Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Image de microscopie“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Image de microscopie" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Image de microscopie"
Kinosita, K., H. Itoh, S. Ishiwata, K. Hirano, T. Nishizaka und T. Hayakawa. „Dual-view microscopy with a single camera: real-time imaging of molecular orientations and calcium.“ Journal of Cell Biology 115, Nr. 1 (01.10.1991): 67–73. http://dx.doi.org/10.1083/jcb.115.1.67.
Der volle Inhalt der QuelleBouchon, Patrick, und Yannick de Wilde. „Rayonnement thermique infrarouge de nano-antennes plasmoniques individuelles“. Photoniques, Nr. 105 (November 2020): 32–36. http://dx.doi.org/10.1051/photon/202010532.
Der volle Inhalt der QuelleBraat, J. „Calcul efficace de l'intensité image en microscopie confocale appliqué à la lecture d'un disque optique“. Annales de Physique 24, Nr. 3 (1999): 31–42. http://dx.doi.org/10.1051/anphys:199903004.
Der volle Inhalt der QuelleWan, Xinjun, und Xuechen Tao. „Design of a Cell Phone Lens-Based Miniature Microscope with Configurable Magnification Ratio“. Applied Sciences 11, Nr. 8 (09.04.2021): 3392. http://dx.doi.org/10.3390/app11083392.
Der volle Inhalt der QuelleJin, Lingbo, Yubo Tang, Yicheng Wu, Jackson B. Coole, Melody T. Tan, Xuan Zhao, Hawraa Badaoui et al. „Deep learning extended depth-of-field microscope for fast and slide-free histology“. Proceedings of the National Academy of Sciences 117, Nr. 52 (14.12.2020): 33051–60. http://dx.doi.org/10.1073/pnas.2013571117.
Der volle Inhalt der QuelleTetard, Martin, Ross Marchant, Giuseppe Cortese, Yves Gally, Thibault de Garidel-Thoron und Luc Beaufort. „Technical note: A new automated radiolarian image acquisition, stacking, processing, segmentation and identification workflow“. Climate of the Past 16, Nr. 6 (02.12.2020): 2415–29. http://dx.doi.org/10.5194/cp-16-2415-2020.
Der volle Inhalt der QuellePerrot, J. L., A. Biron, E. Couty, L. Tognetti, C. Couzan, R. Rossi, P. Rubegni und E. Cinotti. „Premiers cas de corrélation parfaite à l’échelle cellulaire entre image de microscopie confocale in vivo et dermatoscopie“. Annales de Dermatologie et de Vénéréologie 145, Nr. 12 (Dezember 2018): S186. http://dx.doi.org/10.1016/j.annder.2018.09.261.
Der volle Inhalt der QuelleDavidson, Michael W. „Pioneers in Optics: Joseph Jackson Lister and Maksymilian Pluta“. Microscopy Today 19, Nr. 3 (28.04.2011): 54–56. http://dx.doi.org/10.1017/s1551929511000277.
Der volle Inhalt der QuelleChen, Xiaodong, Bin Zheng und Hong Liu. „Optical and Digital Microscopic Imaging Techniques and Applications in Pathology“. Analytical Cellular Pathology 34, Nr. 1-2 (2011): 5–18. http://dx.doi.org/10.1155/2011/150563.
Der volle Inhalt der QuelleJia Renqing, 贾仁庆, 殷高方 Yin Gaofang, 赵南京 Zhao Nanjing, 徐敏 Xu Min, 胡翔 Hu Xiang, 黄朋 Huang Peng, 梁天泓 Liang Tianhong et al. „浮游藻类细胞显微多聚焦图像融合方法“. Acta Optica Sinica 43, Nr. 12 (2023): 1210001. http://dx.doi.org/10.3788/aos222153.
Der volle Inhalt der QuelleDissertationen zum Thema "Image de microscopie"
Toledo, Acosta Bertha Mayela. „Multimodal image registration in 2D and 3D correlative microscopy“. Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S054/document.
