Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Identification of mechanical wood properties“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Identification of mechanical wood properties" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Identification of mechanical wood properties"
Ruffinatto, Flavio, Gaetano Castro, Corrado Cremonini, Alan Crivellaro und Roberto Zanuttini. „A new atlas and macroscopic wood identification software package for Italian timber species“. IAWA Journal 41, Nr. 4 (21.10.2019): 393–411. http://dx.doi.org/10.1163/22941932-00002102.
Der volle Inhalt der QuelleLiu, Jiwei, Huifeng Yang, Yutao Zhou, Benkai Shi und Haotian Tao. „Parameter identification procedure for hysteretic shear-resistant properties of beech wood dowels“. BioResources 19, Nr. 2 (22.04.2024): 3681–98. http://dx.doi.org/10.15376/biores.19.2.3681-3698.
Der volle Inhalt der QuellePapandrea, Salvatore F., Maria F. Cataldo, Bruno Bernardi, Giuseppe Zimbalatti und Andrea R. Proto. „The Predictive Accuracy of Modulus of Elasticity (MOE) in the Wood of Standing Trees and Logs“. Forests 13, Nr. 8 (11.08.2022): 1273. http://dx.doi.org/10.3390/f13081273.
Der volle Inhalt der QuelleHounlonon, Montcho Crépin, Adéyèmi Clément Kouchadé, Alexis Enagnon MEDEHOUENOU, Vincent GOHOUNGO, Aristide Comlan HOUNGAN und Basile Bruno KOUNOUHEWA. „Physical, Mechanical and Acoustic Characteristics of Anogeissus leiocarpus, Manilkara multinervis and Cylicodiscus gabunen-sis Woods Marketed in Benin in West Africa“. International Journal of Engineering & Technology 11, Nr. 2 (24.11.2022): 103–7. http://dx.doi.org/10.14419/ijet.v11i2.32049.
Der volle Inhalt der QuelleKojima, Yoichi, Naho Kato, Kazuaki Ota, Hikaru Kobori, Shigehiko Suzuki, Kenji Aoki und Hirokazu Ito. „Cellulose Nanofiber as Complete Natural Binder for Particleboard“. Forest Products Journal 68, Nr. 3 (2018): 203–10. http://dx.doi.org/10.13073/fpj-d-18-00034.
Der volle Inhalt der QuelleYang, Weiwei, Wanrong Ma und Xinyou Liu. „Evaluation of Deterioration Degree of Archaeological Wood from Luoyang Canal No. 1 Ancient Ship“. Forests 15, Nr. 6 (31.05.2024): 963. http://dx.doi.org/10.3390/f15060963.
Der volle Inhalt der QuelleFrodeson, Stefan, Anthony Ike Anukam, Jonas Berghel, Magnus Ståhl, Rasika Lasanthi Kudahettige Nilsson, Gunnar Henriksson und Elizabeth Bosede Aladejana. „Densification of Wood—Influence on Mechanical and Chemical Properties when 11 Naturally Occurring Substances in Wood Are Mixed with Beech and Pine“. Energies 14, Nr. 18 (17.09.2021): 5895. http://dx.doi.org/10.3390/en14185895.
Der volle Inhalt der QuellePan, Shen, und Zhanyuan Chang. „WD-1D-VGG19-FEA: An Efficient Wood Defect Elastic Modulus Predictive Model“. Sensors 24, Nr. 17 (28.08.2024): 5572. http://dx.doi.org/10.3390/s24175572.
Der volle Inhalt der QuelleKloiber, Michal, Mária Kotlínová und Jan Tippner. „Estimation of wood properties using pin pushing in method with various shapes of the penetration pin“. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 57, Nr. 2 (2009): 53–60. http://dx.doi.org/10.11118/actaun200957020053.
Der volle Inhalt der QuelleMertz, Mechtild, Sangeeta Gupta, Yutaka Hirako, Pimpim de Azevedo und Junji Sugiyama. „WOOD SELECTION OF ANCIENT TEMPLES IN THE SIKKIM HIMALAYAS“. IAWA Journal 35, Nr. 4 (06.12.2014): 444–62. http://dx.doi.org/10.1163/22941932-00000077.
