Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: II-VI alloys.

Zeitschriftenartikel zum Thema „II-VI alloys“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "II-VI alloys" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Myles, Charles W. „Microhardness of Hg-containing II–VI alloys“. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 10, Nr. 4 (Juli 1992): 1454. http://dx.doi.org/10.1116/1.586271.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Liu, Xinyu, und J. K. Furdyna. „Optical dispersion of ternary II–VI semiconductor alloys“. Journal of Applied Physics 95, Nr. 12 (15.06.2004): 7754–64. http://dx.doi.org/10.1063/1.1739291.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Perkowitz, S., L. S. Kim und P. Becla. „Infrared bond ionicity in ternary II–VI alloys“. Solid State Communications 77, Nr. 6 (Februar 1991): 471–74. http://dx.doi.org/10.1016/0038-1098(91)90239-r.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chu, T. L., S. S. Chu, C. Ferekides, J. Britt, C. Q. Wu, G. Chen und N. Schultz. „Thin films of II–VI compounds and alloys“. Solar Cells 30, Nr. 1-4 (Mai 1991): 123–30. http://dx.doi.org/10.1016/0379-6787(91)90044-p.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Jaroszyński, J., T. Andrearczyk, G. Karczewski, J. Wróbel, T. Wojtowicz, E. Papis, E. Kamińska, A. Piotrowska, Dragana Popović und T. Dietl. „Quantum Hall ferromagnetism in II–VI based alloys“. physica status solidi (b) 241, Nr. 3 (März 2004): 712–17. http://dx.doi.org/10.1002/pssb.200304293.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Wang, Zhihai, Bruce A. Bunker, Robert A. Mayanovic, Ursula Debska und Jacek K. Furdyna. „Lattice Distortion and Ferroelectricity in IV-VI and II-VI Semiconductor Alloys“. Japanese Journal of Applied Physics 32, S2 (01.01.1993): 673. http://dx.doi.org/10.7567/jjaps.32s2.673.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

v. Wensierski, H. „Ordering and diffusion in II-VI/III-VI alloys with structural vacancies“. Solid State Ionics 101-103, Nr. 1-2 (November 1997): 479–87. http://dx.doi.org/10.1016/s0167-2738(97)00145-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Wensierski, H. v., D. Weitze und V. Leute. „Ordering and diffusion in II–VI/III–VI alloys with structural vacancies“. Solid State Ionics 101-103 (November 1997): 479–87. http://dx.doi.org/10.1016/s0167-2738(97)84072-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Zamir, D., K. Beshah, P. Becla, P. A. Wolff, R. G. Griffin, D. Zax, S. Vega und N. Yellin. „Nuclear magnetic resonance studies of II–VI semiconductor alloys“. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 6, Nr. 4 (Juli 1988): 2612–13. http://dx.doi.org/10.1116/1.575516.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Berding, M. A., S. Krishnamurthy, A. Sher und A. B. Chen. „Ballistic transport in II–VI semiconductor compounds and alloys“. Journal of Crystal Growth 86, Nr. 1-4 (Januar 1988): 33–38. http://dx.doi.org/10.1016/0022-0248(90)90695-h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Balzarotti, A. „Lattice distortions around atomic substitutions in II–VI alloys“. Physica B+C 146, Nr. 1-2 (September 1987): 150–75. http://dx.doi.org/10.1016/0378-4363(87)90059-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Shakhmin, Alexey A., Irina V. Sedova, Sergey V. Sorokin, Hans-Joachim Fitting und Maria V. Zamoryanskaya. „Cathodoluminescence of wide-band-gap II-VI quaternary alloys“. physica status solidi (c) 7, Nr. 6 (12.04.2010): 1457–59. http://dx.doi.org/10.1002/pssc.200983278.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Price, M. W., H. Zuo, G. M. Janowsk und R. N. Andrews. „Compositional analysis of mercury zinc telluride by EDS and WDS“. Proceedings, annual meeting, Electron Microscopy Society of America 49 (August 1991): 748–49. http://dx.doi.org/10.1017/s0424820100088051.

