Dissertationen zum Thema „Imagerie computationnelle“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Imagerie computationnelle.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-22 Dissertationen für die Forschung zum Thema "Imagerie computationnelle" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Debarnot, Valentin. „Microscopie computationnelle“. Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30156.

Der volle Inhalt der Quelle
Annotation:
Les travaux présentés de cette thèse visent à proposer des outils numériques et théoriques pour la résolution de problèmes inverses en imagerie. Nous nous intéressons particulièrement au cas où l'opérateur d'observation (e.g. flou) n'est pas connu. Les résultats principaux de cette thèse s'articulent autour de l'estimation et l'identification de cet opérateur d'observation. Une approche plébiscitée pour estimer un opérateur de dégradation consiste à observer un échantillon contenant des sources ponctuelles (microbilles en microscopie, étoiles en astronomie). Une telle acquisition fournit une mesure de la réponse impulsionnelle de l'opérateur en plusieurs points du champ de vue. Le traitement de cette observation requiert des outils robustes pouvant utiliser rapidement les données rencontrées en pratique. Nous proposons une boîte à outils qui estime un opérateur de dégradation à partir d'une image contenant des sources ponctuelles. L'opérateur estimé à la propriété qu'en tout point du champ de vue, sa réponse impulsionnelle s'exprime comme une combinaison linéaire de fonctions élémentaires. Cela permet d'estimer des opérateurs invariants (convolutions) et variants (développement en convolution-produit) spatialement. Une spécificité importante de cette boîte à outils est son caractère automatique : seul un nombre réduit de paramètres facilement accessibles permettent de couvrir une grande majorité des cas pratiques. La taille de la source ponctuelle (e.g. bille), le fond et le bruit sont également pris en compte dans l'estimation. Cet outil se présente sous la forme d'un module appelé PSF-Estimator pour le logiciel Fiji, et repose sur une implémentation parallélisée en C++. En réalité, les opérateurs modélisant un système optique varient d'une expérience à une autre, ce qui, dans l'idéal, nécessite une calibration du système avant chaque acquisition. Pour pallier à cela, nous proposons de représenter un système optique non pas par un unique opérateur de dégradation, mais par un sous-espace d'opérateurs. Cet ensemble doit permettre de représenter chaque opérateur généré par un microscope. Nous introduisons une méthode d'estimation d'un tel sous-espace à partir d'une collection d'opérateurs de faible rang (comme ceux estimés par la boîte à outils PSF-Estimator). Nous montrons que sous des hypothèses raisonnables, ce sous-espace est de faible dimension et est constitué d'éléments de faible rang. Dans un second temps, nous appliquons ce procédé en microscopie sur de grands champs de vue et avec des opérateurs variant spatialement. Cette mise en œuvre est possible grâce à l'utilisation de méthodes complémentaires pour traiter des images réelles (e.g. le fond, le bruit, la discrétisation de l'observation). La construction d'un sous-espace d'opérateurs n'est qu'une étape dans l'étalonnage de systèmes optiques et la résolution de problèmes inverses. [...]
The contributions of this thesis are numerical and theoretical tools for the resolution of blind inverse problems in imaging. We first focus in the case where the observation operator is unknown (e.g. microscopy, astronomy, photography). A very popular approach consists in estimating this operator from an image containing point sources (microbeads or fluorescent proteins in microscopy, stars in astronomy). Such an observation provides a measure of the impulse response of the degradation operator at several points in the field of view. Processing this observation requires robust tools that can rapidly use the data. We propose a toolbox that estimates a degradation operator from an image containing point sources. The estimated operator has the property that at any location in the field of view, its impulse response is expressed as a linear combination of elementary estimated functions. This makes it possible to estimate spatially invariant (convolution) and variant (product-convolution expansion) operators. An important specificity of this toolbox is its high level of automation: only a small number of easily accessible parameters allows to cover a large majority of practical cases. The size of the point source (e.g. bead), the background and the noise are also taken in consideration in the estimation. This tool, coined PSF-estimator, comes in the form of a module for the Fiji software, and is based on a parallelized implementation in C++. The operators generated by an optical system are usually changing for each experiment, which ideally requires a calibration of the system before each acquisition. To overcome this, we propose to represent an optical system not by a single operator (e.g. convolution blur with a fixed kernel for different experiments), but by subspace of operators. This set allows to represent all the possible states of a microscope. We introduce a method for estimating such a subspace from a collection of low rank operators (such as those estimated by the toolbox PSF-Estimator). We show that under reasonable assumptions, this subspace is low-dimensional and consists of low rank elements. In a second step, we apply this process in microscopy on large fields of view and with spatially varying operators. This implementation is possible thanks to the use of additional methods to process real images (e.g. background, noise, discretization of the observation).The construction of an operator subspace is only one step in the resolution of blind inverse problems. It is then necessary to identify the degradation operator in this set from a single observed image. In this thesis, we provide a mathematical framework to this operator identification problem in the case where the original image is constituted of point sources. Theoretical conditions arise from this work, allowing a better understanding of the conditions under which this problem can be solved. We illustrate how this formal study allows the resolution of a blind deblurring problem on a microscopy example.[...]
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Pizzolato, Marco. „IRM computationnelle de diffusion et de perfusion en imagerie cérébrale“. Thesis, Université Côte d'Azur (ComUE), 2017. http://www.theses.fr/2017AZUR4017/document.

Der volle Inhalt der Quelle
Annotation:
Les techniques d'imagerie par résonance magnétique de Diffusion (IRMd) et de Perfusion (IRMp) permettent la détection de divers aspects importants et complémentaires en imagerie cérébrale. Le travail effectué dans cette thèse présente des contributions théoriques et méthodologiques sur les modalités d'IRM basées sur des images pondérées en diffusion, et sur des images de perfusion par injection de produit de contraste. Pour chacune des deux modalités, les contributions de la thèse sont liées au développement de nouvelles méthodes pour améliorer la qualité, le traitement et l'exploitation des signaux acquis. En IRM de diffusion, la nature complexe du signal est étudiée avec un accent sur l'information de phase. Le signal complexe est ensuite exploité pour corriger le biais induit par le bruit d'acquisition des images, améliorant ainsi l'estimation de certaines métriques structurelles. En IRM de perfusion, le traitement du signal est revisité afin de tenir compte du biais dû à la dispersion du bolus. On montre comment ce phénomène, qui peut empêcher la correcte estimation des métriques de perfusion, peut aussi donner des informations importantes sur l'état pathologique du tissu cérébral. Les contributions apportées dans cette thèse sont présentées dans un cadre théorique et méthodologique validé sur de nombreuses données synthétiques et réelles
Diffusion and Perfusion Magnetic Resonance Imaging (dMRI & pMRI) represent two modalities that allow sensing important and different but complementary aspects of brain imaging. This thesis presents a theoretical and methodological investigation on the MRI modalities based on diffusion-weighted (DW) and dynamic susceptibility contrast (DSC) images. For both modalities, the contributions of the thesis are related to the development of new methods to improve and better exploit the quality of the obtained signals. With respect to contributions in diffusion MRI, the nature of the complex DW signal is investigated to explore a new potential contrast related to tissue microstructure. In addition, the complex signal is exploited to correct a bias induced by acquisition noise of DW images, thus improving the estimation of structural scalar metrics. With respect to contributions in perfusion MRI, the DSC signal processing is revisited in order to account for the bias due to bolus dispersion. This phenomenon prevents the correct estimation of perfusion metrics but, at the same time, can give important insights about the pathological condition of the brain tissue. The contributions of the thesis are presented within a theoretical and methodological framework, validated on both synthetical and real images
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Tondo, Yoya Ariel Christopher. „Imagerie computationnelle active et passive à l’aide d’une cavité chaotique micro-ondes“. Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S130/document.