Der volle Inhalt der QuelleDissertationen zum Thema "Identification of mechanical wood properties"
Šećerović, Amra. „Identification and characterization of molecular players potentially responsible for the mechanical properties of tension wood“. Thesis, Orléans, 2016. http://www.theses.fr/2016ORLE2066/document.
Der volle Inhalt der QuelleThe aim of this thesis was to approach the underlying molecular mechanisms responsible for the particular properties of the G-layer and the outstanding mechanical properties of tension wood (TW). Accordingly, three potential molecular players (fasciclin-like arabinogalactan protein (FLA), chitinase-like protein (CTL) and β-galactosidase (BGAL)) were chosen and studied through a phylogenetic analysis, expression analyses and most importantly characterization of RNAi transgenic poplars. This multilevel characterization revealed that CTL2 and FLAs have function in the regulation of cellulose crystallinity in TW. CTL2 was also shown to be important both for the cell wall organization and stem mechanical properties. BGAL was studied in a light of the previously reported modifications of RG-I pectin, potentially important for the mechanical properties of TW. Study of BGAL revealed that the enzyme has higher activity in TW than in opposite wood. BGAL7, whose gene was expressed specifically in TW, does not seem to be responsible for the higher BGAL activity in TW. In comparison to poplar, we analyzed the occurrence of molecular players potentially responsible for TW mechanical properties in simarouba, a tropical species, which develops different TW fiber. Arabinogalactan proteins and RG-I pectin potentially targeted by BGAL were localized in TW fibers both in poplar and simarouba and therefore may be involved in a common mechanism of tensile stress generation in different TW types. A model was finally proposed to elucidate a potential function of the studied molecular players in the regulation of G-layer properties and tensile stress generation
Broman, Olof. „Means to measure the aesthetic properties of wood“. Doctoral thesis, Luleå tekniska universitet, Träteknologi, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-16967.
Der volle Inhalt der QuelleGodkänd; 2000; 20061116 (haneit)
Oksman, Kristiina. „Improved properties of thermoplastic wood flour composites“. Doctoral thesis, Luleå tekniska universitet, Materialvetenskap, 1997. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-26513.
Der volle Inhalt der QuelleGodkänd; 1997; 20061128 (haneit)
Kirkpatrick, John Warren. „Mechanical and physical properties of preservative-treated strandboard“. Master's thesis, Mississippi State : Mississippi State University, 2005. http://sun.library.msstate.edu/ETD-db/ETD-browse/browse.
Der volle Inhalt der QuelleNoel, Matthieu. „Modélisation déterministe et probabiliste de la rupture par champ de phase et identification expérimentale pour la fissuration des structures en bois dans l’ameublement“. Electronic Thesis or Diss., Université Gustave Eiffel, 2024. http://www.theses.fr/2024UEFL2061.
Der volle Inhalt der QuelleIn the furniture industry, ensuring the safety of structures in accordance with European standards presents a significant challenge for furniture manufacturers. Before commercialization, furniture are subjected to standardized validation tests, which only allow for a retrospective understanding of its mechanical behavior. This thesis aims to develop modeling and numerical simulation tools to predict the cracking failure mechanism at the connections between furniture elements. To achieve this objective, the methodological approach combines modeling and numerical simulation with experimental testing. It employs the finite element method coupled with phase-field fracture/damage models to simulate cracking in linear elastic isotropic and anisotropic materials within a deterministic and probabilistic framework. An experimental testing campaign is conducted on perforated spruce wood samples subjected to uniaxial compression to reproduce the cracking mechanisms observed in real structures, particularly in the connections of high loft beds. An identification procedure is developed and implemented to characterize the elastic and damage properties of spruce wood, in particular by exploiting experimental displacement field measurements obtained through digital image correlation. A method for accelerating phase-field damage simulations is proposed to reduce their high computational cost. This approach allows for the prediction, independently of the type of connections, of the displacement or critical force preceding crack initiation. The numerical results indicate that, provided realistic boundary conditions are applied and the material properties are correctly identified, the crack initiation criterion is useful for predicting the location of potentially damaged/cracked areas and providing a consistent order of magnitude of the force or displacement required to initiate cracking. This criterion only requires a single linear elastic simulation, followed by a post-processing with a phase-field damage model, to facilitate its use in an industrial context, in particular the furniture sector. The numerical tools developed, available in open source, could help furniture manufacturers to predict brittle fracture in wood and optimize furniture design, while guaranteeing compliance with safety standards
Gade, Jan-Lucas. „Mechanical Properties of Arteries : Identification and Application“. Licentiate thesis, Linköpings universitet, Mekanik och hållfasthetslära, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-159942.