Der volle Inhalt der Quelle
Annotation:
Semiconducting alloys of II-VI compounds have become the materials of choice for numerous infrared detection applications. However, compositional inhomogeneities in II-VI materials can adversely affect device performance. Extensive work has been conducted to evaluate the influence of growth parameters on the compositional redistribution in directionally solidified bulk alloys. Energy Dispersive Spectroscopy (EDS) has proven to be a valuable tool both in evaluating the compositional homogeneity of II-VI alloys and gaining information about the influence of growth parameters on compositional redistribution.In the work reported here, samples of directionally solidified mercury zinc telluride (MZT) were analyzed by SEM/EDS. The specimens were prepared by longitudinal sectioning, polishing to a 0.25 am finish, chemical polishing with a 2 vol% bromine/methanol solution, and rinsing with distilled water, acetone, and ethanol. Standards of Zn, Te, ZnTe, and HgTe were prepared in a similar manner for the quantitative analysis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Lu, Junpeng, Hongwei Liu, Xinhai Zhang und Chorng Haur Sow. „One-dimensional nanostructures of II–VI ternary alloys: synthesis, optical properties, and applications“. Nanoscale 10, Nr. 37 (2018): 17456–76. http://dx.doi.org/10.1039/c8nr05019h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Jafarov, M. A., E. F. Nasirov und S. A. Mamedova. „Negative photoconductivity in films of alloys of II–VI compounds“. Semiconductors 48, Nr. 5 (Mai 2014): 570–76. http://dx.doi.org/10.1134/s1063782614050066.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Yu, K. M., W. Shan, O. D. Dubon, P. Becla, M. A. Scarpulla, W. Walukiewicz, J. W. Beeman und J. Wu. „Synthesis and properties of highly mismatched II–O–VI alloys“. IEE Proceedings - Optoelectronics 151, Nr. 5 (01.10.2004): 452–59. http://dx.doi.org/10.1049/ip-opt:20040932.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Miller, D. J., und A. K. Koh. „Electron paramagnetic resonance of Mn2+ in II–VI semiconductor alloys“. Journal of Physics and Chemistry of Solids 55, Nr. 2 (Februar 1994): 153–59. http://dx.doi.org/10.1016/0022-3697(94)90072-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Yu, K. M., J. Wu, W. Walukiewicz, J. W. Beeman, J. W. Ager, E. E. Haller, I. Miotkowski und A. Ramdas. „Band anticrossing in highly mismatched group II-VI semiconductor alloys“. Journal of Electronic Materials 31, Nr. 7 (Juli 2002): 754–58. http://dx.doi.org/10.1007/s11664-002-0232-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Aydinli, Atilla, und Alvin D. Compaan. „Pulsed laser deposition of some II-VI compounds and alloys“. Advanced Materials for Optics and Electronics 2, Nr. 1-2 (Februar 1993): 79–86. http://dx.doi.org/10.1002/amo.860020110.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Ekpenuma, Sylvester N., und Charles W. Myles. „Structural stability of Zn‐containing II–VI semiconductor alloys: Microhardness calculations“. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 10, Nr. 1 (Januar 1992): 208–16. http://dx.doi.org/10.1116/1.578138.