Der volle Inhalt der Quelle
Annotation:
Les travaux présentés dans cette thèse portent sur l’imagerie computationnelle active et passive en micro-ondes. L’utilisation d’une cavité chaotique comme composants compressif est étudiée tant théoriquement (modèle mathématique, résolution algorithmique du problème inverse) et expérimentalement. L’idée sous-jacente est de remplacer un réseau d’antennes par une unique cavité réverbérante dont un réseau d’ouvertures sur la face avant permet de coder l’information spatiale d’une scène dans la réponse temporelle de la cavité. La réverbération des ondes électromagnétique à l’intérieur de la cavité fournit les degrés de liberté nécessaires à la reconstruction d’une image de la scène. Ainsi il est possible de réaliser en temps réel une image haute-résolution d’une scène à partir d’une unique réponse impulsionnelle. Les applications concernent la sécurité ou l’imagerie à travers les murs. Dans ce travail, la conception et la caractérisation d’une cavité chaotique ouverte sont effectuées. L’utilisation de ce dispositif pour réaliser en actif des images de cibles de diverses formes est démontrée. Le nombre de degrés de liberté est ensuite amélioré en modifiant les conditions aux limites grâce à l’ajout lampes fluorescentes. L’interaction des ondes avec ces éléments plasma permet de créer de nouvelles configurations de la cavité, améliorant ainsi la résolution des images. L’imagerie compressive est ensuite appliquée à la détection et localisation passive du rayonnement thermique naturel de sources de bruit, à partir de la corrélation des signaux reçus sur deux voies. Enfin, une méthode novatrice d’imagerie interférométrique de cibles est présentée. Elle est basée sur la reconstruction de la réponse impulsionnelle entre deux antennes à partir du bruit thermique micro-ondes émis par un réseau de néons. Ces travaux constituent une avancée vers les systèmes d’imagerie futurs
The broad topic of the presented Ph.D focuses on active and passive microwave computational imaging. The use of a chaotic cavity as a compressive component is studied both theoretically (mathematical model, algorithmic resolution of the inverse problem) and experimentally. The underlying idea is to replace an array of antennas with a single reverberant cavity with an array of openings on the front panel that encodes the spatial information of a scene in the temporal response of the cavity. The reverberation of electromagnetic waves inside the cavity provides the degrees of freedom necessary to reconstruct an image of the scene. Thus it is possible to create a high-resolution image of a scene in real time from a single impulse response. Applications include security or imaging through walls. In this work, the design and characterization of an open chaotic cavity is performed. Using this device, active computational imaging is demonstrated to produce images of targets of various shapes. The number of degrees of freedom is further improved by changing the boundary conditions with the addition of commercial fluorescent lamps. The interaction of the waves with these plasma elements allows new cavity configurations to be created, thus improving image resolution. Compressive imaging is next applied to the passive detection and localization of natural thermal radiation from noise sources, based on the correlation of signals received over two channels. Finally, an innovative method of interferometric target imaging is presented. It is based on the reconstruction of the impulse response between two antennas from the microwave thermal noise emitted by a network of neon lamps. This work constitutes a step towards for future imaging systems
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Filipis, Luiza. „Etude optique et computationnelle de la fonction des canaux ioniques neuronaux“. Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAY078.

Der volle Inhalt der Quelle
Annotation:
La physiologie des canaux ioniques est un sujet d’intérêt majeur dans les neurosciences modernes puisque le fonctionnement de ces molécules est la base biophysique du comportement électrique et chimique des neurones. Les canaux ioniques sont des protéines membranaires diverses qui permettent le passage sélectif des ions à travers la couche lipidique des cellules. Ils sont impliqués dans une variété de processus physiologiques fondamentaux, à partir de l’intégration des signaux électriques, la génération et la propagation de potentiel d’action jusqu’à la croissance cellulaire et même à l’apoptose, tandis que leur dysfonctionnement est la cause de plusieurs maladies. Les canaux ioniques ont été largement étudiés à l’aide de méthodes basés sur les électrodes, en particulier la technique du patch-clamp, mais ces approches sont limitées pour étudier les canaux natifs pendant l’activité physiologique in situ. En particulier, les électrodes fournissent des informations spatiales limitées alors qu’il est reconnu que la contribution des canaux dans tous les différents processus est fonction non seulement de leurs propriétés biophysiques discrètes, mais aussi de leur distribution dans la surface des neurones et des différents compartiments. Les techniques optiques, en particulier celles impliquant l’imagerie par fluorescence, peuvent surmonter les limites intrinsèques des techniques d’électrode car elles permettent d’enregistrer des signaux électriques et ioniques avec une résolution spatiale et temporelle élevée. Enfin, la capacité des techniques optiques combinées à la modélisation neuronale peut potentiellement fournir des informations essentielles permettant de mieux comprendre le fonctionnement des neurones. L’objectif ambitieux de ma thèse était de progresser dans cette direction en développant de nouvelles approches pour combiner des techniques d’imagerie de pointe avec la modélisation pour extraire les courants ioniques et la cinétique des canaux dans des régions neuronales spécifiques. Le corps de ce travail a été divisé en trois morceaux méthodologiques, chacun d’eux décrit dans un chapitre dédié
The physiology of ion channels is a major topic of interest in modern neuroscience since the functioning of these molecules is the biophysical ground of electrical and chemical behaviour of neurons. Ion channels are diverse membrane proteins that allow the selective passage of ions across the lipid bilayer of cells. They are involved in a variety of fundamental physiological processes from electrical signal integration, action potential generation and propagation to cell growth and even apoptosis, while their dysfunction is the cause of several diseases. Ion channels have extensively studied using electrode methods, in particular the patch-clamp technique, but these approaches are limited in studying native channels during physiological activity in situ. In particular, electrodes give limited spatial information while it is recognised that the contribution of channels in all different processes is a function not only of their discrete biophysical properties but also of their distribution across the neurons surface at the different compartments. Optical techniques, in particular those involving fluorescence imaging, can overcome intrinsic limitations of electrode techniques as they allow to record electrical and ionic signals with high spatial and temporal resolution. Finally, the ability of optical techniques combined with neuronal modelling can potentially give pivotal information significantly advancing our understanding on how neurons work.The ambitious goal of my thesis was to progress in this direction by developing novel approaches to combine cutting-edge imaging techniques with modelling to extract ion currents and channel kinetics in specific neuronal regions. The body of this work was divided in three methodological pieces, each of them described in a dedicated chapter
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Skitioui, Salah. „Développement de radars millimétriques innovants“. Electronic Thesis or Diss., Limoges, 2024. http://www.theses.fr/2024LIMO0017.

Der volle Inhalt der Quelle
Annotation:
Ces travaux portent sur la combinaison de dispositifs à diversité fréquentielle avec une architecture FMCW pour l’imagerie corporelle courte portée, dans le but de réduire la complexité et le coût liés à l’architecture et à la redondance des chaînes d’émission-réception. Une première étude a été menée pour comparer deux approches de multiplexage analogique : la cavité réverbérante à fuite et l’antenne à balayage fréquentiel. Cette comparaison a conclu que la première solution était la mieux adaptée au contexte de ces travaux. Un prototype a donc été développé et intégré dans un démonstrateur d’imagerie en champ proche en bande W, basé sur l’utilisation de chaînes d’émission-réception FMCW. Une preuve de concept est présentée, démontrant la capacité à reconstruire des images en bande W en utilisant une seule chaîne d’émission-réception, à partir d’un signal ayant des fréquences de l’ordre du MHz, grâce à un algorithme novateur permettant d’atteindre des taux de rafraîchissement d’image considéré comme temps réel
This research is part of a CIFRE thesis aimed at developing technologies to simplify and reduce costs associated with a body scanners dedicated to security applications, while improving the refresh rate of reconstructed images. The fundamental objective is to devise an affordable real-time imaging system. Research efforts are focused on leveraging analog multiplexing techniques based on frequency diversity, integrated into an FMCW architecture, to overcome temporal limitations inherent in existing approaches. To this end, a prototype of a leaky reverberation cavity has been conceptualized, subjected to laboratory testing, and subsequently integrated into an industrial measurement bench. This accomplishment represents a significant advancement in the evolution of a real-time imaging system utilizing an analog multiplexing device
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Duan, Liuyun. „Modélisation géométrique de scènes urbaines par imagerie satellitaire“. Thesis, Université Côte d'Azur (ComUE), 2017. http://www.theses.fr/2017AZUR4025.

Der volle Inhalt der Quelle
Annotation:
La modélisation automatique de villes à partir d’images satellites est l'un des principaux défis en lien avec la reconstruction urbaine. Son objectif est de représenter des villes en 3D de manière suffisamment compacte et précise. Elle trouve son application dans divers domaines, qui vont de la planification urbaine aux télécommunications, en passant par la gestion des catastrophes. L'imagerie satellite offre plusieurs avantages sur l'imagerie aérienne classique, tels qu'un faible coût d'acquisition, une couverture mondiale et une bonne fréquence de passage au-dessus des sites visités. Elle impose toutefois un certain nombre de contraintes techniques. Les méthodes existantes ne permettent que la synthèse de DSM (Digital Surface Models), dont la précision est parfois inégale. Cette dissertation décrit une méthode entièrement automatique pour la production de modèles 3D compacts, précis et répondant à une sémantique particulière, à partir de deux images satellites en stéréo. Cette méthode repose sur deux grands concepts. D'une part, la description géométrique des objets et leur assimilation à des catégories génériques sont effectuées simultanément, conférant ainsi une certaine robustesse face aux occlusions partielles ainsi qu'à la faible qualité des images. D'autre part, la méthode opère à une échelle géométrique très basse, ce qui permet la préservation de la forme des objets, avec finalement, une plus grande efficacité et un meilleur passage à l'échelle. Pour générer des régions élémentaires, un algorithme de partitionnement de l'image en polygones convexes est présenté
Automatic city modeling from satellite imagery is one of the biggest challenges in urban reconstruction. The ultimate goal is to produce compact and accurate 3D city models that benefit many application fields such as urban planning, telecommunications and disaster management. Compared with aerial acquisition, satellite imagery provides appealing advantages such as low acquisition cost, worldwide coverage and high collection frequency. However, satellite context also imposes a set of technical constraints as a lower pixel resolution and a wider that challenge 3D city reconstruction. In this PhD thesis, we present a set of methodological tools for generating compact, semantically-aware and geometrically accurate 3D city models from stereo pairs of satellite images. The proposed pipeline relies on two key ingredients. First, geometry and semantics are retrieved simultaneously providing robust handling of occlusion areas and low image quality. Second, it operates at the scale of geometric atomic regions which allows the shape of urban objects to be well preserved, with a gain in scalability and efficiency. Images are first decomposed into convex polygons that capture geometric details via Voronoi diagram. Semantic classes, elevations, and 3D geometric shapes are then retrieved in a joint classification and reconstruction process operating on polygons. Experimental results on various cities around the world show the robustness, scalability and efficiency of the proposed approach
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Domenech, Philippe. „Une approche neuro-computationnelle de la prise de décision et de sa régulation contextuelle“. Phd thesis, Université Claude Bernard - Lyon I, 2011. http://tel.archives-ouvertes.fr/tel-00847494.