Der volle Inhalt der QuelleIn diesem Lizentiat der Ingenieurwissenschaften wird eine Methode zur Identifikation der mechanischen Eigenschaften von Arterien in vivo vorgestellt. Die mechanischen Eigenschaften einer Arterie sind mit der Ausbildung kardiovaskulärer Krankheiten verknüpft und deren Identifikation hat daher das Potenzial die Diagnose, die Behandlung und die Überwachung dieser Krankheiten zu verbessern. Basierend auf klinisch möglichen Messungen, die üblicherweise auf ein zeitaufgelöstes Druck-Radiussignal limitiert sind, werden sechs repräsentative Parameter durch Lösen eines Minimierungsproblems berechnet. Die sechs Parameter sind dabei die Eingangsparameter des zur Hilfe gezogenen konstitutiven Schalenmodells welches eine Arterie als eine homogene, inkompressible, restspannungsfreie und dünnwandige Röhre beschreibt. Weiterhin wird angenommen, dass die Arterienwand aus einer elastindominierten Matrix mit eingebetteten Kollagenfasern besteht. Um die in vivo Parameteridentifikationsmethode zu validieren, werden in silico Arterien in Form von Finite Elemente Modellen erstellt. Diese in silico Arterien beruhen auf publizierten Materialparametern der menschlichen Abdominalaorta und dienen als Pseudoexperimente mit vordefinierten mechanischen Eigenschaften und Randbedingungen. Mit diesen Arterien werden in vivo-ähnliche Druck-Radiussignale erstellt und anschliesend werden ihre mechanischen Eigenschaften mit Hilfe der Parameteridentifikationsmethode bestimmt. Der Vergleich der identifizierten und der vordefinierten Parameter ermöglicht die quantitative Validierung der Methode. Die Parameter des spannungsfreien Radius und der Materialkonstanten für Elastin weisen hohe Übereinstummung im Falle gesunder Arterien auf. Die Abweichung der Materialkonstanten für Kollagen sind etwas gröser und der gröste Unterschied tritt beim axialen in situ Stretch auf. Für Arterien mit einem pathologisch geringen Elastinbestandteil werden falsche Parameter identifiziert, wobei die Parameteridentifikationsmethode eine krankhafte Arterie offenlegt. Weiterhin werden mit Hilfe der identifizierten Parameter und des konstitutiven Schalenmodells der Spannungszustand in der Arterienwand berechnet. Dieser ist dabei aufgeteilt in einen isotropen und einen anisotropen Anteil. Der isotrope Anteil wird mit der elastindomierten Matrix und der anisotrope Anteil mit den Kollagenfasern verknüpft. Um die Genauigkeit des berechneten Spannungszustandes beurteilen zu können, wird dieser mit dem Zustand in den in silico Arterien verglichen. Im Fall von Arterien, die einen geringen transmuralen Spannungsgradienten aufweisen, entspricht der berechnete Spannungszustand dem in silico Zustand. Mit zunehmendem transmuralen Spannungsgradienten lässt die Übereinstimmung nach. Für die gesunde menschliche Abdominalaorta ist die entwickelte in vivo Parameteridentifikationsmethode in der Lage, basierend auf in vivo-ähnlichen Messsignalen, adäquate Parameter zu identifizieren und einen zufriedenstellenden Spannungszustand zu berechnen.
I denna licentiatavhandling föreslås en metod för att identifiera mekaniska egenskaper hos artärer in vivo. De mekaniska egenskaperna är kopplade till utvecklingen av hjärt-kärlsjukdomar, och möjligheten att identifiera dessa egenskaper skulle således kunna underlätta diagnostisering, behandling och uppföljning av dessa sjukdomar. Den förslagna metoden använder kliniskt mätbara tryck-radie-signaler och löser ett minimeringsproblem för att bestämma sex parametrar som beskriver kärlets mekaniska egenskaper. Artären modelleras som ett homogent, inkompressibelt och spänningsfritt tunnväggigt rör där kärlväggen utgörs av en elastindominerad matris armerad med inbäddade kollagenfibrer. För att validera parameteridentifieringen skapas en uppsättning representativa, virtuella artärer med hjälp av finita element. Dessa in silico-artärer baseras på publicerade data för mänsklig bukaorta och används för att generera fiktiva tryckradie-signaler vilka sedan matas in i den förslagna modellen. Genom att parametrar och randvillkor för in silico-artärerna är kända fungerar dessa som en kontroll mot vilka resultatet från parameteridentifieringen kan jämföras. Parametrarna som beskriver den icke trycksatta radien och den elastindominerade matrisen visar god överensstämmelse med de in silico-artärerna för friska kärl. Större diskrepans erhålls för de parametrar som associeras med kollagenet, och den största avvikelsen erhålls för den parameter som beskriver den axiella försträckningen. För artärer med patologiskt lågt elastininnehåll identifieras felaktiga parametrar, men resultatet avslöjar ändå tydligt en sjuk artär. De identifierade parametrarna har också använts för att jämföra spänningstillst åndet i membranmodellen och in silico-artäreren. Spänningstillståndet har delats upp i en isotrop och en anisotrop komponent svarande mot, i huvudsak, den elastindominerade matrisen samt kollagenfibrerna. Resultatet visar en mycket god överensstämmelse för bägge komponenterna hos in silico-artärer med låg spänningsgradient genom väggen. Med ökande spänningsgradient försämras dock överensstämmelsen. Resultatet visar att den förslagna metoden är kapabel att identifiera adekvata parametrar och att förutsäga spänningskomponenterna i en frisk aorta.
Ashaduzzaman, Md. „Physico-mechanical and decay resistance properties of bio-resin modified wood“. Thesis, Bangor University, 2014. https://research.bangor.ac.uk/portal/en/theses/physicomechanical-and-decay-resistance-properties-of-bioresin-modified-wood(f4588ffc-250d-4f89-95f5-8f9ea381dba7).html.
Der volle Inhalt der QuelleHuang, Sheng. „Experiment study of the mechanical properties of timber materials under various humidity condition“. Thesis, University of Macau, 2018. http://umaclib3.umac.mo/record=b3950672.
Der volle Inhalt der QuelleOzden, Seray. „The relationship between the anatomy and mechanical properties of different green wood species“. Thesis, University of Manchester, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.684776.
Der volle Inhalt der QuelleAnderson, Scott Powell. „Wood fiber reinforced bacterial biocomposites effects of interfacial modifers and processing on mechanical and physical properties /“. Online access for everyone, 2007. http://www.dissertations.wsu.edu/Thesis/Fall2007/S_Anderson_100507.pdf.
Der volle Inhalt der QuelleBücher zum Thema "Identification of mechanical wood properties"
Liu, Peng. Identification, properties and uses of some Southeast Asian woods. Yokohama, Japan: International Tropical Timber Organization, 1988.
Den vollen Inhalt der Quelle findenBunster, Jaime H. 52 madeiras de Moçambique: Catálogo tecnológico. Maputo: Universidade Eduardo Mondlane, Faculdade de Agronomia e Engenharia Florestal, Departamento de Engenharia Florestal, 1995.
Den vollen Inhalt der Quelle findenEuropean Mechanics Colloquium 269, "Experimental Identification of the Mechanical Characteristics of Composite Materials and Structures" (1990 Saint-Etienne, Loire, France). Mechanical identification of composites. London: Elsevier Applied Science, 1991.
Den vollen Inhalt der Quelle findenKettunen, P. O. Wood structure and properties. Uetikon-Zuerich: Trans Tech Publications Ltd., 2006.
Den vollen Inhalt der Quelle findenIqbal, Mahmood, AGA Khan Rural Support Programme. und Pakistan Forest Institute, Hrsg. Mechanical properties of farmland trees of Northern ares. Gilgit: The AGA Khan Rural Support Programme, 2004.
Den vollen Inhalt der Quelle findenT. A. C. M. van der Put. A new fracture mechanics theory of wood. New York: Nova Science Publishers, 2011.
Den vollen Inhalt der Quelle findenWilliams, Derek. Machining and related mechanical properties of 15 B.C. wood species. Vancouver, B.C: Forintek Canada Corp., Western Division, 1998.
Den vollen Inhalt der Quelle findenParant, B. Timbers of Guadeloupe. Nogent-sur-Marne, France: Centre Technique Forestier Tropical, 1987.
Den vollen Inhalt der Quelle findenInstituto Forestal (Santiago, Chile). División Industrias. und Corporación de Fomento de la Producción (Chile). Gerencia de Desarrollo., Hrsg. Clasificación estructural mecánica de la madera: Principios y aplicación. Santiago, Chile: Instituto Forestal, División Industrias, 1987.
Den vollen Inhalt der Quelle findenPark, Byung Dae. Effects of impact modifiers on the mechanical properties of wood-fibre polypropylene composites. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1993.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Identification of mechanical wood properties"
Prosvirnikov, D. B. „Modeling of the Properties of Wood Composite Materials by Parametric Identification“. In Lecture Notes in Mechanical Engineering, 298–307. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85230-6_35.
Der volle Inhalt der QuelleOlorunnisola, Abel O. „Mechanical Properties of Wood“. In Design of Structural Elements with Tropical Hardwoods, 31–47. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65343-3_3.
Der volle Inhalt der QuelleSchniewind, Arno P. „Physical and Mechanical Properties of Archaeological Wood“. In Archaeological Wood, 87–109. Washington, DC: American Chemical Society, 1989. http://dx.doi.org/10.1021/ba-1990-0225.ch004.
Der volle Inhalt der QuelleGogoi, Rupam, und Gaurav Manik. „Mechanical Properties of Wood Polymer Composites“. In Wood Polymer Composites, 113–36. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1606-8_6.
Der volle Inhalt der QuelleBjörkman, A., und Helena Lassota. „Mechanical Properties of Chemically Treated Wood“. In Viscoelasticity of Biomaterials, 65–81. Washington, DC: American Chemical Society, 1992. http://dx.doi.org/10.1021/bk-1992-0489.ch005.
Der volle Inhalt der QuelleClair, Bruno, und Bernard Thibaut. „Physical and Mechanical Properties of Reaction Wood“. In The Biology of Reaction Wood, 171–200. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-10814-3_6.
Der volle Inhalt der QuelleRouger, F., M. Khebibeche und C. Le Govic. „Non Determined Tests as a Way to Identify Wood Elastic Parameters the Finite Element Approach“. In Mechanical Identification of Composites, 82–90. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3658-7_8.
Der volle Inhalt der QuelleDual, Jurg, und Mahir Sayir. „Dynamic Measurements of Elastic Properties of Filament — Wound Cylindrical Shells“. In Mechanical Identification of Composites, 133–40. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3658-7_14.
Der volle Inhalt der QuelleMilosavljevic, Dragan I. „Dynamic Properties of Layer Reinforced by Two Families of Fibres“. In Mechanical Identification of Composites, 262–69. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3658-7_30.
Der volle Inhalt der QuelleRikards, Rolands. „Identification of Mechanical Properties of Laminates“. In Modern Trends in Composite Laminates Mechanics, 181–225. Vienna: Springer Vienna, 2003. http://dx.doi.org/10.1007/978-3-7091-2544-1_4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Identification of mechanical wood properties"
Yusuf, Uwaisu, Yakubu Musa, T. Musa, José Amir Gonzalez-Calderon, Ma Cristina Irma Peréz-Pérez, Ricardo López-Esparza, Luis O. Sanchez-Vargas, Bernardino I. Cerda-Cristerna, Agustin L. Herrera-May und Enrique Delgado-Alvarado. „Assessment of Thermal and Physico-Mechanical Properties in Recycled LDPE Composite Reinforced with Prosopis africana Wood Powder“. In 2024 IEEE International Conference on Engineering Veracruz (ICEV), 1–7. IEEE, 2024. http://dx.doi.org/10.1109/icev63254.2024.10766031.
Der volle Inhalt der QuelleFerreira Pinto, Plinio, und Geoff Rideout. „Development and Validation of an In-Situ Utility Pole Simulation Model for Virtual Modal Testing“. In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-67463.
Der volle Inhalt der QuelleBerzins, Andris, Andris Morozovs, Uldis Gross und Janis Iejavs. „Mechanical properties of wood-geopolymer composite“. In 16th International Scientific Conference Engineering for Rural Development. Latvia University of Agriculture, 2017. http://dx.doi.org/10.22616/erdev2017.16.n251.
Der volle Inhalt der QuelleZaini, A. S. Syah M., Anika Zafiah M. Rus, Norherman Abdul Rahman, Farhana Hazwanee M. Jais, M. Zarif Fauzan und N. Afiqah Sufian. „Mechanical properties evaluation of extruded wood polymer composites“. In INTERNATIONAL CONFERENCE “FUNCTIONAL ANALYSIS IN INTERDISCIPLINARY APPLICATIONS” (FAIA2017). Author(s), 2017. http://dx.doi.org/10.1063/1.4999884.
Der volle Inhalt der QuelleSamuilova, Evgenia. „THERMAL AND MECHANICAL PROPERTIES OF WOOD-PVC COMPOSITES“. In 19th SGEM International Multidisciplinary Scientific GeoConference EXPO Proceedings. STEF92 Technology, 2019. http://dx.doi.org/10.5593/sgem2019/4.1/s17.072.
Der volle Inhalt der QuelleMothilal, T., G. Ragothaman, D. Joseph Manuel, S. Socrates und S. Mathavan. „Analysis on mechanical properties of wood plastic composite“. In PROCEEDINGS OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN MECHANICAL AND MATERIALS ENGINEERING: ICRTMME 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0024893.
Der volle Inhalt der QuelleWehsener, Jörg, Martina Bremer und Peer Haller. „MECHANICAL PROPERTIES TESTS OF DELIGNIFIED AND DENSIFIED WOOD“. In World Conference on Timber Engineering 2023 (WCTE2023). As, Norway: World Conference on Timber Engineering (WCTE 2023), 2023. http://dx.doi.org/10.52202/069179-0095.
Der volle Inhalt der QuelleRomán, Krisztina, Bence Szemán, Zita Szabó und Kálmán Marossy. „Mechanical properties and structural changes of PVC-wood composites“. In MultiScience - XXXII. microCAD International Multidisciplinary Scientific Conference. University of Miskolc, 2018. http://dx.doi.org/10.26649/musci.2018.015.
Der volle Inhalt der QuelleZhu, Jin, Wen Lei, Lei Lei, Tian-qing Wang und Zhe-yu Qian. „Mechanical properties of nano montmorillonite modified wood-plastic composites“. In 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet). IEEE, 2011. http://dx.doi.org/10.1109/cecnet.2011.5769421.
Der volle Inhalt der QuelleCavallini Zotelle, Ayrton, Joao Henrique Sartori, Luciano Merlo, Matheus Alves Lima und Antônio Carlos Barbosa Zancanella. „EVALUATION OF THE MECHANICAL PROPERTIES OF BALSA WOOD AND COMPOSITE MATERIALS“. In 25th International Congress of Mechanical Engineering. ABCM, 2019. http://dx.doi.org/10.26678/abcm.cobem2019.cob2019-0095.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Identification of mechanical wood properties"
Hodgdon, Taylor, Brendan West, Julie Parno, Theodore Letcher, Zoe Courville und Lauren Farnsworth. Extracting sintered snow properties from microCT imagery to initialize a discrete element method model. Engineer Research and Development Center (U.S.), September 2022. http://dx.doi.org/10.21079/11681/45305.
Der volle Inhalt der QuelleBrust. L51576 Crack Growth Behavior and Modeling. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), März 1989. http://dx.doi.org/10.55274/r0010642.
Der volle Inhalt der QuelleGray. L51759 Centerline Segregation in Plate and Strip for Linepipe Produced from Continuously Cast Slabs. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Juli 1996. http://dx.doi.org/10.55274/r0010370.
Der volle Inhalt der QuelleEngel, Bernard, Yael Edan, James Simon, Hanoch Pasternak und Shimon Edelman. Neural Networks for Quality Sorting of Agricultural Produce. United States Department of Agriculture, Juli 1996. http://dx.doi.org/10.32747/1996.7613033.bard.
Der volle Inhalt der QuelleGalili, Naftali, Roger P. Rohrbach, Itzhak Shmulevich, Yoram Fuchs und Giora Zauberman. Non-Destructive Quality Sensing of High-Value Agricultural Commodities Through Response Analysis. United States Department of Agriculture, Oktober 1994. http://dx.doi.org/10.32747/1994.7570549.bard.
Der volle Inhalt der QuelleNoise Absorption Behavior of Aluminum Honeycomb Composite. SAE International, September 2020. http://dx.doi.org/10.4271/2020-28-0453.
Der volle Inhalt der Quelle