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Yu, K. M., W. Walukiewicz, W. Shan, J. Wu, J. W. Beeman, M. A. Scarpulla, O. D. Dubon und P. Becla. „Synthesis and optical properties of II-O-VI highly mismatched alloys“. Journal of Applied Physics 95, Nr. 11 (Juni 2004): 6232–38. http://dx.doi.org/10.1063/1.1713021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Kisker, D. W. „Issues in the OMVPE growth of II–VI alloys for optoelectronics“. Journal of Crystal Growth 98, Nr. 1-2 (November 1989): 127–39. http://dx.doi.org/10.1016/0022-0248(89)90193-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Vodopyanov, L. K. „Optical studies of II–VI alloy lattice dynamics“. Journal of Alloys and Compounds 371, Nr. 1-2 (Mai 2004): 72–76. http://dx.doi.org/10.1016/j.jallcom.2003.05.007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Ohtani, H., K. Kojima, K. Ishida und T. Nishizawa. „Miscibility gap in II–VI alloy semiconductor systems“. Journal of Alloys and Compounds 182, Nr. 1 (April 1992): 103–14. http://dx.doi.org/10.1016/0925-8388(92)90579-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Wolverson, D., J. J. Davies, C. L. Orange, K. Ogata, Sz Fujita, Sg Fujita, K. Nakano et al. „Spin-flip Raman scattering of wide-band-gap II-VI ternary alloys“. Physical Review B 60, Nr. 19 (15.11.1999): 13555–60. http://dx.doi.org/10.1103/physrevb.60.13555.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Eason, D. B., Z. Yu, C. Boney, J. Ren, L. E. Churchill, J. W. Cook, J. F. Schetzina und N. A. El-Masry. „Quaternary II–VI alloys for blue and green light emitting diode applications“. Journal of Crystal Growth 138, Nr. 1-4 (April 1994): 709–13. http://dx.doi.org/10.1016/0022-0248(94)90895-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Rajeshwar, Krishnan. „Electrosynthesized thin films of group II-VI compound semiconductors, alloys and superstructures“. Advanced Materials 4, Nr. 1 (Januar 1992): 23–29. http://dx.doi.org/10.1002/adma.19920040104.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Malyshev, Victor, Angelina Gab, Arvydas Survila, Cristina Donath, Elena Ionela Neacsu, Ana Maria Popescu und Virgil Constantin. „Electroplating of Co-W and Co-Mo Alloys from Na2WO4 Ionic Melts“. Revista de Chimie 70, Nr. 3 (15.04.2019): 871–74. http://dx.doi.org/10.37358/rc.19.3.7023.

Der volle Inhalt der Quelle
Annotation:
The cathodic reduction processes of cobalt (II), tungsten (VI) and molybdenum (VI) in Na2WO4 melts are discussed. Electrochemical behavior of cobalt in a tungstate melt, as well as the effect of electrolysis conditions on the composition and structure of Co-W and Co-Mo alloys deposits from tungstate-molybdate melts is also studied. With a decrease in the concentration of cobalt ions and an increase in the concentration of molybdenum (tungsten) ions in the melt, the phase composition of cathodic deposits is shown to change from individual cobalt to individual molybdenum (tungsten) via a series of cobalt-molybdenum (tungsten) compounds of various compositions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Vasil’ev, V. P. „Correlations between the thermodynamic properties of II–VI and III–VI phases“. Inorganic Materials 43, Nr. 2 (Februar 2007): 115–24. http://dx.doi.org/10.1134/s0020168507020045.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Sastry, Mylavarapu S., und Suryakant S. Gupta. „Homonuclear molybdenum(VI) and heteronuclear molybdenum(VI) copper(II) peroxo complexes containing amino acids“. Transition Metal Chemistry 21, Nr. 5 (Oktober 1996): 410–12. http://dx.doi.org/10.1007/bf00140781.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

El-Asmy, Ahmed A., Mohamed A. Morsi und Alaa A. El-Shafei. „Cobalt(II), nickel(II), copper(II), zinc(II) and uranyl(VI) complexes of acetylacetone bis(4-phenylthiosemicarbazone)“. Transition Metal Chemistry 11, Nr. 12 (Dezember 1986): 494–96. http://dx.doi.org/10.1007/bf01386886.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Gunshor, Robert L., und Arto V. Nurmikko. „II-VI Blue-Green Laser Diodes: A Frontier of Materials Research“. MRS Bulletin 20, Nr. 7 (Juli 1995): 15–19. http://dx.doi.org/10.1557/s088376940003712x.