Der volle Inhalt der Quelle
Annotation:
Décider, c'est sélectionner une alternative parmi l'ensemble des options possibles en accord avec nos buts. Les décisions perceptuelles, correspondant à la sélection d'une action sur la base d'une perception, résultent de l'accumulation progressive d'information sensorielle jusqu'à un seuil de décision. Aux niveaux comportemental et cérébral, ce processus est bien capturé par les modèles de décision par échantillonnage séquentiel. L'étude neurobiologique des processus de décision, guidée par l'usage de modèles computationnels, a permis d'établir un lien clair entre cette accumulation d'information sensorielle et un réseau cortical incluant le sillon intra-pariétal et le cortex dorso-latéral préfrontal. L'architecture des réseaux biologiques impliqués dans la prise de décision, la nature des algorithmes qu'ils implémentent et surtout, l'étude des relations entre structure biologique et computation est au cœur des questionnements actuels en neurosciences cognitives et constitue le fil conducteur de cette thèse. Dans un premier temps, nous nous sommes intéressés aux mécanismes neuraux et computationnels permettant l'ajustement du processus de décision perceptuelle à son contexte. Nous avons montré que l'information a priori disponible pour prédire nos choix diminue la distance au seuil de décision, régulant ainsi dynamiquement la quantité d'information sensorielle nécessaire pour sélectionner une action. Pendant la prise de décision perceptuelle, le cortex cingulaire antérieur ajuste le seuil de décision proportionnellement à la quantité d'information prédictive disponible et le cortex dorso-latéral préfrontal implémente l'accumulation progressive d'information sensorielle. Dans un deuxième temps, nous avons abordé la question de l'unicité, au travers des domaines cognitifs, des mécanismes neuro-computationnels implémentant la prise de décision. Nous avons montré qu'un modèle de décision par échantillonnage séquentiel utilisant la valeur subjective espérée de chaque option prédisait avec précision le comportement de sujets lors de choix économiques risqués. Pendant la décision, la portion médiale du cortex orbito-frontal code la différence entre les valeurs subjectives des options considérées, exprimées sur une échelle de valeur commune. Ce signal orbito-frontal médian sert d'entrée à un processus de décision par échantillonnage séquentiel implémenté dans le cortex dorso-latéral préfrontal. Pris ensemble, nos travaux précisent les contours d'une architecture fonctionnelle de la prise de décision dans le cortex préfrontal humain en établissant une cartographie des modules computationnels qu'il implémente, mais aussi en caractérisant la façon dont l'intégration fonctionnelle de ces régions cérébrales permet l'émergence de la capacité à prendre des décisions
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Feydy, Jean. „Analyse de données géométriques, au delà des convolutions“. Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASN017.

Der volle Inhalt der Quelle
Annotation:
Analyse de données géométriques, au delà des convolutionsPour modéliser des interactions entre points, une méthode simple est de se reposer sur des sommes pondérées communément appelées "convolutions". Au cours de la dernière décennie, cette opération est devenue la brique de construction essentielle à la révolution du "deep learning". Le produit de convolution est, toutefois, loin d'être l'alpha et l'oméga des mathématiques appliquées.Pour permettre aux chercheurs d'explorer de nouvelles directions, nous présentons des implémentations robustes et efficaces de trois opérations souvent sous-estimées:1. Les manipulations de tenseurs semi-symboliques, comme les matrices de distances ou de noyaux.2. Le transport optimal, qui généralise la notion de "tri" aux espaces de dimension D > 1.3. Le tir géodésique sur une variété Riemannienne, qui se substitue à l'interpolation linéaire sur des espaces de données où aucune structure vectorielle ne peut être correctement définie.Nos routines PyTorch/NumPy sont compatibles avec la différentiation automatique, et s'exécutent en quelques secondes sur des nuages de plusieurs millions de points. Elle sont de 10 à 1,000 fois plus performantes que des implémentations GPU standards et conservent une empreinte mémoire linéaire. Ces nouveaux outils sont empaquetés dans les bibliothèques "KeOps" et "GeomLoss", avec des applications qui vont de l'apprentissage automatique à l'imagerie médicale. Notre documentation est accessible aux adresses www.kernel-operations.io/keops et /geomloss
Geometric data analysis, beyond convolutionsTo model interactions between points, a simple option is to rely on weighted sums known as convolutions. Over the last decade, this operation has become a building block for deep learning architectures with an impact on many applied fields. We should not forget, however, that the convolution product is far from being the be-all and end-all of computational mathematics.To let researchers explore new directions, we present robust, efficient and principled implementations of three underrated operations: 1. Generic manipulations of distance-like matrices, including kernel matrix-vector products and nearest-neighbor searches.2. Optimal transport, which generalizes sorting to spaces of dimension D > 1.3. Hamiltonian geodesic shooting, which replaces linear interpolation when no relevant algebraic structure can be defined on a metric space of features.Our PyTorch/NumPy routines fully support automatic differentiation and scale up to millions of samples in seconds. They generally outperform baseline GPU implementations with x10 to x1,000 speed-ups and keep linear instead of quadratic memory footprints. These new tools are packaged in the KeOps (kernel methods) and GeomLoss (optimal transport) libraries, with applications that range from machine learning to medical imaging. Documentation is available at: www.kernel-operations.io/keops and /geomloss
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Örsvuran, Rıdvan. „Vers des modèles anisotropes et anélastiques de la Terre globale : Observables et la paramétrisation de l'inversion des formes d'ondes complètes“. Thesis, Université Côte d'Azur, 2021. http://www.theses.fr/2021COAZ4015.