Der volle Inhalt der QuelleThis thesis is concerned with the definition of an automated registration framework for 2D and 3D correlative microscopy images, in particular for correlative light and electron microscopy (CLEM) images. In recent years, CLEM has become an important and powerful tool in the bioimaging field. By using CLEM, complementary information can be collected from a biological sample. An overlay of the different microscopy images is commonly achieved using techniques involving manual assistance at several steps, which is demanding and time consuming for biologists. To facilitate and disseminate the CLEM process for biologists, the thesis work is focused on creating automatic registration methods that are reliable, easy to use and do not require parameter tuning or complex knowledge. CLEM registration has to deal with many issues due to the differences between electron microscopy and light microscopy images and their acquisition, both in terms of pixel resolution, image size, content, field of view and appearance. We have designed intensity-based methods to align CLEM images in 2D and 3D. They involved a common representation of the LM and EM images using the LoG transform, a pre-alignment step exploiting histogram-based similarities within an exhaustive search, and a fine mutual information-based registration. In addition, we have defined a robust motion model selection method, and a multiscale spot detection method which were exploited in the 2D CLEM registration. Our automated CLEM registration framework was successfully tested on several real 2D and 3D CLEM datasets and the results were validated by biologists, offering an excellent perspective in the usefulness of our methods
Denimal, Emmanuel. „Détection de formes compactes en imagerie : développement de méthodes cumulatives basées sur l'étude des gradients : Applications à l'agroalimentaire“. Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCK006/document.
Der volle Inhalt der QuelleThe counting cells (Malassez, Thoma ...) are designed to allow the enumeration of cells under a microscope and the determination of their concentration thanks to the calibrated volume of the grid appearing in the microscopic image. Manual counting has major disadvantages: subjectivity, non-repeatability ... There are commercial automatic counting solutions, the disadvantage of which is that a well-controlled environment is required which can’t be obtained in certain studies ( eg glycerol greatly affects the quality of the images ). The objective of the project is therefore twofold: an automated cell count and sufficiently robust to be feasible regardless of the acquisition conditions.In a first step, a method based on the Fourier transform has been developed to detect, characterize and erase the grid of the counting cell. The characteristics of the grid extracted by this method serve to determine an area of interest and its erasure makes it easier to detect the cells to count.To perform the count, the main problem is to obtain a cell detection method robust enough to adapt to the variable acquisition conditions. The methods based on gradient accumulations have been improved by the addition of structures allowing a finer detection of accumulation peaks. The proposed method allows accurate detection of cells and limits the appearance of false positives.The results obtained show that the combination of these two methods makes it possible to obtain a repeatable and representative count of a consensus of manual counts made by operators
Moisan, Frédéric. „Optimisation du contraste image en microscopie optique : application à l'inspection microélectronique“. Grenoble 1, 1988. http://tel.archives-ouvertes.fr/tel-00331501.
Der volle Inhalt der QuelleMoisan, Frédéric. „Optimisation du contraste image en microscopie optique application à l'inspection microélectronique /“. Grenoble 2 : ANRT, 1988. http://catalogue.bnf.fr/ark:/12148/cb37616602c.
Der volle Inhalt der QuelleMoisan, Frédéric Courtois Bernard. „Optimisation du contraste image en microscopie optique application à l'inspection microélectronique /“. S.l. : Université Grenoble 1, 2008. http://tel.archives-ouvertes.fr/tel-00331501.
Der volle Inhalt der QuelleJezierska, Anna Maria. „Image restoration in the presence of Poisson-Gaussian noise“. Phd thesis, Université Paris-Est, 2013. http://tel.archives-ouvertes.fr/tel-00906718.
Der volle Inhalt der QuelleLe, Floch Hervé. „Acquisition des images en microscopie electronique a balayage in situ“. Toulouse 3, 1986. http://www.theses.fr/1986TOU30026.
Der volle Inhalt der QuelleHenrot, Simon. „Déconvolution et séparation d'images hyperspectrales en microscopie“. Electronic Thesis or Diss., Université de Lorraine, 2013. http://www.theses.fr/2013LORR0187.