Der volle Inhalt der Quelle
Annotation:
The current interest in the wide bandgap II-VI semiconductor compounds can be traced back to the initial developments in semiconductor optoelectronic device physics that occurred in the early 1960s. The II-VI semiconductors were the object of intense research in both industrial and university laboratories for many years. The motivation for their exploration was the expectation that, possessing direct bandgaps from infrared to ultraviolet, the wide bandgap II-VI compound semiconductors could be the basis for a variety of efficient light-emitting devices spanning the entire range of the visible spectrum.During the past thirty years or so, development of the narrower gap III-V compound semiconductors, such as gallium arsenide and related III-V alloys, has progressed quite rapidly. A striking example of the current maturity reached by the III-V semiconductor materials is the infrared semiconductor laser that provides the optical source for fiber communication links and compact-disk players. Despite the fact that the direct bandgap II-VI semiconductors offered the most promise for realizing diode lasers and efficient light-emitting-diode (LED) displays over the green and blue portions of the visible spectrum, major obstacles soon emerged with these materials, broadly defined in terms of the structural and electronic quality of the material. As a result of these persistent problems, by the late 1970s the II-VI semiconductors were largely relegated to academic research among a small community of workers, primarily in university research laboratories.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Mannodi-Kanakkithodi, Arun. „A first principles investigation of ternary and quaternary II–VI zincblende semiconductor alloys“. Modelling and Simulation in Materials Science and Engineering 30, Nr. 4 (21.03.2022): 044001. http://dx.doi.org/10.1088/1361-651x/ac59d8.

Der volle Inhalt der Quelle
Annotation:
Abstract One of the most common ways of tuning the stability, electronic structure, and optical behavior of semiconductors is via composition engineering. By mixing multiple isovalent elements at any cation or anion site, new compositions may be generated with markedly different properties than end-point compositions, and not always lying within a predictable trend. In this work, we explore the trends in lattice constant, electronic band gap, formation and mixing energy, and optical absorption behavior in a series of II–VI zincblende semiconductors with Cd/Zn at the cation site and S/Se/Te at the anion site, using multiple levels of density functional theory approximations. We find that while the GGA-PBE functional reproduces all trends correctly, full geometry optimization with the HSE06 functional predicts band gaps with much higher experimental accuracy. We find that all mixed S–Se and mixed Cd–Zn compounds show linear trends in band gap, rising from Se to S and Cd to Zn, respectively, whereas all Se–Te mixed compounds exhibit band gap bowing. All mixing energy curves, calculated based on decomposition to end point compositions, show inverted bowing behavior but with small positive mixing energy values <50 meV per formula unit, indicating robust stability of all solid solutions. Formation energies, calculated based on decomposition to elemental species, always show linear trends and remain sufficiently negative for all binaries, ternaries and quaternaries, whereas lattice constants show expected linear trends. We further report trends in optical absorption spectra and relationships between PBE and HSE computed properties, which reveal equations that can be used to accurately predict higher fidelity data. This work lays out systematic trends in the stability and optoelectronic characteristics of Cd–Zn–S–Se–Te alloys and enables the selection of optimal compositions for desired applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Wei, Su‐Huai, und Alex Zunger. „Band offsets and optical bowings of chalcopyrites and Zn‐based II‐VI alloys“. Journal of Applied Physics 78, Nr. 6 (15.09.1995): 3846–56. http://dx.doi.org/10.1063/1.359901.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Mirsagatov, Sh A., O. K. Ataboev, B. N. Zaveryukhin und Zh T. Nazarov. „Photoelectric properties of an injection photodetector based on alloys of II–VI compounds“. Semiconductors 48, Nr. 3 (März 2014): 354–59. http://dx.doi.org/10.1134/s1063782614030178.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Neff, H., K. Y. Lay, M. S. Su, P. Lange und K. J. Bachmann. „Sputter induced near surface electronic defects in group II–VI compound semiconductor alloys“. Surface Science 189-190 (Oktober 1987): 661–68. http://dx.doi.org/10.1016/s0039-6028(87)80496-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Tit, Nacir, Ihab M. Obaidat und Hussain Alawadhi. „Absence of the bowing character in the common-anion II–VI ternary alloys“. Journal of Alloys and Compounds 481, Nr. 1-2 (Juli 2009): 340–44. http://dx.doi.org/10.1016/j.jallcom.2009.02.150.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Peiris, F. C., U. Bindley und J. K. Furdyna. „Optical properties of molecular beam epitaxy-grown ZnSexTe1−x II–VI semiconductor alloys“. Journal of Electronic Materials 30, Nr. 6 (Juni 2001): 677–81. http://dx.doi.org/10.1007/bf02665855.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Oh, Eunsoon, und A. K. Ramdas. „Multi-Mode behavior of optical phonons in II-VI ternary and quaternary alloys“. Journal of Electronic Materials 23, Nr. 3 (März 1994): 307–12. http://dx.doi.org/10.1007/bf02670640.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Berkem, Alphan, Peter Quaye, Nafiseh Amiri und Stanko Brankovic. „Pulse Electrodeposition of High Moment-High Resistivity Cofex (X=P, O) Alloys and Multilayers for Inductor Application“. ECS Meeting Abstracts MA2023-02, Nr. 26 (22.12.2023): 1401. http://dx.doi.org/10.1149/ma2023-02261401mtgabs.