Der volle Inhalt der Quelle
Annotation:
Les ondes sismiques constituent le principal outil pour scanner l’intérieur de la Terre et en déduire des informations sur sa structure, son état thermique et ses propriétés chimiques. La tomographie sismique, de manière analogue à la tomographie médicale, construit des images en trois dimensions de l’intérieur de la Terre à partir des ondes sismiques déclenchées par des sources naturelles (tremblements de terre, bruit ambiant) ou contrôlées (explosions, ...).La méthode de l’état adjoint permet une implémentation efficace de l’inversion des formes d’ondes complètes (FWI : Full Waveform Inversion), une méthode d’imagerie qui exploite potentiellement toute la complexité du champ d’onde en trois dimensions pour construire des images haute résolution de l’intérieur de la Terre.Dans cette thèse, je propose de nouveaux observables fondés sur des doubles différences des temps de trajet et des formes d’ondes pour appliquer la FWI à l’échelle globale. Par ailleurs, je teste différentes paramétrisations du problème inverse pour extraire les propriétés physiques de la Terre comme l’anisotropie azimuthale et l’atténuation dans le manteau.Mes résultats suggèrent que les doubles différences utilisés avec des dispositifs denses de stations accélèrent la convergence de la FWI, améliore la résolution de l’imagerie sous le dispositif et réduisent les artefacts générés par la couverture hétérogène de la Terre par les données sismologiques.Il est connu que la composition et la déformation de la lithosphère et du manteau supérieur génèrent de l’anisotropie lors de la propagation des ondes. En partant du modèle de Terre globale GLAD-M25 développé par tomographie adjointe, le successeur du modèle GLAD-M15 et en) et en paramétrant l’inversion avec une anisotropie transverse, j’ai construit un premier modèle global du manteau supérieur anisotrope. J’ai effectué 10 itérations de la FWI adjointe en sélectionnant par fenêtrage les temps de trajet des ondes de surface combinés avec des doubles différences formés par des paires de stations. Les résultats révèlent l’empreinte au premier ordre de l’anisotropie et une résolution accrue dans les régions bénéficiant d’une forte couverture comme en Amérique du Nord et en Europe.L’atténuation est un autre paramètre physique clef pour identifier de la fusion partielle, la présence d’eau et cartographier des variations thermiques dans le manteau. Dans le dernier chapitre, j’effectue une première évaluation de la tomographie adjointe anélastique dans la perspective de construire un modèle d’atténuation du manteau par inversion conjointe des paramètres élastiques et anélastiques à partir de la phase et de l’amplitude des signaux. J’étudie les couplages entre les différentes classes de paramètres avec des tests synthétiques 2D afin de définir la meilleure stratégie pour la FWI anélastique à l’échelle globale. J’évalue également différents observables pour la reconstruction simultanée ou alternée des paramètres élastiques/anélastiques. Les tests 2D suggèrent qu’une fonction coût fondée sur l’enveloppe des signaux fournit les meilleurs résultats lors des premières itérations en réduisant la non linéarité de la FWI. Après avoir évalué l’empreinte de différents modèles d’atténuation sur les formes d’onde avec des simulations numériques dans différents modèles élastiques/anélastiques 1D/3D, j’ai conclu que la reconstruction conjointe des paramètres élastiques et anélastiques était nécessaire car l’atténuation affecte non seulement l’amplitude mais génère aussi une dispersion significative, notamment des ondes de surface. J’ai effectué une itération de la tomographie adjointe élastique/anélastique à l’échelle globale en partant du modèle élastique GLAD-M25 et du modèle anélastique 1D QRF12 et en utilisant 253 tremblements de terre. Les résultats préliminaires sont prometteurs et révèlent par exemple des zones de forte et faible atténuation sur les côtes ouest et est de l’Amérique du Nord
Seismic waves are our primary tools to see the Earth’s interior and draw inferences on its structural, thermal and chemical properties. Seismic tomography, similar to medical tomography, is a powerful technique to obtain 3D computed tomography scan (CT scan) images of the Earth’s interior using seismic waves generated by seismic sources such as earthquakes, ambient noise or controlled explosions. It is crucial to improve the resolution of tomographic images to better understand the internal dynamics of our planet driven by the mantle convection, that directly control surface processes, such as plate tectonics. To this end, at the current resolution of seismic tomography, full physics of (an)elastic wave propagation must be taken into account.The adjoint method is an efficient full-waveform inversion (FWI) technique to take 3D seismic wave propagation into account in tomography to construct high-resolution seismic images. In this thesis, I develop and demonstrate new measurements for global-scale adjoint inversions such as the implementation of double-difference traveltime and waveform misfits. Furthermore, I investigate different parameterizations to better capture Earth’s physics in the inverse problem, such as addressing the azimuthal anisotropy and anelasticity in the Earth’s mantle.My results suggest that double-difference misfits applied to dense seismic networks speed up the convergence of FWI and help increase the resolution underneath station clusters. I further observe that double-difference measurements can also help reduce the bias in data coverage towards the cluster of stations.Earth’s lithosphere and upper mantle show significant evidence of anisotropy as a result of its composition and deformation. Starting from the recent global adjoint tomography model GLAD-M25, which is the successor of GLAD-M15 and transversely isotropic in the upper mantle, my goal is to construct an azimuthally anisotropic global model of the upper mantle. I performed 10 iterations using the multitaper traveltimes combined with double difference measurements made on paired stations of minor- and major-arc surface waves. The results after 10 iterations, in general, show the global anisotropic pattern consistent with plate motions and achieve higher resolution in areas with dense seismic coverage such as in North America and Europe.Attenuation is also another key parameter for determining the partial melt, water content and thermal variations in the mantle. In the last chapter, I investigate anelastic adjoint inversions to ultimately construct a global attenuation mantle model by the simultaneous inversion of elastic and anelastic parameters assimilating both the phase and amplitude information, which will lead to exact FWI at the global scale. I investigate the trade-off between elastic and anelastic parameters based on 2D synthetic tests to define a strategy for 3D global FWIs. I also explore the effect of different measurements for simultaneously and sequentially inverted elastic and anelastic parameters. The 2D test results suggest that the envelope misfit performs best at earlier iterations by reducing the nonlinearity of the FWI. After analyzing the effect of different radially-symmetric attenuation models on seismic waveforms by performing forward simulations in various 1D and 3D elastic/anelastic models, the results suggest the necessity of simultaneous elastic/anelastic inversions to also improve the elastic structure as attenuation cause not only amplitude anomalies but also significant physical dispersion, particularly on surface waves. I performed one global simultaneous iteration of elastic and anelastic parameters using GLAD-M25 and its 1D anelastic model QRF12 as the starting models with a dataset of 253 earthquakes. The preliminary results are promising depicting, for instance, the high and low attenuation in the West and East coasts of North America
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Cuingnet, Rémi. „Contributions à l'apprentissage automatique pour l'analyse d'images cérébrales anatomiques“. Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00602032.

Der volle Inhalt der Quelle
Annotation:
L'analyse automatique de différences anatomiques en neuroimagerie a de nombreuses applications pour la compréhension et l'aide au diagnostic de pathologies neurologiques. Récemment, il y a eu un intérêt croissant pour les méthodes de classification telles que les machines à vecteurs supports pour dépasser les limites des méthodes univariées traditionnelles. Cette thèse a pour thème l'apprentissage automatique pour l'analyse de populations et la classification de patients en neuroimagerie. Nous avons tout d'abord comparé les performances de différentes stratégies de classification, dans le cadre de la maladie d'Alzheimer à partir d'images IRM anatomiques de 509 sujets de la base de données ADNI. Ces différentes stratégies prennent insuffisamment en compte la distribution spatiale des \textit{features}. C'est pourquoi nous proposons un cadre original de régularisation spatiale et anatomique des machines à vecteurs supports pour des données de neuroimagerie volumiques ou surfaciques, dans le formalisme de la régularisation laplacienne. Cette méthode a été appliquée à deux problématiques cliniques: la maladie d'Alzheimer et les accidents vasculaires cérébraux. L'évaluation montre que la méthode permet d'obtenir des résultats cohérents anatomiquement et donc plus facilement interprétables, tout en maintenant des taux de classification élevés.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Babayan, Bénédicte. „Unraveling the neural circuitry of sequence-based navigation using a combined fos imaging and computational approach“. Thesis, Paris 5, 2014. http://www.theses.fr/2014PA05T059/document.

Der volle Inhalt der Quelle
Annotation:
La navigation spatiale est une fonction complexe qui nécessite de combiner des informations sur l’environnement et notre mouvement propre pour construire une représentation du monde et trouver le chemin le plus direct vers notre but. Cette intégration multimodale suggère qu’un large réseau de structures corticales et sous-corticales interagit avec l’hippocampe, structure clé de la navigation. Je me suis concentrée chez la souris sur la navigation de type séquence (ou stratégie égocentrique séquentielle) qui repose sur l’organisation temporelle de mouvements associés à des points de choix spatialement distincts. Après avoir montré que l’apprentissage de cette navigation de type séquence nécessitait l’hippocampe et le striatum dorso-médian, nous avons caractérisé le réseau fonctionnel la sous-tendant en combinant de l’imagerie Fos, de l’analyse de connectivité fonctionnelle et une approche computationnelle. Les réseaux fonctionnels changent au cours de l’apprentissage. Lors de la phase précoce, le réseau impliqué comprend un ensemble de régions cortico-striatales fortement corrélées. L’hippocampe était activé ainsi que des structures impliquées dans le traitement d’informations de mouvement propre (cervelet), dans la manipulation de représentations mentales de l’espace (cortex rétrosplénial, pariétal, entorhinal) et dans la planification de trajectoires dirigées vers un but (boucle cortex préfrontal-ganglions de la base). Le réseau de la phase tardive est caractérisé par l’apparition d’activations coordonnées de l’hippocampe et du cervelet avec le reste du réseau. Parallèlement, nous avons testé si l’intégration de chemin, de l’apprentissage par renforcement basé modèle ou non-basé modèle pouvaient reproduire le comportement des souris. Seul un apprentissage par renforcement non-basé modèle auquel une mémoire rétrospective était ajoutée pouvait reproduire les dynamiques d’apprentissage à l’échelle du groupe ainsi que la variabilité individuelle. Ces résultats suggèrent qu’un modèle d’apprentissage par renforcement suffit à l’apprentissage de la navigation de type séquence et que l’ensemble des structures que cet apprentissage requiert adaptent leurs interactions fonctionnelles au cours de l’apprentissage
Spatial navigation is a complex function requiring the combination of external and self-motion cues to build a coherent representation of the external world and drive optimal behaviour directed towards a goal. This multimodal integration suggests that a large network of cortical and subcortical structures interacts with the hippocampus, a key structure in navigation. I have studied navigation in mice through this global approach and have focused on one particular type of navigation, which consists in remembering a sequence of turns, named sequence-based navigation or sequential egocentric strategy. This navigation specifically relies on the temporal organization of movements at spatially distinct choice points. We first showed that sequence-based navigation learning required the hippocampus and the dorsomedial striatum. Our aim was to identify the functional network underlying sequence-based navigation using Fos imaging and computational approaches. The functional networks dynamically changed across early and late learning stages. The early stage network was dominated by a highly inter-connected cortico-striatal cluster. The hippocampus was activated alongside structures known to be involved in self-motion processing (cerebellar cortices), in mental representation of space manipulations (retrosplenial, parietal, entorhinal cortices) and in goal-directed path planning (prefrontal-basal ganglia loop). The late stage was characterized by the emergence of correlated activity between the hippocampus, the cerebellum and the cortico-striatal structures. Conjointly, we explored whether path integration, model-based or model-free reinforcement learning algorithms could explain mice’s learning dynamics. Only the model-free system, as long as a retrospective memory component was added to it, was able to reproduce both the group learning dynamics and the individual variability observed in the mice. These results suggest that a unique model-free reinforcement learning algorithm was sufficient to learn sequence-based navigation and that the multiple structures this learning required adapted their functional interactions across learning
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Eickenberg, Michael. „Évaluation de modèles computationnels de la vision humaine en imagerie par résonance magnétique fonctionnelle“. Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112206/document.