Der volle Inhalt der QuelleHyperspectral imaging refers to the acquisition of spatial images at many spectral bands, e.g. in microscopy. Processing such data is often challenging due to the blur caused by the observation system, mathematically expressed as a convolution. The operation of deconvolution is thus necessary to restore the original image. Image restoration falls into the class of inverse problems, as opposed to the direct problem which consists in modeling the image degradation process, treated in part 1 of the thesis. Another inverse problem with many applications in hyperspectral imaging consists in extracting the pure materials making up the image, called endmembers, and their fractional contribution to the data or abundances. This problem is termed spectral unmixing and its resolution accounts for the nonnegativity of the endmembers and abundances. Part 2 presents algorithms designed to efficiently solve the hyperspectral image restoration problem, formulated as the minimization of a composite criterion. The methods are based on a common framework allowing to account for several a priori assumptions on the solution, including a nonnegativity constraint and the preservation of edges in the image. The performance of the proposed algorithms are demonstrated on fluorescence confocal images of bacterial biosensors. Part 3 deals with the spectral unmixing problem from a geometrical viewpoint. A sufficient condition on abundance coefficients for the identifiability of endmembers is proposed. We derive and study a joint observation model and mixing model and demonstrate the interest of performing deconvolution as a prior step to spectral unmixing on confocal Raman microscopy data
Henrot, Simon. „Déconvolution et séparation d'images hyperspectrales en microscopie“. Phd thesis, Université de Lorraine, 2013. http://tel.archives-ouvertes.fr/tel-00931579.
Der volle Inhalt der QuelleSibarita, Jean-Baptiste. „Formation et restauration d'images en microscopie à rayons : application à l'observation d'échantillons biologiques“. Phd thesis, Université Joseph Fourier (Grenoble), 1996. http://tel.archives-ouvertes.fr/tel-00345364.
Der volle Inhalt der QuelleBücher zum Thema "Image de microscopie"
Reimer, Ludwig. Scanning electron microscopy: Physics of image formation and microanalysis. 2. Aufl. Berlin: Springer, 1998.
Den vollen Inhalt der Quelle findenR, Wootton, Springall D. R und Polak Julia M, Hrsg. Image analysis in histology: Conventional and confocal microscopy. Cambridge: Published in association with the Royal Postgraduage Medical School, University of London by Cambridge University Press, 1995.
Den vollen Inhalt der Quelle findenLynette, Ruschak, Hrsg. Magnification: A pop-up lift-the-flap book. New York: Lodestar Books, 1993.
Den vollen Inhalt der Quelle findenReimer, Ludwig. Transmission electron microscopy: Physics of image formation and microanalysis. 2. Aufl. Berlin: Springer-Verlag, 1989.
Den vollen Inhalt der Quelle finden1958-, Wu Qiang, Merchant Fatima und Castleman Kenneth R, Hrsg. Microscope image processing. Amsterdam: Academic Press, 2008.
Den vollen Inhalt der Quelle finden1949-, Williams David B., Pelton Alan R und Gronsky R, Hrsg. Images of materials. New York: Oxford University Press, 1991.
Den vollen Inhalt der Quelle findenHarmuth, Henning F. Dirac's difference equation and the physics of finite differences. Amsterdam: Academic Press, 2008.
Den vollen Inhalt der Quelle findenWitkin, Joan. Histology atlas of microscopic images. New York, N.Y.]: [Columbia University Health Sciences], 2003.
Den vollen Inhalt der Quelle findenJens, Rittscher, Machiraju Raghu und Wong Stephen T. C, Hrsg. Microscopic image analysis for life science applications. Boston [Mass.}: Artech House, 2008.
Den vollen Inhalt der Quelle findenChen, Liang-Chia, Guo-Wei Wu, Sanjeev Kumar Singh und Wei-Hsin Chein. Diffractive Image Microscopy for 3D Imaging. Singapore: Springer Nature Singapore, 2024. https://doi.org/10.1007/978-981-97-7782-2.
Der volle Inhalt der QuelleBuchteile zum Thema "Image de microscopie"
Cinquin, Bertrand, Joyce Y. Kao und Mark L. Siegal. „i.2.i. with the (Fruit) Fly: Quantifying Position Effect Variegation in Drosophila Melanogaster“. In Bioimage Data Analysis Workflows ‒ Advanced Components and Methods, 147–74. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-76394-7_7.