Der volle Inhalt der Quelle
Annotation:
Growing application of magnetic thin films and inductor chips for analog circuits in mobile phones, MEMS and defense sector technologies rise the need for development of new allows with low energy losses to serve as core material during electromagnetic induction process. Electrodeposition is a cost effective approach to achieve this. The new alloys and their electrodeposition/synthesis process foresee an immediate and direct implementation in future product designs and development and can be easily integrated in an existing manufacturing schemes. The presented work leverages earlier results related to electrochemical synthesis of ferromagnetic alloys. In particular, the work on electrodeposition process for high magnetic moment alloys such as CoNiFe and CoFe i,ii,iii, studies of additive incorporation phenomenon in magnetic alloysi v,v,vi and studies of oxide/hydroxide incorporation in magnetic alloys through the interfacial precipitation process vii,viii,ix. Results will be presented describing synthesis process and bath chemistry for highly resistive CoFeX alloys (X=O and/or P) using electrodeposition process with simultaneous Fe(OH)3 precipitation/incorporation and/or (PO3)3- and (H2PO2)- reduction. Fe-oxide/hydroxide and P inclusions in CoFe matrix serve as resistivity controlling phase in the bulk alloy and as a highly resistive barrier layer in the CoFeX/X laminated structures. The main result is design of a a cost-effective electrodeposition process and solution chemistry yielding the CoFeX alloys in composition range where the maximum possible magnetic moment and permeability is expected (Ms ≈ 2.4 T, μ > 1000). The overall content of the “X” component is designed to yield resistivity above 100 μΩcm. These alloys are tested for high frequency applications and their Snoek limit is identified. The correlation between the CoFeX alloys and CoFeX/X laminates properties and their metallurgical structure is discussed. i) S.R. Brankovic, N. Vasiljevic, and N. Dimitrov. “Applications to magnetic recording and microelectronic technologies.” Modern Electroplating (2010): 573-615. ii) S.R. Brankovic, N. Vasiljevic, T. J. Klemmer, and E. C. Johns. Journal of the Electrochemical Society 152, (2005): C196-C202. iii) S.R. Brankovic, X.M. Yang, T. J. Klemmer, and M. Seigler. IEEE Transactions on Magnetics 42, (2006): 132-139. iv) S.R. Brankovic, R. Haislmaier, and N. Vasiljevic. Electrochemical and Solid-State Letters 10, (2007): D67-D71. v) J. George, J. Rantschler, S. Bae, D. Litvinov, and S.R. Brankovic, Journal of the Electrochemical Society 155, (2008): D589-D594. vi) S.R. Brankovic, Electrochimica Acta 84 (2012): 139-144. vii) S.R. Brankovic, S. Bae, and D. Litvinov, Electrochimica Acta 53, (2008): 5934-5940. viii) J. George, S. Elhalawaty, A. J. Mardinly, R. W. Carpenter, D. Litvinov, and S.R. Brankovic, Electrochimica Acta 110 (2013): 411-417 ix) S. Elhalawaty, R. W. Carpenter, J. George, and S. R. Brankovic. Journal of the Electrochemical Society 158, (2011): D641-D646.2011): D641-D646.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Ghoneim, A. A., M. A. Ameer, A. M. Fekry und F. El-Taib Heakal. „Cyclic Voltammetric Studies on Selected Tin-Silver Binary Alloys in Sodium Hydroxide Solution“. Corrosion 66, Nr. 11 (01.11.2010): 115001–115001. http://dx.doi.org/10.5006/1.3516488.

