Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: II-VI alloys.

Zeitschriftenartikel zum Thema „II-VI alloys“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "II-VI alloys" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Myles, Charles W. "Microhardness of Hg-containing II–VI alloys." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 10, no. 4 (1992): 1454. http://dx.doi.org/10.1116/1.586271.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Liu, Xinyu, and J. K. Furdyna. "Optical dispersion of ternary II–VI semiconductor alloys." Journal of Applied Physics 95, no. 12 (2004): 7754–64. http://dx.doi.org/10.1063/1.1739291.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Perkowitz, S., L. S. Kim, and P. Becla. "Infrared bond ionicity in ternary II–VI alloys." Solid State Communications 77, no. 6 (1991): 471–74. http://dx.doi.org/10.1016/0038-1098(91)90239-r.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chu, T. L., S. S. Chu, C. Ferekides, et al. "Thin films of II–VI compounds and alloys." Solar Cells 30, no. 1-4 (1991): 123–30. http://dx.doi.org/10.1016/0379-6787(91)90044-p.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Jaroszyński, J., T. Andrearczyk, G. Karczewski, et al. "Quantum Hall ferromagnetism in II–VI based alloys." physica status solidi (b) 241, no. 3 (2004): 712–17. http://dx.doi.org/10.1002/pssb.200304293.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Wang, Zhihai, Bruce A. Bunker, Robert A. Mayanovic, Ursula Debska, and Jacek K. Furdyna. "Lattice Distortion and Ferroelectricity in IV-VI and II-VI Semiconductor Alloys." Japanese Journal of Applied Physics 32, S2 (1993): 673. http://dx.doi.org/10.7567/jjaps.32s2.673.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

v. Wensierski, H. "Ordering and diffusion in II-VI/III-VI alloys with structural vacancies." Solid State Ionics 101-103, no. 1-2 (1997): 479–87. http://dx.doi.org/10.1016/s0167-2738(97)00145-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Wensierski, H. v., D. Weitze, and V. Leute. "Ordering and diffusion in II–VI/III–VI alloys with structural vacancies." Solid State Ionics 101-103 (November 1997): 479–87. http://dx.doi.org/10.1016/s0167-2738(97)84072-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Zamir, D., K. Beshah, P. Becla, et al. "Nuclear magnetic resonance studies of II–VI semiconductor alloys." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 6, no. 4 (1988): 2612–13. http://dx.doi.org/10.1116/1.575516.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Berding, M. A., S. Krishnamurthy, A. Sher, and A. B. Chen. "Ballistic transport in II–VI semiconductor compounds and alloys." Journal of Crystal Growth 86, no. 1-4 (1988): 33–38. http://dx.doi.org/10.1016/0022-0248(90)90695-h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Balzarotti, A. "Lattice distortions around atomic substitutions in II–VI alloys." Physica B+C 146, no. 1-2 (1987): 150–75. http://dx.doi.org/10.1016/0378-4363(87)90059-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Shakhmin, Alexey A., Irina V. Sedova, Sergey V. Sorokin, Hans-Joachim Fitting, and Maria V. Zamoryanskaya. "Cathodoluminescence of wide-band-gap II-VI quaternary alloys." physica status solidi (c) 7, no. 6 (2010): 1457–59. http://dx.doi.org/10.1002/pssc.200983278.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Price, M. W., H. Zuo, G. M. Janowsk, and R. N. Andrews. "Compositional analysis of mercury zinc telluride by EDS and WDS." Proceedings, annual meeting, Electron Microscopy Society of America 49 (August 1991): 748–49. http://dx.doi.org/10.1017/s0424820100088051.

