR technique that allows label-free monitoring of EVs immunocapture onto the surface of a biochip presenting different specific bioreceptors. Following the capture of EVs, a nanometrological investigation of the biochip surface by AFM is engaged to characterize the physical properties of captured vesicles (size, morphology, etc..). Owning a nanometrical resolution, AFM can discriminate between individual EVs and vesicles or protein aggregates, leading to an accurate characterization of individual vesicles. The coupling of SPR technique with AFM was adapted to offer a representative global view of each array of bioreceptors and to measure the size of thousands of individual EVs. A proteomic investigation was also engaged to characterize the proteomic compositions of the different subpopulations of EVs. Such an investigation could contribute to the understanding of EVs biogenesis, biology and pathophysiology. To evaluate the potential of our platform to detect, quantify and characterize nanoparticles, two calibration particles, which cover the lower and upper size range of EVs, were chosen: (i) virus-like particles of 50 nm of diameter, also called CP50, and (ii) protein-functionnalized synthetic beads of 920 nm of diameter, called CP920. The capture tests in SPR showed a specific capture of these two calibration particles with their specific bioreceptors, immobilized onto the biochip surface, regardless the complexity of the media in which they were diluted. Also, a positive correlation was obtained between the capture level, measured by SPR, and the particle 9
Bassil, Nathalie. „Système de biopuce optique en temps réel : application au diagnostic génétique“. Phd thesis, Université Paris Sud - Paris XI, 2005. http://tel.archives-ouvertes.fr/tel-00008933.
Der volle Inhalt der QuelleRoland, Thibault. „Microscopie par Plasmons de Surface Localisés : un outil d'imagerie optique non intrusif pouvant couvrir les échelles du nanomètre au micromètre en biologie“. Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2009. http://tel.archives-ouvertes.fr/tel-00441957.
Der volle Inhalt der Quelle