Der volle Inhalt der Quelle
Annotation:
Abstract The electrochemical corrosion and passivation behavior of four selected tin-silver alloys, xSn-Ag (x = 26, 50, 70, and 96.5 wt%) (II through V), in addition to their pure metallic components, Ag(I) and Sn(VI), were investigated in aqueous sodium hydroxide (NaOH) solution. The techniques used are linear sweep cyclic voltammetry and electrochemical impedance spectroscopy (EIS). In general, for all studied samples, the cyclic voltammograms show that increasing the scan rate shifts the passivation peak potential (Ep,a) positively and the reduction peak potential (Ep,c) negatively with a concomitant increase in both the passivation peak current density (ip,a) and the reduction peak current density (ip,c). EIS results investigate that the total resistance (RT) and the relative thickness (1/C) of the passive layers on the six tested electrodes are both found to increase with time of immersion, being more pronounced for sample II. Although this silver-rich alloy (74 wt%) has the most protectiveness among the tested specimens, the relative thickness of its passive film is much lower than that for the pure silver. After any immersion period the passivation sequence of the six samples can be arranged in the following order:II ≫ I &gt; IV &gt; III &gt; V &gt; VI.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Cekerevac, Milan, Ljiljana Nikolic-Bujanovic und Milos Simicic. „Investigation of electrochemical synthesis of ferrate, Part I: Electrochemical behavior of iron and its several alloys in concentrated alkaline solutions“. Chemical Industry 63, Nr. 5 (2009): 387–95. http://dx.doi.org/10.2298/hemind0905387c.

Der volle Inhalt der Quelle
Annotation:
In recent years, considerable attention has been paid to various applications of Fe(VI) due to its unique properties such as oxidizing power, selective reactivity, stability of the salt, and non-toxic decomposition by-products of ferric ion. In environmental remediation processes, Fe(VI) has been proposed as green oxidant, coagulant, disinfectant, and antifoulant. Therefore, it is considered as a promising multi-purpose water treatment chemical. Fe(VI) has also potential applications in electrochemical energy source, as 'green cathode'. The effectiveness of ferrate as a powerful oxidant in the entire pH range, and its use in environmental applications for the removal of wide range of contaminants has been well documented by several researchers. There is scientific evidence that ferrate can effectively remove arsenic, algae, viruses, pharmaceutical waste, and other toxic heavy metals. Although Fe(VI) was first discovered in early eighteen century, detailed studies on physical and chemical properties of Fe(VI) had to wait until efficient synthetic and analytical methods of Fe(VI) were developed by Schreyer et al. in the 1950s. Actually, there have been developed three ways for the preparation of Fe(VI) compounds : the wet oxidation of Fe(II) and Fe(III) compounds, the dry oxidation of the same, and the electrochemistry method, mainly based on the trans passive oxidation of iron. High purity ferrates Fe(VI) can be generated when electrode of the pure iron metal or its alloys are anodized in concentrated alkaline solution. It is known that the efficiency of electrochemical process of Fe(VI) production depends on many factors such as current density, composition of anode material, types of electrolyte etc. In this paper, the electrochemical synthesis of ferrate(VI) solution by the anodic dissolution of iron and its alloys in concentrated water solution of NaOH and KOH is investigated. The process of transpassive dissolution of iron to ferrate(VI) was studied by cyclic voltammetry, galvanostatic and potentiostatic pulse method. Cyclic voltammetry gave useful data on potential regions where ferrate(VI) formation is to be expected in the course of transpassive anodic oxidation of iron and some of its alloys, and its stability in the electrolytes of different composition. In addition, step-wise oxidation of iron in anodic oxidation is confirmed. Galvanostatic pulse experiments confirmed the character of successive anodic oxidation of iron, as the three-step process of ferrate(VI) formation is clearly observed. In the cathodic pulse complex reduction of ferrate (VI), firstly to Fe(III) species and then to mixed Fe(II) and Fe(III) compounds and finally to elementary iron is confirmed. The significant difference between the mechanisms of anodic oxidation of pure iron and low carbon steel at the one side and electrical ferrous-silicon steel at the other is observed. The influence of material chemical composition on the electrochemical behavior of electrode in course of anodic polarization in strong alkaline solutions is discussed in terms of composition of passivating layer formed on the electrode. On the base of the experimental data, efficient synthesis of ferrate(VI) can be expected in the region of anodic potentials between + 0,55 and + 0,75 V against Hg|HgO reference electrode in the same solution, depending on the anode materials composition, in the alkaline electrolytes concentration between 10 and 15 M.