Der volle Inhalt der Quelle
Annotation:
L'imagerie par résonance magnétique fonctionnelle (IRMf) permet de mesurer l'activité cérébrale à travers le flux sanguin apporté aux neurones. Dans cette thèse nous évaluons la capacité de modèles biologiquement plausibles et issus de la vision par ordinateur à représenter le contenu d'une image de façon similaire au cerveau. Les principaux modèles de vision évalués sont les réseaux convolutionnels.Les réseaux de neurones profonds ont connu un progrès bouleversant pendant les dernières années dans divers domaines. Des travaux antérieurs ont identifié des similarités entre le traitement de l'information visuelle à la première et dernière couche entre un réseau de neurones et le cerveau. Nous avons généralisé ces similarités en identifiant des régions cérébrales correspondante à chaque étape du réseau de neurones. Le résultat consiste en une progression des niveaux de complexité représentés dans le cerveau qui correspondent à l'architecture connue des aires visuelles: Plus la couche convolutionnelle est profonde, plus abstraits sont ses calculs et plus haut niveau sera la fonction cérébrale qu'elle sait modéliser au mieux. Entre la détection de contours en V1 et la spécificité à l'objet en cortex inférotemporal, fonctions assez bien comprises, nous montrons pour la première fois que les réseaux de neurones convolutionnels de détection d'objet fournissent un outil pour l'étude de toutes les étapes intermédiaires du traitement visuel effectué par le cerveau.Un résultat préliminaire à celui-ci est aussi inclus dans le manuscrit: L'étude de la réponse cérébrale aux textures visuelles et sa modélisation avec les réseaux convolutionnels de scattering.L'autre aspect global de cette thèse sont modèles de “décodage”: Dans la partie précédente, nous prédisions l'activité cérébrale à partir d'un stimulus (modèles dits d’”encodage”). La prédiction du stimulus à partir de l'activité cérébrale est le méchanisme d'inférence inverse et peut servir comme preuve que cette information est présente dans le signal. Le plus souvent, des modèles linéaires généralisés tels que la régression linéaire ou logistique ou les SVM sont utilisés, donnant ainsi accès à une interprétation des coefficients du modèle en tant que carte cérébrale. Leur interprétation visuelle est cependant difficile car le problème linéaire sous-jacent est soit mal posé et mal conditionné ou bien non adéquatement régularisé, résultant en des cartes non-informatives. En supposant une organisation contigüe en espace et parcimonieuse, nous nous appuyons sur la pénalité convexe d'une somme de variation totale et la norme L1 (TV+L1) pour développer une pénalité regroupant un terme d'activation et un terme de dérivée spatiale. Cette pénalité a la propriété de mettre à zéro la plupart des coefficients tout en permettant une variation libre des coefficients dans une zone d'activation, contrairement à TV+L1 qui impose des zones d’activation plates. Cette méthode améliore l'interprétabilité des cartes obtenues dans un schéma de validation croisée basé sur la précision du modèle prédictif.Dans le contexte des modèles d’encodage et décodage nous tâchons à améliorer les prétraitements des données. Nous étudions le comportement du signal IRMf par rapport à la stimulation ponctuelle : la réponse impulsionnelle hémodynamique. Pour générer des cartes d'activation, au lieu d’un modèle linéaire classique qui impose une réponse impulsionnelle canonique fixe, nous utilisons un modèle bilinéaire à réponse hémodynamique variable spatialement mais fixe à travers les événements de stimulation. Nous proposons un algorithme efficace pour l'estimation et montrons un gain en capacité prédictive sur les analyses menées, en encodage et décodage
Blood-oxygen-level dependent (BOLD) functional magnetic resonance imaging (fMRI) makes it possible to measure brain activity through blood flow to areas with metabolically active neurons. In this thesis we use these measurements to evaluate the capacity of biologically inspired models of vision coming from computer vision to represent image content in a similar way as the human brain. The main vision models used are convolutional networks.Deep neural networks have made unprecedented progress in many fields in recent years. Even strongholds of biological systems such as scene analysis and object detection have been addressed with enormous success. A body of prior work has been able to establish firm links between the first and last layers of deep convolutional nets and brain regions: The first layer and V1 essentially perform edge detection and the last layer as well as inferotemporal cortex permit a linear read-out of object category. In this work we have generalized this correspondence to all intermediate layers of a convolutional net. We found that each layer of a convnet maps to a stage of processing along the ventral stream, following the hierarchy of biological processing: Along the ventral stream we observe a stage-by-stage increase in complexity. Between edge detection and object detection, for the first time we are given a toolbox to study the intermediate processing steps.A preliminary result to this was obtained by studying the response of the visual areas to presentation of visual textures and analysing it using convolutional scattering networks.The other global aspect of this thesis is “decoding” models: In the preceding part, we predicted brain activity from the stimulus presented (this is called “encoding”). Predicting a stimulus from brain activity is the inverse inference mechanism and can be used as an omnibus test for presence of this information in brain signal. Most often generalized linear models such as linear or logistic regression or SVMs are used for this task, giving access to a coefficient vector the same size as a brain sample, which can thus be visualized as a brain map. However, interpretation of these maps is difficult, because the underlying linear system is either ill-defined and ill-conditioned or non-adequately regularized, resulting in non-informative maps. Supposing a sparse and spatially contiguous organization of coefficient maps, we build on the convex penalty consisting of the sum of total variation (TV) seminorm and L1 norm (“TV+L1”) to develop a penalty grouping an activation term with a spatial derivative. This penalty sets most coefficients to zero but permits free smooth variations in active zones, as opposed to TV+L1 which creates flat active zones. This method improves interpretability of brain maps obtained through cross-validation to determine the best hyperparameter.In the context of encoding and decoding models, we also work on improving data preprocessing in order to obtain the best performance. We study the impulse response of the BOLD signal: the hemodynamic response function. To generate activation maps, instead of using a classical linear model with fixed canonical response function, we use a bilinear model with spatially variable hemodynamic response (but fixed across events). We propose an efficient optimization algorithm and show a gain in predictive capacity for encoding and decoding models on different datasets
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Gerardin, Emilie. „Morphometry of the human hippocampus from MRI and conventional MRI high field“. Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00856589.

Der volle Inhalt der Quelle
Annotation:
The hippocampus is a gray matter structure in the temporal lobe that plays a key role in memory processes and in many diseases (Alzheimer's disease, epilepsy, depression ...).The development of morphometric models is essential for the study of the functional anatomy and structure alterations associated with different pathologies. The objective of this thesis is to develop and validate methods for morphometry of the hippocampus in two contexts: the study of the external shape of the hippocampus from conventional MRI (1.5T or 3T) with millimeter resolution, and the study of its internal structure from 7T MRI with high spatial resolution. These two settings correspond to the two main parts of the thesis.In the first part, we propose a method for the automatic classification of patients from shape descriptors. This method is based on a spherical harmonic decomposition which is combined with a support vector machine classifier (SVM). The method is evaluated in the context of automatic classification of patients with Alzheimer's disease (AD) patients, mild cognitive impairment (MCI) patients and healthy elderly subjects. It is also compared to other approaches and a more comprehensive validation is available in a population of 509 subjects from the ADNI database. Finally, we present another application of morphometry to study structural alterations associated with the syndrome of Gilles de la Tourette.The second part of the thesis is devoted to the morphometry of the internal structure of the hippocampus from MRI at 7 Tesla. Indeed, the internal structure of the hippocampus is rich and complex but inaccessible to conventional MRI. We first propose an atlas of the internal structure of the hippocampus from postmortem data acquired at 9.4T. Then, we propose to model the Ammon's horn and the subiculum as a skeleton and a local measure thickness. To do this, we introduce a variational method using original Hilbert spaces reproducing kernels. The method is validated on the postmortem atlas and evaluated on in vivo data from healthy subjects and patients with epilepsy acquired at 7T.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Sun, Roger. „Utilisation de méthodes radiomiques pour la prédiction des réponses à l’immunothérapie et combinaisons de radioimmunothérapie chez des patients atteints de cancers Radiomics to Assess Tumor Infiltrating CD8 T-Cells and Response to Anti-PD-1/PD-L1 Immunotherapy in Cancer Patients: An Imaging Biomarker Multi-Cohort Study Imagerie médicale computationnelle (radiomique) et potentiel en immuno-oncologie Radiomics to Predict Outcomes and Abscopal Response of Cancer Patients Treated with Immunotherapy Combined with Radiotherapy Using a Validated Signature of CD8 Cells“. Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASL023.