Der volle Inhalt der QuelleNakanishi, Tomoko M. „Real-Time Element Movement in a Plant“. In Novel Plant Imaging and Analysis, 109–68. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4992-6_4.
Der volle Inhalt der QuelleKumar, Amit, Fahimuddin Shaik, B. Abdul Rahim und D. Sravan Kumar. „Image Enhancement of Leukemia Microscopic Images“. In Signal and Image Processing in Medical Applications, 17–37. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0690-6_4.
Der volle Inhalt der QuelleCarlton, Robert Allen. „Image Analysis“. In Pharmaceutical Microscopy, 173–211. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-8831-7_7.
Der volle Inhalt der QuelleInoué, Shinya, und Kenneth R. Spring. „Microscope Image Formation“. In Video Microscopy, 13–117. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5859-0_2.
Der volle Inhalt der QuelleInoué, Shinya. „Microscope Image Formation“. In Video Microscopy, 93–148. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4757-6925-8_5.
Der volle Inhalt der QuelleBright, D. S., D. E. Newbury, R. B. Marinenko,, E. B. Steel, und R. L. Myklebust. „Processing Images and Selecting Regions of Interest“. In Images Of Materials, 309–37. Oxford University PressNew York, NY, 1992. http://dx.doi.org/10.1093/oso/9780195058567.003.0011.
Der volle Inhalt der QuelleOrchard, Guy. „Light microscopy and digital pathology“. In Histopathology, herausgegeben von Guy Orchard und Brian Nation. Oxford University Press, 2017. http://dx.doi.org/10.1093/hesc/9780198717331.003.0014.
Der volle Inhalt der QuelleM, Dr Leo Caroline, Dr Nachiammai N, Dr Harini Priya A.H und Dr R. Sathish Muthukumar. „FLUORESCENCE MICROSCOPE“. In Emerging Trends in Oral Health Sciences and Dentistry. Technoarete Publishers, 2022. http://dx.doi.org/10.36647/etohsd/2022.01.b1.ch030.
Der volle Inhalt der QuelleHowell, Gareth, und Kyle Dent. „Bioimaging: light and electron microscopy“. In Tools and Techniques in Biomolecular Science. Oxford University Press, 2013. http://dx.doi.org/10.1093/hesc/9780199695560.003.0017.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Image de microscopie"
Blochet, Baptiste, und Marc Guillon. „Single-shot phase and polarimetric microscopy“. In 3D Image Acquisition and Display: Technology, Perception and Applications, JF2A.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/3d.2024.jf2a.2.
Der volle Inhalt der QuelleBueno, Gloria, Jesus Ruiz-Santaquiteria, Noelia Vallez, Jesus Salido, Gabriel Cristóbal und Oscar Deniz. „Telemicroscopy system applied to digital microscopy with a low-cost automated microscope“. In Applications of Digital Image Processing XLVII, herausgegeben von Andrew G. Tescher und Touradj Ebrahimi, 1. SPIE, 2024. http://dx.doi.org/10.1117/12.3028227.
Der volle Inhalt der QuelleGalliopoulou, Eirini C., Christopher Jones, Lawrence Coghlan, Mariia Zimina, Tomas L. Martin, Peter E. J. Flewitt, Alan Cocks, John Siefert und Jonathan D. Parker. „Creep Cavitation Imaging and Analysis in 9%Cr-1%Mo P91 Steels“. In AM-EPRI 2024, 219–34. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.am-epri-2024p0219.
Der volle Inhalt der QuelleOzcan, Aydogan. „Virtual Staining of Label-free Tissue“. In Frontiers in Optics, FM3D.1. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.fm3d.1.
Der volle Inhalt der QuelleStegmann, Heiko, und Flavio Cognigni. „Few-Shot AI Segmentation of Semiconductor Device FIB-SEM Tomography Data“. In ISTFA 2024, 13–21. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.istfa2024p0013.