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Syamal, Arun, und Mannar Ram Maurya. „Synthesis and characterization of nickel(II), cobalt(II), copper(II), manganese(II), zinc(II), zirconium(IV), dioxouranium(VI) and dioxomolybdenum(VI) complexes of a new Schiff base derived from salicylaldehyde and 5-methylpyrazole-3-carbohydrazide“. Transition Metal Chemistry 11, Nr. 5 (Mai 1986): 172–76. http://dx.doi.org/10.1007/bf01064251.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Volkova, O. V., V. V. Zakharov, S. V. Pershina, B. D. Antonov und A. A. Pankratov. „Electroreduction of Nickel(II) Chloride, Cobalt(II) Fluoride, and Molybdenum(VI) Oxide Mixtures in a Heat Activated Battery“. Russian Metallurgy (Metally) 2023, Nr. 8 (August 2023): 1122–28. http://dx.doi.org/10.1134/s0036029523080311.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Volkova, O. V., V. V. Zakharov, S. V. Pershina, B. D. Antonov und A. A. Pankratov. „ELECTROREDUCTION OF NICKEL(II) CHLORIDE, COBALT(II) FLUORIDE AND MOLYBDENUM(VI) OXIDE MIXTURES IN A HEAT ACTIVATED BATTERY“. Расплавы, Nr. 5 (01.09.2023): 540–49. http://dx.doi.org/10.31857/s0235010623050110.

Der volle Inhalt der Quelle
Annotation:
The discharge characteristics of the elements of a thermally activated chemical current source (HAB) containing NiCl2–CoF2–MoO3 mixtures as a positive electrode are investigated. It is established that molybdenum oxide stabilizes the discharge plateau and increases the discharge voltage at temperatures above 530°C. The discharge curve has a stepwise character. The number of steps of the discharge curve is determined by the operating conditions of HAB. The low-voltage stage (less than 0.4 V) corresponds to the reduction of lithium molybdates, which are formed by the interaction of molybdenum oxide with the reduction products of transition metal halides. A study of the cathode reduction products by the methods of XRD, STA and SEM was carried out. It is established that during the discharge of the HAB element, the initial components of the cathode mixture are restored to metals that form a dendritic matrix. The DSC curves of the salt fraction formed during electrochemical reactions have a number of thermal effects corresponding to the temperatures of joint melting of a triple mixture of lithium halides LiF–LiCl–LiBr and eutectic dual systems LiF–LiCl, LiCl–Li2O, in which transition metal halides and lithium molybdates are dissolved.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Barlow, D. A. „Predicting the temperature for the solid–solid phase transition in II–VI semiconductor alloys“. Journal of Physics and Chemistry of Solids 74, Nr. 3 (März 2013): 406–9. http://dx.doi.org/10.1016/j.jpcs.2012.11.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Moug, R., C. Bradford, A. Curran, F. Izdebski, I. Davidson, K. A. Prior und R. J. Warburton. „Development of an epitaxial lift-off technology for II–VI nanostructures using ZnMgSSe alloys“. Microelectronics Journal 40, Nr. 3 (März 2009): 530–32. http://dx.doi.org/10.1016/j.mejo.2008.06.024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Vèrié, C. „Beryllium substitution-mediated covalency engineering of II-VI alloys for lattice elastic rigidity reinforcement“. Journal of Crystal Growth 184-185, Nr. 1-2 (Februar 1998): 1061–66. http://dx.doi.org/10.1016/s0022-0248(97)00775-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Vèrié, C. „Beryllium substitution-mediated covalency engineering of II–VI alloys for lattice elastic rigidity reinforcement“. Journal of Crystal Growth 184-185 (Februar 1998): 1061–66. http://dx.doi.org/10.1016/s0022-0248(98)80222-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Turkdogan, Sunay. „Bandgap engineered II–VI quaternary alloys and their humidity sensing performance analyzed by QCM“. Journal of Materials Science: Materials in Electronics 30, Nr. 11 (26.04.2019): 10427–34. http://dx.doi.org/10.1007/s10854-019-01384-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie