Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „IDPs/IDRs“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "IDPs/IDRs" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "IDPs/IDRs"
Han, Bingqing, Chongjiao Ren, Wenda Wang, Jiashan Li und Xinqi Gong. „Computational Prediction of Protein Intrinsically Disordered Region Related Interactions and Functions“. Genes 14, Nr. 2 (08.02.2023): 432. http://dx.doi.org/10.3390/genes14020432.
Der volle Inhalt der QuelleCoskuner-Weber, Orkid, und Vladimir N. Uversky. „Current Stage and Future Perspectives for Homology Modeling, Molecular Dynamics Simulations, Machine Learning with Molecular Dynamics, and Quantum Computing for Intrinsically Disordered Proteins and Proteins with Intrinsically Disordered Regions“. Current Protein & Peptide Science 25, Nr. 2 (Februar 2024): 163–71. http://dx.doi.org/10.2174/0113892037281184231123111223.
Der volle Inhalt der QuelleLiu, Meili, Akshaya K. Das, James Lincoff, Sukanya Sasmal, Sara Y. Cheng, Robert M. Vernon, Julie D. Forman-Kay und Teresa Head-Gordon. „Configurational Entropy of Folded Proteins and Its Importance for Intrinsically Disordered Proteins“. International Journal of Molecular Sciences 22, Nr. 7 (26.03.2021): 3420. http://dx.doi.org/10.3390/ijms22073420.
Der volle Inhalt der QuelleFelli, Isabella C., Wolfgang Bermel und Roberta Pierattelli. „Exclusively heteronuclear NMR experiments for the investigation of intrinsically disordered proteins: focusing on proline residues“. Magnetic Resonance 2, Nr. 1 (01.07.2021): 511–22. http://dx.doi.org/10.5194/mr-2-511-2021.
Der volle Inhalt der QuelleAhmed, Shehab S., Zaara T. Rifat, Ruchi Lohia, Arthur J. Campbell, A. Keith Dunker, M. Sohel Rahman und Sumaiya Iqbal. „Characterization of intrinsically disordered regions in proteins informed by human genetic diversity“. PLOS Computational Biology 18, Nr. 3 (11.03.2022): e1009911. http://dx.doi.org/10.1371/journal.pcbi.1009911.
Der volle Inhalt der QuelleAlshehri, Manal A., Manee M. Manee, Mohamed B. Al-Fageeh und Badr M. Al-Shomrani. „Genomic Analysis of Intrinsically Disordered Proteins in the Genus Camelus“. International Journal of Molecular Sciences 21, Nr. 11 (03.06.2020): 4010. http://dx.doi.org/10.3390/ijms21114010.
Der volle Inhalt der QuelleMedvedev, Kirill E., Jimin Pei und Nick V. Grishin. „DisEnrich: database of enriched regions in human dark proteome“. Bioinformatics 38, Nr. 7 (30.01.2022): 1870–76. http://dx.doi.org/10.1093/bioinformatics/btac051.
Der volle Inhalt der QuelleKastano, Kristina, Gábor Erdős, Pablo Mier, Gregorio Alanis-Lobato, Vasilis J. Promponas, Zsuzsanna Dosztányi und Miguel A. Andrade-Navarro. „Evolutionary Study of Disorder in Protein Sequences“. Biomolecules 10, Nr. 10 (06.10.2020): 1413. http://dx.doi.org/10.3390/biom10101413.
Der volle Inhalt der QuelleMcFadden, William M., und Judith L. Yanowitz. „idpr: A package for profiling and analyzing Intrinsically Disordered Proteins in R“. PLOS ONE 17, Nr. 4 (18.04.2022): e0266929. http://dx.doi.org/10.1371/journal.pone.0266929.
Der volle Inhalt der QuelleSaito, Akatsuki, Maya Shofa, Hirotaka Ode, Maho Yumiya, Junki Hirano, Toru Okamoto und Shige H. Yoshimura. „How Do Flaviviruses Hijack Host Cell Functions by Phase Separation?“ Viruses 13, Nr. 8 (28.07.2021): 1479. http://dx.doi.org/10.3390/v13081479.
Der volle Inhalt der QuelleDissertationen zum Thema "IDPs/IDRs"
Bruley, Apolline. „Exploitation de signatures des repliements protéiques pour décrire le continuum ordre/désordre au sein des protéomes“. Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS474.
Der volle Inhalt der QuelleA significant fraction of the proteomes remains unannotated, leaving inaccessible a part of the functional repertoire of life, including molecular innovations with therapeutic or environmental value. Lack of functional annotation is partly due to the limitations of the current approaches in detecting hidden relationships, or to specific features such as disorder. The aim of my PhD thesis was to develop methodological approaches based on the structural signatures of folded domains, in order to further characterize the protein sequences with unknown function even in absence of evolutionary information. First, I developed a scoring system in order to estimate the foldability potential of an amino acid sequence, based on its density in hydrophobic clusters, which mainly correspond to regular secondary structures. I disentangled the continuum between order and disorder, covering various states from extended conformations (random coils) to molten globules and characterize cases of conditional order. Next, I combined this scoring system with the AlphaFold2 (AF2) 3D structure predictions available for 21 reference proteomes. A large fraction of the amino acids with very low AF2 model confidence are included in non-foldable segments, supporting the quality of AF2 as a predictor of disorder. However, within each proteome, long segments with very low AF2 model confidence also exhibit characteristics of soluble, folded domains. This suggests hidden order (conditional or unconditional), which is undetected by AF2 due to lack of evolutionary information, or unrecorded folding patterns. Finally, using these tools, I made a preliminary exploration of unannotated proteins or regions, identified through the development and application of a new annotation workflow. Even though these sequences are enriched in disorder, an important part of them showcases soluble globular-like characteristics. These would make good candidates for further experimental validation and characterization. Moreover, the analysis of experimentally validated de novo genes allowed me to contribute to the still-open debate on the structural features of proteins encoded by these genes, enriched in disorder and displaying a great diversity of structura
Buchteile zum Thema "IDPs/IDRs"
Holehouse, Alex S. „IDPs and IDRs in biomolecular condensates“. In Intrinsically Disordered Proteins, 209–55. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-816348-1.00007-7.
Der volle Inhalt der QuelleZheng, Wenwei, und Hoi Sung Chung. „Single-molecule fluorescence studies of IDPs and IDRs“. In Intrinsically Disordered Proteins, 93–136. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-816348-1.00004-1.
Der volle Inhalt der QuelleSalvi, Nicola. „Ensemble descriptions of IDPs and IDRs: Integrating simulation and experiment“. In Intrinsically Disordered Proteins, 37–64. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-816348-1.00002-8.
Der volle Inhalt der QuelleBolik-Coulon, Nicolas, Guillaume Bouvignies, Ludovic Carlier und Fabien Ferrage. „Experimental characterization of the dynamics of IDPs and IDRs by NMR“. In Intrinsically Disordered Proteins, 65–92. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-816348-1.00003-x.
Der volle Inhalt der Quelle