Der volle Inhalt der Quelle
Annotation:
Semiconducting alloys of II-VI compounds have become the materials of choice for numerous infrared detection applications. However, compositional inhomogeneities in II-VI materials can adversely affect device performance. Extensive work has been conducted to evaluate the influence of growth parameters on the compositional redistribution in directionally solidified bulk alloys. Energy Dispersive Spectroscopy (EDS) has proven to be a valuable tool both in evaluating the compositional homogeneity of II-VI alloys and gaining information about the influence of growth parameters on compositional red
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Lu, Junpeng, Hongwei Liu, Xinhai Zhang, and Chorng Haur Sow. "One-dimensional nanostructures of II–VI ternary alloys: synthesis, optical properties, and applications." Nanoscale 10, no. 37 (2018): 17456–76. http://dx.doi.org/10.1039/c8nr05019h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Jafarov, M. A., E. F. Nasirov, and S. A. Mamedova. "Negative photoconductivity in films of alloys of II–VI compounds." Semiconductors 48, no. 5 (2014): 570–76. http://dx.doi.org/10.1134/s1063782614050066.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Yu, K. M., W. Shan, O. D. Dubon, et al. "Synthesis and properties of highly mismatched II–O–VI alloys." IEE Proceedings - Optoelectronics 151, no. 5 (2004): 452–59. http://dx.doi.org/10.1049/ip-opt:20040932.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Miller, D. J., and A. K. Koh. "Electron paramagnetic resonance of Mn2+ in II–VI semiconductor alloys." Journal of Physics and Chemistry of Solids 55, no. 2 (1994): 153–59. http://dx.doi.org/10.1016/0022-3697(94)90072-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Yu, K. M., J. Wu, W. Walukiewicz, et al. "Band anticrossing in highly mismatched group II-VI semiconductor alloys." Journal of Electronic Materials 31, no. 7 (2002): 754–58. http://dx.doi.org/10.1007/s11664-002-0232-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Aydinli, Atilla, and Alvin D. Compaan. "Pulsed laser deposition of some II-VI compounds and alloys." Advanced Materials for Optics and Electronics 2, no. 1-2 (1993): 79–86. http://dx.doi.org/10.1002/amo.860020110.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Ekpenuma, Sylvester N., and Charles W. Myles. "Structural stability of Zn‐containing II–VI semiconductor alloys: Microhardness calculations." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 10, no. 1 (1992): 208–16. http://dx.doi.org/10.1116/1.578138.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Yu, K. M., W. Walukiewicz, W. Shan, et al. "Synthesis and optical properties of II-O-VI highly mismatched alloys." Journal of Applied Physics 95, no. 11 (2004): 6232–38. http://dx.doi.org/10.1063/1.1713021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Kisker, D. W. "Issues in the OMVPE growth of II–VI alloys for optoelectronics." Journal of Crystal Growth 98, no. 1-2 (1989): 127–39. http://dx.doi.org/10.1016/0022-0248(89)90193-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Vodopyanov, L. K. "Optical studies of II–VI alloy lattice dynamics." Journal of Alloys and Compounds 371, no. 1-2 (2004): 72–76. http://dx.doi.org/10.1016/j.jallcom.2003.05.007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Ohtani, H., K. Kojima, K. Ishida, and T. Nishizawa. "Miscibility gap in II–VI alloy semiconductor systems." Journal of Alloys and Compounds 182, no. 1 (1992): 103–14. http://dx.doi.org/10.1016/0925-8388(92)90579-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Wolverson, D., J. J. Davies, C. L. Orange, et al. "Spin-flip Raman scattering of wide-band-gap II-VI ternary alloys." Physical Review B 60, no. 19 (1999): 13555–60. http://dx.doi.org/10.1103/physrevb.60.13555.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Eason, D. B., Z. Yu, C. Boney, et al. "Quaternary II–VI alloys for blue and green light emitting diode applications." Journal of Crystal Growth 138, no. 1-4 (1994): 709–13. http://dx.doi.org/10.1016/0022-0248(94)90895-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Rajeshwar, Krishnan. "Electrosynthesized thin films of group II-VI compound semiconductors, alloys and superstructures." Advanced Materials 4, no. 1 (1992): 23–29. http://dx.doi.org/10.1002/adma.19920040104.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Malyshev, Victor, Angelina Gab, Arvydas Survila, et al. "Electroplating of Co-W and Co-Mo Alloys from Na2WO4 Ionic Melts." Revista de Chimie 70, no. 3 (2019): 871–74. http://dx.doi.org/10.37358/rc.19.3.7023.

Der volle Inhalt der Quelle
Annotation:
The cathodic reduction processes of cobalt (II), tungsten (VI) and molybdenum (VI) in Na2WO4 melts are discussed. Electrochemical behavior of cobalt in a tungstate melt, as well as the effect of electrolysis conditions on the composition and structure of Co-W and Co-Mo alloys deposits from tungstate-molybdate melts is also studied. With a decrease in the concentration of cobalt ions and an increase in the concentration of molybdenum (tungsten) ions in the melt, the phase composition of cathodic deposits is shown to change from individual cobalt to individual molybdenum (tungsten) via a series
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Vasil’ev, V. P. "Correlations between the thermodynamic properties of II–VI and III–VI phases." Inorganic Materials 43, no. 2 (2007): 115–24. http://dx.doi.org/10.1134/s0020168507020045.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Sastry, Mylavarapu S., and Suryakant S. Gupta. "Homonuclear molybdenum(VI) and heteronuclear molybdenum(VI) copper(II) peroxo complexes containing amino acids." Transition Metal Chemistry 21, no. 5 (1996): 410–12. http://dx.doi.org/10.1007/bf00140781.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

El-Asmy, Ahmed A., Mohamed A. Morsi, and Alaa A. El-Shafei. "Cobalt(II), nickel(II), copper(II), zinc(II) and uranyl(VI) complexes of acetylacetone bis(4-phenylthiosemicarbazone)." Transition Metal Chemistry 11, no. 12 (1986): 494–96. http://dx.doi.org/10.1007/bf01386886.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Gunshor, Robert L., and Arto V. Nurmikko. "II-VI Blue-Green Laser Diodes: A Frontier of Materials Research." MRS Bulletin 20, no. 7 (1995): 15–19. http://dx.doi.org/10.1557/s088376940003712x.

Der volle Inhalt der Quelle
Annotation:
The current interest in the wide bandgap II-VI semiconductor compounds can be traced back to the initial developments in semiconductor optoelectronic device physics that occurred in the early 1960s. The II-VI semiconductors were the object of intense research in both industrial and university laboratories for many years. The motivation for their exploration was the expectation that, possessing direct bandgaps from infrared to ultraviolet, the wide bandgap II-VI compound semiconductors could be the basis for a variety of efficient light-emitting devices spanning the entire range of the visible
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Mannodi-Kanakkithodi, Arun. "A first principles investigation of ternary and quaternary II–VI zincblende semiconductor alloys." Modelling and Simulation in Materials Science and Engineering 30, no. 4 (2022): 044001. http://dx.doi.org/10.1088/1361-651x/ac59d8.

Der volle Inhalt der Quelle
Annotation:
Abstract One of the most common ways of tuning the stability, electronic structure, and optical behavior of semiconductors is via composition engineering. By mixing multiple isovalent elements at any cation or anion site, new compositions may be generated with markedly different properties than end-point compositions, and not always lying within a predictable trend. In this work, we explore the trends in lattice constant, electronic band gap, formation and mixing energy, and optical absorption behavior in a series of II–VI zincblende semiconductors with Cd/Zn at the cation site and S/Se/Te at
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Wei, Su‐Huai, and Alex Zunger. "Band offsets and optical bowings of chalcopyrites and Zn‐based II‐VI alloys." Journal of Applied Physics 78, no. 6 (1995): 3846–56. http://dx.doi.org/10.1063/1.359901.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Mirsagatov, Sh A., O. K. Ataboev, B. N. Zaveryukhin, and Zh T. Nazarov. "Photoelectric properties of an injection photodetector based on alloys of II–VI compounds." Semiconductors 48, no. 3 (2014): 354–59. http://dx.doi.org/10.1134/s1063782614030178.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Neff, H., K. Y. Lay, M. S. Su, P. Lange, and K. J. Bachmann. "Sputter induced near surface electronic defects in group II–VI compound semiconductor alloys." Surface Science 189-190 (October 1987): 661–68. http://dx.doi.org/10.1016/s0039-6028(87)80496-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Tit, Nacir, Ihab M. Obaidat, and Hussain Alawadhi. "Absence of the bowing character in the common-anion II–VI ternary alloys." Journal of Alloys and Compounds 481, no. 1-2 (2009): 340–44. http://dx.doi.org/10.1016/j.jallcom.2009.02.150.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Peiris, F. C., U. Bindley, and J. K. Furdyna. "Optical properties of molecular beam epitaxy-grown ZnSexTe1−x II–VI semiconductor alloys." Journal of Electronic Materials 30, no. 6 (2001): 677–81. http://dx.doi.org/10.1007/bf02665855.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Oh, Eunsoon, and A. K. Ramdas. "Multi-Mode behavior of optical phonons in II-VI ternary and quaternary alloys." Journal of Electronic Materials 23, no. 3 (1994): 307–12. http://dx.doi.org/10.1007/bf02670640.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Berkem, Alphan, Peter Quaye, Nafiseh Amiri, and Stanko Brankovic. "Pulse Electrodeposition of High Moment-High Resistivity Cofex (X=P, O) Alloys and Multilayers for Inductor Application." ECS Meeting Abstracts MA2023-02, no. 26 (2023): 1401. http://dx.doi.org/10.1149/ma2023-02261401mtgabs.

Der volle Inhalt der Quelle
Annotation:
Growing application of magnetic thin films and inductor chips for analog circuits in mobile phones, MEMS and defense sector technologies rise the need for development of new allows with low energy losses to serve as core material during electromagnetic induction process. Electrodeposition is a cost effective approach to achieve this. The new alloys and their electrodeposition/synthesis process foresee an immediate and direct implementation in future product designs and development and can be easily integrated in an existing manufacturing schemes. The presented work leverages earlier results re
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Ghoneim, A. A., M. A. Ameer, A. M. Fekry, and F. El-Taib Heakal. "Cyclic Voltammetric Studies on Selected Tin-Silver Binary Alloys in Sodium Hydroxide Solution." Corrosion 66, no. 11 (2010): 115001–115001. http://dx.doi.org/10.5006/1.3516488.

Der volle Inhalt der Quelle
Annotation:
Abstract The electrochemical corrosion and passivation behavior of four selected tin-silver alloys, xSn-Ag (x = 26, 50, 70, and 96.5 wt%) (II through V), in addition to their pure metallic components, Ag(I) and Sn(VI), were investigated in aqueous sodium hydroxide (NaOH) solution. The techniques used are linear sweep cyclic voltammetry and electrochemical impedance spectroscopy (EIS). In general, for all studied samples, the cyclic voltammograms show that increasing the scan rate shifts the passivation peak potential (Ep,a) positively and the reduction peak potential (Ep,c) negatively with a c
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Cekerevac, Milan, Ljiljana Nikolic-Bujanovic, and Milos Simicic. "Investigation of electrochemical synthesis of ferrate, Part I: Electrochemical behavior of iron and its several alloys in concentrated alkaline solutions." Chemical Industry 63, no. 5 (2009): 387–95. http://dx.doi.org/10.2298/hemind0905387c.

Der volle Inhalt der Quelle
Annotation:
In recent years, considerable attention has been paid to various applications of Fe(VI) due to its unique properties such as oxidizing power, selective reactivity, stability of the salt, and non-toxic decomposition by-products of ferric ion. In environmental remediation processes, Fe(VI) has been proposed as green oxidant, coagulant, disinfectant, and antifoulant. Therefore, it is considered as a promising multi-purpose water treatment chemical. Fe(VI) has also potential applications in electrochemical energy source, as 'green cathode'. The effectiveness of ferrate as a powerful oxidant in the
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Syamal, Arun, and Mannar Ram Maurya. "Synthesis and characterization of nickel(II), cobalt(II), copper(II), manganese(II), zinc(II), zirconium(IV), dioxouranium(VI) and dioxomolybdenum(VI) complexes of a new Schiff base derived from salicylaldehyde and 5-methylpyrazole-3-carbohydrazide." Transition Metal Chemistry 11, no. 5 (1986): 172–76. http://dx.doi.org/10.1007/bf01064251.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Volkova, O. V., V. V. Zakharov, S. V. Pershina, B. D. Antonov, and A. A. Pankratov. "Electroreduction of Nickel(II) Chloride, Cobalt(II) Fluoride, and Molybdenum(VI) Oxide Mixtures in a Heat Activated Battery." Russian Metallurgy (Metally) 2023, no. 8 (2023): 1122–28. http://dx.doi.org/10.1134/s0036029523080311.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Volkova, O. V., V. V. Zakharov, S. V. Pershina, B. D. Antonov, and A. A. Pankratov. "ELECTROREDUCTION OF NICKEL(II) CHLORIDE, COBALT(II) FLUORIDE AND MOLYBDENUM(VI) OXIDE MIXTURES IN A HEAT ACTIVATED BATTERY." Расплавы, no. 5 (September 1, 2023): 540–49. http://dx.doi.org/10.31857/s0235010623050110.

Der volle Inhalt der Quelle
Annotation:
The discharge characteristics of the elements of a thermally activated chemical current source (HAB) containing NiCl2–CoF2–MoO3 mixtures as a positive electrode are investigated. It is established that molybdenum oxide stabilizes the discharge plateau and increases the discharge voltage at temperatures above 530°C. The discharge curve has a stepwise character. The number of steps of the discharge curve is determined by the operating conditions of HAB. The low-voltage stage (less than 0.4 V) corresponds to the reduction of lithium molybdates, which are formed by the interaction of molybdenum ox
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Barlow, D. A. "Predicting the temperature for the solid–solid phase transition in II–VI semiconductor alloys." Journal of Physics and Chemistry of Solids 74, no. 3 (2013): 406–9. http://dx.doi.org/10.1016/j.jpcs.2012.11.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Moug, R., C. Bradford, A. Curran, et al. "Development of an epitaxial lift-off technology for II–VI nanostructures using ZnMgSSe alloys." Microelectronics Journal 40, no. 3 (2009): 530–32. http://dx.doi.org/10.1016/j.mejo.2008.06.024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Vèrié, C. "Beryllium substitution-mediated covalency engineering of II-VI alloys for lattice elastic rigidity reinforcement." Journal of Crystal Growth 184-185, no. 1-2 (1998): 1061–66. http://dx.doi.org/10.1016/s0022-0248(97)00775-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Vèrié, C. "Beryllium substitution-mediated covalency engineering of II–VI alloys for lattice elastic rigidity reinforcement." Journal of Crystal Growth 184-185 (February 1998): 1061–66. http://dx.doi.org/10.1016/s0022-0248(98)80222-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Turkdogan, Sunay. "Bandgap engineered II–VI quaternary alloys and their humidity sensing performance analyzed by QCM." Journal of Materials Science: Materials in Electronics 30, no. 11 (2019): 10427–34. http://dx.doi.org/10.1007/s10854-019-01384-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!