Der volle Inhalt der QuelleKurumundayil, Leslie, Theresa Trötschler, Jonas Schönauer, Doga Can Öner, Stefan Rein und Matthias Demant. „Microscopic Image Analysis of Printed Structures Without a Microscope: A Deep Learning Approach“. In 2024 IEEE 52nd Photovoltaic Specialist Conference (PVSC), 0802–4. IEEE, 2024. http://dx.doi.org/10.1109/pvsc57443.2024.10749537.
Der volle Inhalt der QuelleKhoubafarin, Somaiyeh, Peuli Nath, Hannah Popofski und Aniruddha Ray. „High resolution Multi-Modal Microscopy using Microlens Substrates“. In CLEO: Applications and Technology, ATu4B.1. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.atu4b.1.
Der volle Inhalt der QuelleIncardona, Nicolo, Angel Tolosa, Gabriele Scrofani, Manuel Martinez-Corral und Genaro Saavedra. „The Lightfield Eyepiece: an Add-on for 3D Microscopy“. In 3D Image Acquisition and Display: Technology, Perception and Applications. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/3d.2022.3tu5a.6.
Der volle Inhalt der QuelleXing, Z. G., C. M. Zhao, J. Wei und Z. Wei. „3D Reconstruction Based on Single Defocused Microscopic Image“. In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86644.
Der volle Inhalt der QuelleChao, S. H., M. R. Holl, J. H. Koschwanez, R. H. Carlson, L. S. Jang und D. R. Meldrum. „Velocity Measurements in Microchannels With a Laser Scanning Microscope and Particle Linear Image Velocimetry“. In ASME 2004 2nd International Conference on Microchannels and Minichannels. ASMEDC, 2004. http://dx.doi.org/10.1115/icmm2004-2432.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Image de microscopie"
Greaves, C., und J. B. R. Eamer. Focus stacking for cataloguing, presentation, and identification of microfossils in marine sediments. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331355.
Der volle Inhalt der QuelleMoon, Bill. Employment of Crystallographic Image Processing Techniques to Scanning Probe Microscopy Images of Two-Dimensional Periodic Objects. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.699.
Der volle Inhalt der QuellePennycook, S. J., und A. R. Lupini. Image Resolution in Scanning Transmission Electron Microscopy. Office of Scientific and Technical Information (OSTI), Juni 2008. http://dx.doi.org/10.2172/939888.
Der volle Inhalt der QuelleDabros, M. J., und P. J. Mudie. An Automated Microscope System For Image Analysis in Palynology and Micropaleontology. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/120356.
Der volle Inhalt der QuelleSalapaka, Srinivasa M., und Petros G. Voulgaris. Fast Scanning and Fast Image Reconstruction in Atomic Force Microscopy. Fort Belvoir, VA: Defense Technical Information Center, März 2009. http://dx.doi.org/10.21236/ada495364.
Der volle Inhalt der QuelleBajcsy, Peter, und Nathan Hotaling. Interoperability of web computational plugins for large microscopy image analyses. Gaithersburg, MD: National Institute of Standards and Technology, März 2020. http://dx.doi.org/10.6028/nist.ir.8297.
Der volle Inhalt der QuelleWendelberger, James G. Localized Similar Image Texture in Images of Sample Laser Confocal Microscope for Area: FY15 DE07 SW C1 Zone 1 & 2 Section b. Office of Scientific and Technical Information (OSTI), Februar 2019. http://dx.doi.org/10.2172/1496724.
Der volle Inhalt der QuelleBolgert, Peter J. A Comparison of Image Quality Evaluation Techniques for Transmission X-Ray Microscopy. Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1049731.
Der volle Inhalt der QuelleGłąb, Tomasz, Jarosław Knaga, Tomasz Zaleski, Paweł Dziwisz, Jan Gluza und Dariusz Glanas. Determination of soil particle size distribution using computer analysis of microscopic images. Publishing House of the University of Agriculture in Krakow, 2025. https://doi.org/10.15576/repourk/2025.1.3.
Der volle Inhalt der QuelleWendelberger, James. Template size and proper overlap detection in Laser Confocal Microscope (LCM) images. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1812643.
Der volle Inhalt der Quelle