Der volle Inhalt der Quelle
Annotation:
Depuis l’arrivée des inhibiteurs de points de contrôle immunitaire, l’immunothérapie a profondément modifié la prise en charge de nombreux cancers, permettant parfois des réponses tumorales prolongées chez des patients atteints de cancers aux stades très avancés. Cependant, malgré des progrès thérapeutiques constants et des associations de traitements combinant par exemple radiothérapie et immunothérapie, la majorité des patients traités ne présentent pas de bénéfices à ces traitements. Ceci explique l’importance de la recherche de biomarqueurs innovants de réponse à l’immunothérapie.L’application de l’intelligence artificielle en imagerie est une discipline récente et en pleine expansion. L’analyse informatique de l’image, appelée également radiomique, permet d’extraire des images médicales de l’information non exploitable à l’œil nu, potentiellement représentative de l’architecture des tissus sous-jacents et de leur composition biologique et cellulaire, et ainsi de développer des biomarqueurs grâce à l’apprentissage automatique (« machine learning »). Cette approche permettrait d’évaluer de façon non invasive la maladie tumorale dans sa globalité, avec la possibilité d’être répétée facilement dans le temps pour appréhender les modifications tumorales survenant au cours de l’histoire de la maladie et de la séquence thérapeutique.Dans le cadre de cette thèse, nous avons évalué si une approche radiomique permettait d’évaluer l’infiltration tumorale lymphocytaire, et pouvait être associée à la réponse de patients traités par immunothérapie. Dans un deuxième temps, nous avons évalué si cette signature permettait d’évaluer la réponse clinique de patients traités par radiothérapie et immunothérapie, et dans quelle mesure elle pouvait être utilisée pour évaluer l’hétérogénéité spatiale tumorale. Les défis spécifiques posés par les données d’imagerie de haute dimension dans le développement d’outils prédictifs applicables en clinique sont discutés dans cette thèse
With the advent of immune checkpoint inhibitors, immunotherapy has profoundly changed the therapeutic strategy of many cancers. However, despite constant therapeutic progress and combinations of treatments such as radiotherapy and immunotherapy, the majority of patients treated do not benefit from these treatments. This explains the importance of research into innovative biomarkers of response to immunotherapyComputational medical imaging, known as radiomics, analyzes and translates medical images into quantitative data with the assumption that imaging reflects not only tissue architecture, but also cellular and molecular composition. This allows an in-depth characterization of tumors, with the advantage of being non-invasive allowing evaluation of tumor and its microenvironment, spatial heterogeneity characterization and longitudinal assessment of disease evolution.Here, we evaluated whether a radiomic approach could be used to assess tumor infiltrating lymphocytes and whether it could be associated with the response of patients treated with immunotherapy. In a second step, we evaluated the association of this radiomic signature with clinical response of patients treated with radiotherapy and immunotherapy, and we assessed whether it could be used to assess tumor spatial heterogeneity.The specific challenges raised by high-dimensional imaging data in the development of clinically applicable predictive tools are discussed in this thesis
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Jurczuk, Krzysztof. „Calcul parallèle pour la modélisation d'images de résonance magnétique nucléaire“. Thesis, Rennes 1, 2013. http://www.theses.fr/2013REN1S089.

Der volle Inhalt der Quelle
Annotation:
L'objet de cette thèse est la modélisation computationnelle de l'Imagerie par Résonance Magnétique (IRM), appliquée à l'imagerie des réseaux vasculaires. Les images sont influencées par la géométrie des vaisseaux mais aussi par le flux sanguin. Par ailleurs, outre la qualité des modèles développés, il est important que les calculs soient performants. C'est pourquoi, le calcul parallèle est utilisé pour gérer ce type de problèmes complexes. Dans cette thèse, trois solutions sont proposées. La première concerne les algorithmes parallèles pour la modélisation des réseaux vasculaires. Des algorithmes dédiés à différentes architectures sont proposés. Le premier est basé sur le modèle de « passage de messages » pour les machines à mémoires distribuées. La parallélisation concerne l'irrigation de nouvelles zones de tissu par les vaisseaux existants. Le deuxième algorithme est dédié aux machines à mémoire partagée. Il parallélise également le processus de perfusion mais des processeurs différents se chargent de gérer les différents arbres vasculaires. Le troisième algorithme est une combinaison des approches précédentes offrant une solution pour les architectures parallèles hybrides. Les algorithmes proposés permettent d'accélérer considérablement la croissance des réseaux vasculaires complexes, ce qui rend possible la simulation de structures vasculaires plus précises, en un temps raisonnable et aide à améliorer le modèle vasculaire et à tester plus facilement différents jeux de paramètres. Une nouvelle approche de modélisation computationnelle des flux en IRM est également proposée. Elle combine le calcul de flux par la méthode de Lattice Boltzmann, la simulation IRM par le suivi temporel de magnétisations locales, ainsi qu'un nouvel algorithme de transport des magnétisations. Les résultats montrent qu'une telle approche intègre naturellement l'influence du flux dans la modélisation IRM. Contrairement aux travaux de la littérature, aucun mécanisme additionnel n'est nécessaire pour considérer les artéfacts de flux, ce qui offre une grande facilité d'extension du modèle. Les principaux avantages de cette méthode est sa faible complexité computationnelle, son implémentation efficace, qui facilitent le lancement des simulations en utilisant différents paramètres physiologiques ou paramètres d'acquisition des images. La troisième partie du travail de thèse a consisté à appliquer le modèle d'imagerie de flux à des réseaux vasculaires complexes en combinant les modèles de vaisseaux, de flux et d'acquisition IRM. Les algorithmes sont optimisés à tous les niveaux afin d'être performants sur des architectures parallèles. Les possibilités du modèle sont illustrées sur différents cas. Cette démarche de modélisation peut aider à mieux interpréter les images IRM grâce à l'intégration, dans les modèles, de connaissances variées allant de la vascularisation des organes jusqu'à la formation de l'image en passant par les propriétés des flux sanguins
This PhD thesis concerns computer modeling of magnetic resonance imaging (MRI). The main attention is centered on imaging of vascular structures. Such imaging is influenced not only by vascular geometries but also by blood flow which has to been taken into account in modeling. Next to the question about the quality of developed models, the challenge lies also in the demand for high performance computing. Thus, in order to manage computationally complex problems, parallel computing is in use. In the thesis three solutions are proposed. The first one concerns parallel algorithms of vascular network modeling. Algorithms for different architectures are proposed. The first algorithm is based on the message passing model and thus, it is suited for distributed memory architectures. It parallelizes the process of connecting new parts of tissue to existing vascular structures. The second algorithm is designed for shared memory machines. It also parallelizes the perfusion process, but individual processors perform calculations concerning different vascular trees. The third algorithm combines message passing and shared memory approaches providing solutions for hybrid parallel architectures. Developed algorithms are able to substantially speed up the time-demanded simulations of growth of complex vascular networks. As a result, more elaborate and precise vascular structures can be simulated in a reasonable period of time. It can also help to extend the vascular model and to test multiple sets of parameters. Secondly, a new approach in computational modeling of magnetic resonance (MR) flow imaging is proposed. The approach combines the flow computation by lattice Boltzmann method, MRI simulation by following discrete local magnetizations in time and a new magnetization transport algorithm together. Results demonstrate that such an approach is able to naturally incorporate the flow influence in MRI modeling. As a result, in the proposed model, no additional mechanism (unlike in prior works) is needed to consider flow artifacts, what implies its easy extensibility. In combination with its low computational complexity and efficient implementation, the solution is a user-friendly and manageable at different levels tool which facilitates running series of simulations with different physiological and imaging parameters. The goal of the third solution is to apply the proposed MR flow imaging model on complex vascular networks. To this aim, models of vascular networks, flow behavior and MRI are combined together. In all the model components, computations are adapted to be performed at various parallel architectures. The model potential and possibilities of simulations of flow and MRI in complex vascular structures are shown. The model aims at explaining and exploring MR image formation and appearance by the combined knowledge from many processes and systems, starting from vascular geometry, through flow patterns and ending on imaging technology
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Bône, Alexandre. „Learning adapted coordinate systems for the statistical analysis of anatomical shapes. Applications to Alzheimer's disease progression modeling“. Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS273.

Der volle Inhalt der Quelle
Annotation:
Cette thèse construit des systèmes de coordonnées pour formes, c'est-à-dire des espaces métriques de dimension finie où les formes sont représentées par des vecteurs. Construire de tels systèmes de coordonnées permet de faciliter l'analyse statistique de collections de formes. Notre motivation finale est de prédire et de sous-typer la maladie d'Alzheimer, en se basant notamment sur des marqueurs ainsi extraits de banques d'images médicales du cerveau. Même si de telles banques sont longitudinales, la variabilité qu’elles renferment reste principalement due à la variabilité inter-individuelle importante et normale du cerveau. La variabilité due à la progression d’altérations pathologiques est d'une amplitude beaucoup plus faible. L'objectif central de cette thèse est de développer un système de coordonnées adapté pour l'analyse statistique de banques de données de formes longitudinales, capable de dissocier ces deux sources de variabilité. Comme montré dans la littérature, le transport parallèle peut être exploité pour obtenir une telle dissociation, par exemple en définissant la notion d’exp-parallélisme sur une variété. Utiliser cet outil sur un espace de formes s'accompagne cependant de défis théoriques et calculatoires, relevés dans la première partie de cette thèse. Enfin, si en anatomie computationnelle les espaces de formes sont communément équipés d'une structure de variété, les classes de difféomorphismes sous-jacentes sont le plus souvent construites sans tenir compte des données étudiées. Le dernier objectif majeur de cette thèse est de construire des systèmes de coordonnées de déformations où le paramétrage de ces déformations est adapté aux données d'intérêt
This thesis aims to build coordinate systems for shapes i.e. finite-dimensional metric spaces where shapes are represented by vectors. The goal of building such coordinate systems is to allow and facilitate the statistical analysis of shape data sets. The end-game motivation of our work is to predict and sub-type Alzheimer’s disease, based in part on knowledge extracted from banks of brain medical images. Even if these data banks are longitudinal, their variability remains mostly due to the large and normal inter-individual variability of the brain. The variability due to the progression of pathological alterations is of much smaller amplitude. The central objective of this thesis is to develop a coordinate system adapted for the statistical analysis of longitudinal shape data sets, able to disentangle these two sources of variability. As shown in the literature, the parallel transport operator can be leveraged to achieve this desired disentanglement, for instance by defining the notion of exp-parallel curves on a manifold. Using this tool on shape spaces comes however with theoretical and computational challenges, tackled in the first part of this thesis. Finally, if shape spaces are commonly equipped with a manifold-like structure in the field of computational anatomy, the underlying classes of diffeomorphisms are however most often largely built and parameterized without taking into account the data at hand. The last major objective of this thesis is to build deformation-based coordinate systems where the parameterization of deformations is adapted to the data set of interest
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Cuingnet, Rémi. „Contributions à l’apprentissage automatique pour l’analyse d’images cérébrales anatomiques“. Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112033/document.

Der volle Inhalt der Quelle
Annotation:
L'analyse automatique de différences anatomiques en neuroimagerie a de nombreuses applications pour la compréhension et l'aide au diagnostic de pathologies neurologiques. Récemment, il y a eu un intérêt croissant pour les méthodes de classification telles que les machines à vecteurs supports pour dépasser les limites des méthodes univariées traditionnelles. Cette thèse a pour thème l'apprentissage automatique pour l'analyse de populations et la classification de patients en neuroimagerie. Nous avons tout d'abord comparé les performances de différentes stratégies de classification, dans le cadre de la maladie d'Alzheimer à partir d'images IRM anatomiques de 509 sujets de la base de données ADNI. Ces différentes stratégies prennent insuffisamment en compte la distribution spatiale des \textit{features}. C'est pourquoi nous proposons un cadre original de régularisation spatiale et anatomique des machines à vecteurs supports pour des données de neuroimagerie volumiques ou surfaciques, dans le formalisme de la régularisation laplacienne. Cette méthode a été appliquée à deux problématiques cliniques: la maladie d'Alzheimer et les accidents vasculaires cérébraux. L'évaluation montre que la méthode permet d'obtenir des résultats cohérents anatomiquement et donc plus facilement interprétables, tout en maintenant des taux de classification élevés
Brain image analyses have widely relied on univariate voxel-wise methods. In such analyses, brain images are first spatially registered to a common stereotaxic space, and then mass univariate statistical tests are performed in each voxel to detect significant group differences. However, the sensitivity of theses approaches is limited when the differences involve a combination of different brain structures. Recently, there has been a growing interest in support vector machines methods to overcome the limits of these analyses.This thesis focuses on machine learning methods for population analysis and patient classification in neuroimaging. We first evaluated the performances of different classification strategies for the identification of patients with Alzheimer's disease based on T1-weighted MRI of 509 subjects from the ADNI database. However, these methods do not take full advantage of the spatial distribution of the features. As a consequence, the optimal margin hyperplane is often scattered and lacks spatial coherence, making its anatomical interpretation difficult. Therefore, we introduced a framework to spatially regularize support vector machines for brain image analysis based on Laplacian regularization operators. The proposed framework was then applied to the analysis of stroke and of Alzheimer's disease. The results demonstrated that the proposed classifier generates less-noisy and consequently more interpretable feature maps with no loss of classification performance
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Qin, Yingying. „Early breast anomalies detection with microwave and ultrasound modalities“. Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPASG058.

Der volle Inhalt der Quelle
Annotation:
Résumé: L'imagerie du sein est développée en associant données micro-ondes (MW) et ultrasonores (US) afin de détecter de manière précoce des tumeurs. On souhaite qu'aucune contrainte soit imposée, le sein étant supposé libre. Une 1re approche utilise des informations sur les frontières des tissus provenant de données de réflexion US. La régularisation intègre que deux pixels voisins présentent des propriétés MW similaires s'il ne sont pas sur une frontière. Ceci est appliqué au sein de la méthode itérative de Born distordue. Une 2de approche implique une régularisation déterministe préservant les bords via variables auxiliaires indiquant si un pixel est ou non sur un bord. Ces variables sont partagées par les paramètres MW et US. Ceux-ci sont conjointement optimisés à partir d'ume approche de minimisation alternée. L'algorithme met alternitivement à jour contraste US, marqueurs, et contraste MW. Une 3e approche implique réseaux de neurones convolutifs. Le courant de contraste estimé et le champ diffusé sont les entrées. Une structure multi-flux se nourrit des données MW et US. Le réseau produit les cartes des paramètres MW et US en temps réel. Outre la tâche de régression, une stratégie d'apprentissage multitâche est utilisée avec un classificateur qui associe chaque pixel à un type de tissu pour produire une image de segmentation. La perte pondérée attribue une pénalité plus élevée aux pixels dans les tumeurs si il sont mal classés. Une 4e approche implique un formalisme bayésien où la distribution a posteriori jointe est obtenue via la règle de Bayes ; cette distribution est ensuite approchée par une loi séparable de forme libre pour chaque ensemble d'inconnues pour obtenir l'estimation. Toutes ces méthodes de résolution sont illustrées et comparées à partir d'un grand nombre de données simulées sur des modèles synthétiques simples et sur des coupes transversales de fantômes mammaires numériques anatomiquement réalistes dérivés d'IRM dans lesquels de petites tumeurs artificielles sont insérées
Imaging of the breast for early detec-tion of tumors is studied by associating microwave (MW) and ultrasound (US) data. No registration is enforced since a free pending breast is tackled. A 1st approach uses prior information on tissue boundaries yielded from US reflection data. Regularization incorporates that two neighboring pixels should exhibit similar MW properties when not on a boundary while a jump allowed otherwise. This is enforced in the distorted Born iterative and the contrast source inversion methods. A 2nd approach involves deterministic edge preserving regularization via auxiliary variables indicating if a pixel is on an edge or not, edge markers being shared by MW and US parameters. Those are jointly optimized from the last parameter profiles and guide the next optimization as regularization term coefficients. Alternate minimization is to update US contrast, edge markers and MW contrast. A 3rd approach involves convolutional neural networks. Estimated contrast current and scattered field are the inputs. A multi-stream structure is employed to feed MW and US data. The network outputs the maps of MW and US parameters to perform real-time. Apart from the regression task, a multi-task learning strategy is used with a classifier that associates each pixel to a tissue type to yield a segmentation image. Weighted loss assigns a higher penalty to pixels in tumors when wrongly classified. A 4th approach involves a Bayesian formalism where the joint posterior distribution is obtained via Bayes’ rule; this true distribution is then approximated by a free-form separable law for each set of unknowns to get the estimate sought. All those solution methods are illustrated and compared from a wealth of simulated data on simple synthetic models and on 2D cross-sections of anatomically-realistic MRI-derived numerical breast phantoms in which small artificial tumors are inserted
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Fadili, Jalal M. „Une exploration des problèmes inverses par les représentations parcimonieuses et l'optimisation non lisse“. Habilitation à diriger des recherches, Université de Caen, 2010. http://tel.archives-ouvertes.fr/tel-01071774.

Der volle Inhalt der Quelle
Annotation:
Ce mémoire résume mon parcours de recherche lors des dix dernières années. Ces travaux de recherche se trouvent à la croisée des chemins entre les mathématiques appliquées et le traitement du signal et des images. Ils s'articulent autour du triptyque: (i) modélisation stochastique-estimation statistique; (ii) analyse harmonique computationnelle-représentations parcimonieuses; (iii) optimisation. Ces trois piliers constituent le socle théorique de mes activités pour développer des approches originales capables de résoudre des problèmes classiques en traitement d'images comme les problèmes inverses en restauration et reconstruction, la séparation de sources, la segmentation, la détection, ou encore la théorie de l'échantillonnage compressé (compressed sensing). Ces travaux ont été appliqués à plusieurs modalités d'imagerie comme l'imagerie médicale et biomédicale (IRM fonctionnelle, échographie, microscopie confocale), le contrôle non destructif et l'imagerie astronomique.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Labatut, Vincent. „Réseaux causaux probabilistes à grande échelle : un nouveau formalisme pour la modélisation du traitement de l'information cérébrale“. Phd thesis, Université Paul Sabatier - Toulouse III, 2003. http://tel.archives-ouvertes.fr/tel-00005190.

Der volle Inhalt der Quelle
Annotation:
La compréhension du fonctionnement cérébral passe par l'étude des relations entre les structures cérébrales et les fonctions cognitives qu'elles implémentent. Les études en activation, qui permettent d'obtenir, grâce aux techniques de neuroimagerie fonctionnelle, des données sur l'activité cérébrale pendant l'accomplissement d'une tâche cognitive, visent à étudier ces liens. Ces études, ainsi que de nombreux travaux chez l'animal, suggèrent que le support neurologique des fonctions cognitives est constitué de réseaux à grande échelle d'aires corticales et de régions sous-corticales interconnectées. Cependant, la mise en correspondance simple entre réseaux activés et tâche accomplie est insuffisante pour comprendre comment l'activation découle du traitement de l'information par le cerveau. De plus, le traitement cérébral est très complexe, et les mesures fournies par la neuroimagerie sont incomplètes, indirectes, et de natures différentes, ce qui complique grandement l'interprétation des données obtenues. Un outil de modélisation explicite des mécanismes de traitement et de propagation de l'information cérébrale dans les réseaux à grande échelle est nécessaire pour palier ces défauts et permettre l'interprétation des mesures de l'activité cérébrale en termes de traitement de l'information. Nous proposons ici un formalisme original répondant à ces objectifs et aux contraintes imposées par le système à modéliser, le cerveau. Il est basé sur une approche graphique causale et probabiliste, les réseaux bayésiens dynamiques, et sur une représentation duale de l'information. Nous considérons le cerveau comme un ensemble de régions fonctionnelles anatomiquement interconnectées, chaque région étant un centre de traitement de l'information qui peut être modélisé par un noeud du réseau bayésien. L'information manipulée dans le formalisme au niveau d'un noeud est l'abstraction du signal généré par l'activité de la population neuronale correspondante. Ceci nous conduit à représenter l'information cérébrale sous la forme d'un couple numérique/symbolique, permettant de tenir compte respectivement du niveau d'activation et de la configuration des neurones activés. Ce travail se situe dans le prolongement d'un projet visant à développer une approche causale originale pour la modélisation du traitement de l'information dans des réseaux cérébraux à grande échelle et l'interprétation des données de neuroimagerie. L'aspect causal permet d'exprimer explicitement des hypothèses sur le fonctionnement cérébral. Notre contribution est double. Au niveau de l'intelligence artificielle, l'utilisation de variables aléatoires labellisées dans des réseaux bayésiens dynamiques nous permet de définir des mécanismes d'apprentissage non-supervisés originaux. Sur le plan des neurosciences computationnelles, nous proposons un nouveau formalisme causal, plus adapté à la représentation du fonctionnement cérébral au niveau des réseaux d'aires que les réseaux de neurones formels, et présentant plus de plausibilité biologique que les autres approches causales, en particulier les réseaux causaux qualitatifs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Wirsich, Jonathan. „EEG-fMRI and dMRI data fusion in healthy subjects and temporal lobe epilepsy : towards a trimodal structure-function network characterization of the human brain“. Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM5040.

Der volle Inhalt der Quelle
Annotation:
La caractérisation de la structure du cerveau humain et les motifs fonctionnelles qu’il fait apparaitre est un défi central pour une meilleure compréhension des pathologies du réseau cérébral telle que l’épilepsie du lobe temporal. Cette caractérisation pourrait aider à améliorer la prédictibilité clinique des résultats d’une chirurgie visant à traiter l’épilepsie.Le fonctionnement du cerveau peut être étudié par l’électroencéphalographie (EEG) ou par l’imagerie de résonance magnétique fonctionnelle (IRMf), alors que la structure peut être caractérisé par l’IRM de diffusion (IRMd). Nous avons utilisé ces modalités pour mesurer le fonctionnement du cerveau pendant une tache de reconnaissance de visages et pendant le repos dans le but de faire le lien entre les modalités d’une façon optimale en termes de résolution temporale et spatiale. Avec cette approche on a mis en évidence une perturbation des relations structure-fonction chez les patients épileptiques.Ce travail a contribué à améliorer la compréhension de l’épilepsie comme une maladie de réseau qui affecte le cerveau à large échelle et non pas au niveau d’un foyer épileptique local. Dans le futur, ces résultats pourraient être utilisés pour guider des interventions chirurgicales mais ils fournissent également des approches nouvelles pour évaluer des traitements pharmacologiques selon ses implications fonctionnelles à l’échelle du cerveau entier
The understanding human brain structure and the function patterns arising from it is a central challenge to better characterize brain network pathologies such as temporal lobe epilepsies, which could help to improve the clinical predictability of epileptic surgery outcome.Brain functioning can be accessed by both electroencephalography (EEG) or functional magnetic resonance imaging (fMRI), while brain structure can be measured with diffusion MRI (dMRI). We use these modalities to measure brain functioning during a face recognition task and in rest in order to link the different modalities in an optimal temporal and spatial manner. We discovered disruption of the network processing famous faces as well a disruption of the structure-function relation during rest in epileptic patients.This work broadened the understanding of epilepsy as a network disease that changes the brain on a large scale not limited to a local epileptic focus. In the future these results could be used to guide clinical intervention during epilepsy surgery but also they provide new approaches to evaluate pharmacological treatment on its functional implications on a whole brain scale
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Hansen, Enrique carlos. „Modeling non-stationary resting-state dynamics in large-scale brain models“. Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4011/document.

Der volle Inhalt der Quelle
Annotation:
La complexité de la connaissance humaine est révèlée dans l'organisation spatiale et temporelle de la dynamique du cerveau. Nous pouvons connaître cette organisation grâce à l'analyse des signaux dépendant du niveau d'oxygène sanguin (BOLD), lesquels sont obtenus par l'imagerie par résonance magnétique fonctionnelle (IRMf). Nous observons des dépendances statistiques entre les régions du cerveau dans les données BOLD. Ce phénomène s' appelle connectivité fonctionnelle (CF). Des modèles computationnels sont développés pour reproduire la connectivité fonctionnelle (CF). Comme les études expérimentales précédantes, ces modèles assument que la CF est stationnaire, c'est-à-dire la moyenne et la covariance des séries temporelles BOLD utilisées par la CF sont constantes au fil du temps. Cependant, des nouvelles études expérimentales concernées par la dynamique de la CF à différentes échelles montrent que la CF change dans le temps. Cette caractéristique n'a pas été reproduite dans ces modèles computationnels précédants. Ici on a augmenté la non-linéarité de la dynamique locale dans un modèle computationnel à grande échelle. Ce modèle peut reproduire la grande variabilité de la CF observée dans les études expérimentales
The complexity of human cognition is revealed in the spatio-temporal organization of brain dynamics. We can gain insight into this organization through the analysis of blood oxygenation-level dependent (BOLD) signals, which are obtained from functional magnetic resonance imaging (fMRI). In BOLD data we can observe statistical dependencies between brain regions. This phenomenon is known as functional connectivity (FC). Computational models are being developed to reproduce the FC of the brain. As in previous empirical studies, these models assume that FC is stationary, i.e. the mean and the covariance of the BOLD time series used for the FC are constant over time. Nevertheless, recent empirical studies focusing on the dynamics of FC at different time scales show that FC is variable in time. This feature is not reproduced in the simulated data generated by some previous computational models. Here we have enhanced the non-linearity of local dynamics in a large-scale computational model. By enhancing this non-linearity, our model is able to reproduce the variability of the FC found in empirical data
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie