Auswahl der wissenschaftlichen Literatur zum Thema „Idempotence“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Idempotence" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Idempotence"

1

Sheng, Yuqiu, und Hanyu Zhang. „Maps Preserving Idempotence on Matrix Spaces“. Journal of Mathematics 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/428203.

Der volle Inhalt der Quelle
Annotation:
SupposeFis an arbitrary field. Let|F|be the number of the elements ofF. LetMn(F)be the space of alln×nmatrices overF, letSn(F)be the subset ofMn(F)consisting of all symmetric matrices, and letTn(F)be the subset ofMn(F)consisting of all upper-triangular matrices. LetV∈{Sn(F),Mn(F),Tn(F)}; a mapΦ:V→Vis said to preserve idempotence ifA-λBis idempotent if and only ifΦ(A)-λΦ(B)is idempotent for anyA,B∈Vandλ∈F. In this paper, the maps preserving idempotence onSn(F),Mn(F), andTn(F)were characterized in case|F|=3.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Surbatovich, Milijana, Naomi Spargo, Limin Jia und Brandon Lucia. „A Type System for Safe Intermittent Computing“. Proceedings of the ACM on Programming Languages 7, PLDI (06.06.2023): 736–60. http://dx.doi.org/10.1145/3591250.

Der volle Inhalt der Quelle
Annotation:
Batteryless energy-harvesting devices enable computing in inaccessible environments, at a cost to programmability and correctness. These devices operate intermittently as energy is available, using a recovery system to save and restore state. Some program tasks must execute atomically w.r.t. power failures, re-executing if power fails before completion. Any re-execution should typically be idempotent —its behavior should match the behavior of a single execution. Thus, a key aspect of correct intermittent execution is identifying and recovering state causing undesired non-idempotence. Unfortunately, past intermittent systems take an ad-hoc approach, using unsound dataflow analyses or conservatively recovering all written state. Moreover, no prior work allows the programmer to directly specify idempotence requirements (including allowable non-idempotence). We present curricle, the first type system approach to safe intermittence, for Rust. Type level reasoning allows programmers to express requirements and retains alias information crucial for sound analyses. Curricle uses information flow and type qualifiers to reject programs causing undesired non-idempotence. We implement Curricle’s type system on top of Rust’s compiler, evaluating the prototype on benchmarks from prior work. We find that Curricle benefits application programmers by allowing them to express idempotence requirements that are checked to be satisfied, and that targeting programs checked with Curricle allows intermittent system designers to write simpler recovery systems that perform better.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Lee, Sang-Gu, und Jin-Woo Park. „Sign idempotent sign pattern matrices that allow idempotence“. Linear Algebra and its Applications 487 (Dezember 2015): 232–41. http://dx.doi.org/10.1016/j.laa.2015.09.020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kuzma, B. „Additive idempotence preservers“. Linear Algebra and its Applications 355, Nr. 1-3 (November 2002): 103–17. http://dx.doi.org/10.1016/s0024-3795(02)00340-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

HUMBERSTONE, LLOYD. „AGGREGATION AND IDEMPOTENCE“. Review of Symbolic Logic 6, Nr. 4 (07.08.2013): 680–708. http://dx.doi.org/10.1017/s175502031300021x.

Der volle Inhalt der Quelle
Annotation:
AbstractA 1-ary sentential context is aggregative (according to a consequence relation) if the result of putting the conjunction of two formulas into the context is a consequence (by that relation) of the results of putting first the one formula and then the other into that context. All 1-ary contexts are aggregative according to the consequence relation of classical propositional logic (though not, for example, according to the consequence relation of intuitionistic propositional logic), and here we explore the extent of this phenomenon, generalized to having arbitrary connectives playing the role of conjunction; among intermediate logics, LC, shows itself to occupy a crucial position in this regard, and to suggest a characterization, applicable to a broader range of consequence relations, in terms of a variant of the notion of idempotence we shall call componentiality. This is an analogue, for the consequence relations of propositional logic, of the notion of a conservative operation in universal algebra.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ramalingam, Ganesan, und Kapil Vaswani. „Fault tolerance via idempotence“. ACM SIGPLAN Notices 48, Nr. 1 (23.01.2013): 249–62. http://dx.doi.org/10.1145/2480359.2429100.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Teply, Mark L. „On the idempotence and stability of kernel functors“. Glasgow Mathematical Journal 37, Nr. 1 (Januar 1995): 37–43. http://dx.doi.org/10.1017/s0017089500030366.

Der volle Inhalt der Quelle
Annotation:
A kernel functor (equivalently, a left exact torsion preradical) is a left exact subfunctor of the identity on the category R-mod of left R-modules over a ring R with identity. A kernel functor is said to be idempotent if, in addition, σ satisfies σ(M / σ(M)) = 0 for every M ∊ R-mod. To every kernel functor / there corresponds a unique topologizing filter ℒσ = {I Ⅰ σ (R/I) = R/I} of left ideals and a unique class ℱσ = {M ∊ R-mod Ⅰ σ(M) = M} that is closed under homomorphic images, submodules, and direct sums. The idempotence of σ is characterized by either of the following additional conditions:(1) if I ∊ ℒσ, K ⊆ I, and (K:x) = {r ∊ R ∣ rx ∊ K} ∊ ℒσ for each x ∊ I, then K ∊ ℒ or(2) ℱσ is closed under extensions of one member of ℱσ by another member of ℱσ Idempotent kernel functors are important since they are the tool used to construct localization functors. For M∊ R-mod, let E(M) denote the injective hull of M. A kernel functor σ is called stable if Mℱ implies that E(M) ∊ ℱσ For more information about kernel functors, see [6], [7], [14], and [15].
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Eschenbach, Carolyn. „Idempotence for sign-pattern matrices“. Linear Algebra and its Applications 180 (Februar 1993): 153–65. http://dx.doi.org/10.1016/0024-3795(93)90529-w.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kala, Vítězslav, und Miroslav Korbelář. „Idempotence of finitely generated commutative semifields“. Forum Mathematicum 30, Nr. 6 (01.11.2018): 1461–74. http://dx.doi.org/10.1515/forum-2017-0098.

Der volle Inhalt der Quelle
Annotation:
Abstract We prove that a commutative parasemifield S is additively idempotent, provided that it is finitely generated as a semiring. Consequently, every proper commutative semifield T that is finitely generated as a semiring is either additively constant or additively idempotent. As part of the proof, we use the classification of finitely generated lattice-ordered groups to prove that a certain monoid associated to the parasemifield S has a distinguished geometrical property called prismality.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Helland, Pat. „Idempotence is not a medical condition“. Communications of the ACM 55, Nr. 5 (Mai 2012): 56–65. http://dx.doi.org/10.1145/2160718.2160734.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Idempotence"

1

Tarbouriech, Cédric. „Avoir une partie 2 × 2 = 4 fois : vers une méréologie des slots“. Electronic Thesis or Diss., Toulouse 3, 2023. http://www.theses.fr/2023TOU30316.

Der volle Inhalt der Quelle
Annotation:
La méréologie est la discipline qui s'intéresse aux relations entre une partie et son tout et entre parties au sein d'un même tout. Selon la théorie la plus communément utilisée, appelée "méréologie classique extensionnelle", une entité ne peut être partie d'une autre entité qu'une seule fois. Par exemple, votre cœur n'est qu'une seule fois partie de votre corps. Ce principe a été remis en question par certains travaux antérieurs. En effet, il n'est pas possible de décrire la structure méréologique de certaines entités, telles que les universaux structurés ou les types de mots, dans le cadre de la méréologique classique extensionnelle. Ces entités peuvent avoir plusieurs fois la même partie. Par exemple, l'universel de molécule d'eau (H2O) a comme partie l'universel d'atome d'hydrogène (H) deux fois, alors qu'une molécule d'eau particulière a comme parties deux atomes d'hydrogène distincts. Dans ce travail, nous suivons la piste ouverte par Karen Bennett en 2013. Bennett a ébauché une nouvelle méréologie qui permette de représenter la structure méréologique de ces entités. Dans sa théorie, être une partie d'une entité, c'est remplir un "slot" de cette entité. Ainsi, dans le mot "patate", la lettre "a" est partie du mot deux fois, parce qu'elle occupe deux "slots" de ce mot : le deuxième et le quatrième. La proposition de Bennett est innovante en cela qu'elle offre un cadre général, qui n'est pas restreint à un type d'entités. Toutefois, la théorie souffre de plusieurs problèmes. D'abord, elle est limitée : de nombreuses notions de méréologie classique n'y ont pas d'équivalent, telles que la somme méréologique ou l'extensionnalité. Ensuite, parce que la théorie, par son axiomatique, provoque des problèmes de comptage. Ainsi, l'universel d'électron n'est partie que sept fois de l'universel de méthane, au lieu des dix fois qui sont attendues. Nous avons proposé une solution dont le principe est que les slots doivent être dupliqués autant de fois que nécessaires pour obtenir un comptage correct. Cette duplication est opérée grâce à un mécanisme appelé "contextualisation", qui permet de copier les slots en rajoutant un contexte supplémentaire. Ainsi, nous avons établi une théorie permettant de représenter des entités qui peuvent avoir plusieurs la même partie tout en évitant les problèmes de comptage. Nous avons développé une méréologie des slots sur la base de cette théorie, c'est-à-dire une théorie représentant des relations méréologiques entre slots. Ainsi, nous avons pu développer les diverses notions présentes en méréologie classique, telles que la supplémentation, l'extensionnalité, la somme et la fusion méréologiques. Cette proposition fournit une méréologie très expressive et logiquement bien fondée qui permettra d'explorer, dans de futurs travaux, des questions complexes soulevées dans la littérature scientifique. En effet, certaines entités ne peuvent pas être différenciées par leurs seules structures méréologiques, mais requièrent de représenter des relations additionnelles entre leurs parties. Notre théorie méréologique offre des outils et des pistes permettant d'explorer de telles questions
Mereology is the discipline concerned with the relationships between a part and its whole and between parts within a whole. According to the most commonly used theory, "classical extensional mereology", an entity can only be part of another one once. For example, your heart is part once of your body. Some earlier works have challenged this principle. Indeed, it is impossible to describe the mereological structure of certain entities, such as structural universals or word types, within the framework of classical extensional mereology. These entities may have the same part several times over. For example, the universal of water molecule (H2O) has as part the universal of hydrogen atom (H) twice, while a particular water molecule has two distinct hydrogen atoms as parts. In this work, we follow the track opened by Karen Bennett in 2013. Bennett sketched out a new mereology to represent the mereological structure of these entities. In her theory, to be a part of an entity is to fill a "slot" of that entity. Thus, in the word "potato", the letter "o" is part of the word twice because it occupies two "slots" of that word: the second and the sixth. Bennett's proposal is innovative in offering a general framework that is not restricted to one entity type. However, the theory has several problems. Firstly, it is limited: many notions of classical mereology have no equivalent, such as mereological sum or extensionality. Secondly, the theory's axiomatics give rise to counting problems. For example, the electron universal is only part of the methane universal seven times instead of the expected ten times. We have proposed a solution based on the principle that slots must be duplicated as often as necessary to obtain a correct count. This duplication is achieved through a mechanism called "contextualisation", which allows slots to be copied by adding context. In this way, we have established a theory for representing entities that may have the same part multiple times while avoiding counting problems. We have developed a mereology of slots based on this theory, which is a theory representing mereological relationships between slots. In this way, we have developed the various notions present in classical mereology, such as supplementation, extensionality, mereological sum and fusion. This proposal provides a very expressive and logically sound mereology that will enable future work to explore complex issues raised in the scientific literature. Indeed, some entities cannot be differentiated by their mereological structures alone but require the representation of additional relationships between their parts. Our mereological theory offers tools and avenues to explore such questions
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Vial, Pierre. „Opérateurs de typage non-idempotents, au delà du lambda-calcul“. Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC038/document.

Der volle Inhalt der Quelle
Annotation:
L'objet de cette thèse est l'extension des méthodes de la théorie des types intersections non-idempotents, introduite par Gardner et de Carvalho, à des cadres dépassant le lambda-calcul stricto sensu.- Nous proposons d'abord une caractérisation de la normalisation de tête et de la normalisation forte du lambda-mu calcul (déduction naturelle classique) en introduisant des types unions non-idempotents. Comme dans le cas intuitionniste, la non-idempotence nous permet d'extraire du typage des informations quantitatives ainsi que des preuves de terminaison beaucoup plus élémentaires que dans le cas idempotent. Ces résultats nous conduisent à définir une variante à petits pas du lambda-mu-calcul, dans lequel la normalisation forte est aussi caractérisée avec des méthodes quantitatives. - Dans un deuxième temps, nous étendons la caractérisation de la normalisation faible dans le lambda-calcul pur à un lambda-calcul infinitaire étroitement lié aux arbres de Böhm et dû à Klop et al. Ceci donne une réponse positive à une question connue comme le problème de Klop. À cette fin, il est nécessaire d'introduire conjointement un système (système S) de types infinis utilisant une intersection que nous qualifions de séquentielle, et un critère de validité servant à se débarrasser des preuves dégénérées auxquelles les grammaires coinductives de types donnent naissance. Ceci nous permet aussi de donner une solution au problème n°20 de TLCA (caractérisation par les types des permutations héréditaires). Il est à noter que ces deux problèmes n'ont pas de solution dans le cas fini (Tatsuta, 2007).- Enfin, nous étudions le pouvoir expressif des grammaires coinductives de types, en dehors de tout critère de validité. Nous devons encore recourir au système S et nous montrons que tout terme est typable de façon non triviale avec des types infinis et que l'on peut extraire de ces typages des informations sémantiques comme l'ordre (arité) de n'importe quel lambda-terme. Ceci nous amène à introduire une méthode permettant de typer des termes totalement non-productifs, dits termes muets, inspirée de la logique du premier ordre. Ce résultat prouve que, dans l'extension coinductive du modèle relationnel, tout terme a une interprétation non vide. En utilisant une méthode similaire, nous montrons aussi que le système S collapse surjectivement sur l'ensemble des points de ce modèle
In this dissertation, we extend the methods of non-idempotent intersection type theory, pioneered by Gardner and de Carvalho, to some calculi beyond the lambda-calculus.- We first present a characterization of head and strong normalization in the lambda-mu calculus (classical natural deduction) by introducing non-idempotent union types. As in the intuitionistic case, non-idempotency allows us to extract quantitative information from the typing derivations and we obtain proofs of termination that are far more elementary than those in the idempotent case. These results leads us to define a small-step variant of the lambda-mu calculus, in which strong normalization is also characterized by means of quantitative methods.- In the second part of the dissertation, we extend the characterization of weak normalization in the pure lambda-calculus to an infinitary lambda-calculus narrowly related to Böhm trees, which was introduced by Klop et al. This gives a positive answer to a question known as Klop's problem. In that purpose, it is necessary to simultaneously introduce a system (system S) featuring infinite types and resorting to an intersection operator that we call sequential, and a validity criterion in order to discard unsound proofs that coinductive grammars give rise to. This also allows us to give a solution to TLCA problem #20 (type-theoretic characterization of hereditary permutations). It is to be noted that those two problem do not have a solution in the finite case (Tatsuta, 2007).- Finally, we study the expressive power of coinductive type grammars, without any validity criterion. We must once more resort to system S and we show that every term is typable in a non-trivial way with infinite types and that one can extract semantical information from those typings e.g. the order (arity) of any lambda-term. This leads us to introduce a method that allows typing totally unproductive terms (the so-called mute terms), which is inspired from first order logic. This result establishes that, in the coinductive extension of the relational model, every term has a non-empty interpretation. Using a similar method, we also prove that system S surjectively collapses on the set of points of this model
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Marais, Magdaleen Suzanne. „Idempotente voortbringers van matriksalgebras“. Thesis, Link to the online version, 2007. http://hdl.handle.net/10019/677.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Blomgren, Martin. „Fibrations and Idempotent Functors“. Doctoral thesis, KTH, Matematik (Avd.), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-66740.

Der volle Inhalt der Quelle
Annotation:
This thesis consists of two articles. Both articles concern homotopical algebra. In Paper I we study functors indexed by a small category into a model category whose value at each morphism is a weak equivalence. We show that the category of such functors can be understood as a certain mapping space. Specializing to topological spaces, this result is used to reprove a classical theorem that classifies fibrations with a fixed base and homotopy fiber. In Paper II we study augmented idempotent functors, i.e., co-localizations, operating on the category of groups. We relate these functors to cellular coverings of groups and show that a number of properties, such as finiteness, nilpotency etc., are preserved by such functors. Furthermore, we classify the values that such functors can take upon finite simple groups and give an explicit construction of such values.
QC 20120127
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Yang, Dandan. „Free idempotent generated semigroups“. Thesis, University of York, 2014. http://etheses.whiterose.ac.uk/5948/.

Der volle Inhalt der Quelle
Annotation:
The study of the free idempotent generated semigroup IG$(E)$ over a biordered set $E$ began with the seminal work of Nambooripad in the 1970s and has seen a recent revival with a number of new approaches, both geometric and combinatorial. Given the universal nature of free idempotent generated semigroups, it is natural to investigate their structure. A popular theme is to investigate the maximal subgroups. It was thought from the 1970s that all such groups would be free, but this conjecture was false. The first example of a non-free group arising in this context appeared in 2009 in an article by Brittenham, Margolis and Meakin. After that, Gray and Ru\v{s}kuc in 2012 showed that {\em any} group occurs as a maximal subgroup of some $\ig(E)$. Following this discovery, another interesting question comes out very naturally: for a particular biordered $E$, which groups can be the maximal subgroups of $\ig(E)$? Several significant results for the biordered sets of idempotents of the full transformation monoid $\mathcal{T}_n$ on $n$ generators and the matrix monoid $M_n(D)$ of all $n\times n$ matrices over a division ring $D,$ have been obtained in recent years, which suggest that it may well be worth investigating maximal subgroups of $\ig(E)$ over the biordered set $E$ of idempotents of the endomorphism monoid of an independence algebra of finite rank $n$. To this end, we investigate another important example of an independence algebra, namely, the free (left) $G$-act $F_n(G)$ of rank $n$, where $n\in \mathbb{N}$, $n\geq 3$ and $G$ is a group. It is known that the endomorphism monoid $\en F_n(G)$ of $F_n(G)$ is isomorphic to a wreath product $G\wr \mathcal{T}_n$. We say that the {\em rank} of an element of $\en F_n(G)$ is the minimal number of (free) generators in its image. Let $E$ be the biordered set of idempotents of $\en F_n(G)$, let $\varepsilon\in E$ be a rank $r$ idempotent, where $1\leq r\leq n.$ For rather straightforward reasons it is known that if $r=n-1$ (respectively, $n$), then the maximal subgroup of $\ig(E)$ containing $\varepsilon$ is free (respectively, trivial). We show, in a transparent way, that, if $r=1$ then the maximal subgroup of IG$(E)$ containing $\varepsilon$ is isomorphic to that of $\en F_n(G)$ and hence to $G$. As a corollary we obtain the 2012 result of Gray and Ru\v{s}kuc that {\em any} group can occur as a maximal subgroup of {\em some} $\ig(E)$. Unlike their proof, ours involves a natural biordered set and very little machinery. However, for higher ranks, a more sophisticated approach is needed, which involves the presentations of maximal subgroups of $\ig(E)$ obtained by Gray and Ru\v{s}kuc, and a presentation of $G\wr\mathcal{S}_r$, where $\mathcal{S}_r$ is the symmetric group on $r$ elements. We show that for $1\leq r\leq n-2$, the maximal subgroup of $\ig(E)$ containing $\varepsilon$ is isomorphic to that of $\en F_n(G)$, and hence to $G\wr\mathcal{S}_r$. By taking $G$ to be trivial, we obtain an alternative proof of the 2012 result of Gray and Ru\v{s}kuc for the biordered set of idempotents of $\mathcal{T}_n.$ After that, we focus on the maximal subgroups of $\ig(E)$ containing a rank 1 idempotent $\varepsilon\in E$, where $E$ is the biordered set of idempotents of the endomorphism monoid $\en \mathbf{A}$ of an independence algebra $\mathbf{A}$ of rank $n$ with no constants, where $n\in \mathbb{N}$ and $n\geq 3.$ It is proved that the maximal subgroup of $\ig(E)$ containing $\varepsilon$ is isomorphic to that of $\en \mathbf{A},$ the latter being the group of all unary term operations of $\mathbf{A}.$ Whereas much of the former work in the literature of $\ig(E)$ has focused on maximal subgroups, in this thesis we also study the general structure of the free idempotent generated semigroup $\ig(B)$ over an arbitrary band $B$. We show that $\ig(B)$ is {\it always} a weakly abundant semigroup with the congruence condition, but not necessarily abundant. We then prove that if $B$ is a quasi-zero band or a normal band for which $\ig(B)$ satisfying Condition $(P)$, then $\ig(B)$ is an abundant semigroup. In consequence, if $Y$ is a semilattice, then $\ig(Y)$ is adequate, that is, it belongs to the quasivariety of unary semigroups introduced by Fountain over 30 years ago. Further, the word problem of $\ig(B)$ is solvable if $B$ is quasi-zero. We also construct a 10-element normal band $B$ for which $\ig(B)$ is not abundant.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Leupold, Klaus-Peter. „Languages Generated by Iterated Idempotencies“. Doctoral thesis, Universitat Rovira i Virgili, 2006. http://hdl.handle.net/10803/8791.

Der volle Inhalt der Quelle
Annotation:
The rewrite relation with parameters m and n and with the possible length limit = k or :::; k we denote by w~, =kW~· or ::;kw~ respectively. The idempotency languages generated from a starting word w by the respective operations are wDAlso other special cases of idempotency languages besides duplication have come up in different contexts. The investigations of Ito et al. about insertion and deletion, Le., operations that are also observed in DNA molecules, have established that w5 and w~ both preserve regularity.
Our investigations about idempotency relations and languages start out from the case of a uniform length bound. For these relations =kW~ the conditions for confluence are characterized completely. Also the question of regularity is -k n answered for aH the languages w- D 1 are more complicated and belong to the class of context-free languages.
For a generallength bound, i.e."for the relations :"::kW~, confluence does not hold so frequently. This complicatedness of the relations results also in more complicated languages, which are often non-regular, as for example the languages W<;kDWithout any length bound, idempotency relations have a very complicated structure. Over alphabets of one or two letters we still characterize the conditions for confluence. Over three or more letters, in contrast, only a few cases are solved. We determine the combinations of parameters that result in the regularity of wDIn a second chapter sorne more involved questions are solved for the special case of duplication. First we shed sorne light on the reasons why it is so difficult to determine the context-freeness ofduplication languages. We show that they fulfiH aH pumping properties and that they are very dense. Therefore aH the standard tools to prove non-context-freness do not apply here.
The concept of root in Formal Language ·Theory is frequently used to describe the reduction of a word to another one, which is in sorne sense elementary.
For example, there are primitive roots, periodicity roots, etc. Elementary in connection with duplication are square-free words, Le., words that do not contain any repetition. Thus we define the duplication root of w to consist of aH the square-free words, from which w can be reached via the relation w~.
Besides sorne general observations we prove the decidability of the question, whether the duplication root of a language is finite.
Then we devise acode, which is robust under duplication of its code words.
This would keep the result of a computation from being destroyed by dupli cations in the code words. We determine the exact conditions, under which infinite such codes exist: over an alphabet of two letters they exist for a length bound of 2, over three letters already for a length bound of 1.
Also we apply duplication to entire languages rather than to single words; then it is interesting to determine, whether regular and context-free languages are closed under this operation. We show that the regular languages are closed under uniformly bounded duplication, while they are not closed under duplication with a generallength bound. The context-free languages are closed under both operations.
The thesis concludes with a list of open problems related with the thesis' topics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Lelièvre, Hubert. „Espaces bmo et multiplicateurs idempotents“. Paris 6, 1995. http://www.theses.fr/1995PA066372.

Der volle Inhalt der Quelle
Annotation:
On etudie une generalisation des espaces bmo et des espaces de hardy classiques en remplacant les normes d'espace de lebesgue par des normes d'orlicz dans les definitions. Notre but, ensuite, c'est la generalisation de l'inegalite classique de paley dans le cas des fonctions a valeurs aussi bien scalaires que vectorielles. Cela nous permet de mettre en evidence des sous-espaces de fonctions, remarquables engendres par des suites lacunaires. Par la methode d'interpolation de peetre, on calcule des espaces intermediaires entre l'espace bmo et l'espace des fonctions essentiellement bornees. La derniere partie de la these est consacree aux multiplicateurs idempotents sur des espaces de type bmo
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sezinando, Helena Maria da Encarnação. „Formal languages and idempotent semigroups“. Thesis, University of St Andrews, 1991. http://hdl.handle.net/10023/13724.

Der volle Inhalt der Quelle
Annotation:
The structure of the lattice LB of varieties of idempotent semigroups or bands (as universal algebras) was determined by Birjukov, Fennemore and Gerhard. Wis- math determined the structure of a related lattice: the lattice LBM of varieties of band monoids. In the first two parts we study several questions about these varieties. In Part I we compute the cardinalities of the Green classes of the free objects in each variety of LB [LBM]. These cardinalities constitute a useful piece of information in the study of several questions about these varieties and some of the conclusions obtained here are used in parts II and III. Part II concerns expansions of bands [band monoids]. More precisely, we compute here the cut-down to generators of the Rhodes expansions of the free objects in the varieties of LB. We define Rhodes expansion of a monoid, its cut-down to generators and we compute the cut-down to generators of the Rhodes expansions of the free objects in the varieties of LBM. In Part III we deal with Eilenberg varieties of band monoids. The last chapter is particularly concerned with the description of the varieties of languages corresponding to these varieties.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Garcia, Vitor Araujo. „Idempotentes centrais primitivos em algumas álgebras de grupos“. Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05102015-225032/.

Der volle Inhalt der Quelle
Annotation:
O objetivo do trabalho é apresentar alguns resultados acerca de anéis de grupos e aplicações, segundo o que foi estudado em livros e artigos sobre o assunto. Inicialmente, apresentaremos alguns fatos básicos sobre anéis de grupos, que podem ser encontrados em [5], e em seguida, apresentaremos os resultados principais, mais recentes, que foram estudados em dois artigos diferentes. No primeiro artigo [4], apresentou-se uma forma de calcular o número de componentes simples de certas álgebras de grupos abelianos finitos, bem como também foi apresentada uma forma de calcular geradores idempotentes de códigos abelianos minimais, suas dimensões e seus pesos. No segundo artigo [2], encontra-se uma descrição feita dos idempotentes centrais primitivos da álgebra de grupo racional de grupos nilpotentes finitos.
Our goal in this project is to present some results about group rings and its applications, as presented in books and articles about this subject. First of all we are going to establish some basic fact about group rings, which can be found mainly in [5], and then we will present the main results, which are more recent, and have been studied in two different articles. In [4], the authors presented a way of evaluating the number of simple components of some finite group algebras, as well presented a way of evaluating idempotent generators of some minimal abelian codes, their dimension and their weights. In [2] there is a complete description of all the primitive central idempotents of the rational group algebra of finite nilpotent groups.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Krautzberger, Peter [Verfasser]. „Idempotent filters and ultrafilters / Peter Krautzberger“. Berlin : Freie Universität Berlin, 2009. http://d-nb.info/1023817063/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Idempotence"

1

Jeremy, Gunawardena, und Isaac Newton Institute for Mathematical Sciences., Hrsg. Idempotency. Cambridge, U.K: Cambridge University Press, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gunawardena, Jeremy. An introduction to idempotency. Bristol [England]: Hewlett Packard, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Maslov, V., und S. Samborskiĭ, Hrsg. Idempotent Analysis. Providence, Rhode Island: American Mathematical Society, 1992. http://dx.doi.org/10.1090/advsov/013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

P, Maslov V., und Samborski S. N, Hrsg. Idempotent analysis. Providence, R.I: American Mathematical Society, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Litvinov, G. L., und S. N. Sergeev, Hrsg. Tropical and Idempotent Mathematics. Providence, Rhode Island: American Mathematical Society, 2009. http://dx.doi.org/10.1090/conm/495.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kolokoltsov, Vassili N., und Victor P. Maslov. Idempotent Analysis and Its Applications. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8901-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Litvinov, G. L., und V. P. Maslov, Hrsg. Idempotent Mathematics and Mathematical Physics. Providence, Rhode Island: American Mathematical Society, 2005. http://dx.doi.org/10.1090/conm/377.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Dudek, Józef. Polynomials in idempotent commutative groupoids. Warszawa: Państwowe Wydawn. Nauk., 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kolokoltsov, Vassili N. Idempotent Analysis and Its Applications. Dordrecht: Springer Netherlands, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kolokolʹt͡sov, V. N. Idempotent analysis and its applications. Boston, Mass: Kluwer Academic Publishers, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Idempotence"

1

Hummer, Waldemar, Florian Rosenberg, Fábio Oliveira und Tamar Eilam. „Testing Idempotence for Infrastructure as Code“. In Middleware 2013, 368–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-45065-5_19.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Rohwer, Carl. „LULU-Intervals, Noise and Co-idempotence“. In International Series of Numerical Mathematics, 31–41. Basel: Birkhäuser Basel, 2005. http://dx.doi.org/10.1007/3-7643-7382-2_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Aceto, Luca, Arnar Birgisson, Anna Ingolfsdottir, MohammadReza Mousavi und Michel A. Reniers. „Rule Formats for Determinism and Idempotence“. In Fundamentals of Software Engineering, 146–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11623-0_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

De Baets, Bernard. „Generalized Idempotence in Fuzzy Mathematical Morphology“. In Fuzzy Techniques in Image Processing, 58–75. Heidelberg: Physica-Verlag HD, 2000. http://dx.doi.org/10.1007/978-3-7908-1847-5_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Fontana, Marco, Evan Houston und Mi Hee Park. „Idempotence and Divisoriality in Prüfer-Like Domains“. In Springer Proceedings in Mathematics & Statistics, 169–82. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43416-8_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Eslick, Ian, André DeHon und Thomas Knight. „Guaranteeing idempotence for tightly-coupled, fault-tolerant networks“. In Parallel Computer Routing and Communication, 215–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-58429-3_39.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ikeshita, Katsuhiko, Fuyuki Ishikawa und Shinichi Honiden. „Test Suite Reduction in Idempotence Testing of Infrastructure as Code“. In Tests and Proofs, 98–115. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61467-0_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Puig, Lluís. „Lifting Idempotents“. In Springer Monographs in Mathematics, 7–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-11256-4_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kolokoltsov, Vassili N., und Victor P. Maslov. „Idempotent Analysis“. In Idempotent Analysis and Its Applications, 1–44. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8901-7_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Harville, David A. „Idempotent Matrices“. In Matrix Algebra From a Statistician’s Perspective, 133–38. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/0-387-22677-x_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Idempotence"

1

Ramalingam, Ganesan, und Kapil Vaswani. „Fault tolerance via idempotence“. In the 40th annual ACM SIGPLAN-SIGACT symposium. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2429069.2429100.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Charif-Chefchaouni, Mohammed A., und Dan Schonfeld. „Generalized morphological center: idempotence“. In Visual Communications and Image Processing '94, herausgegeben von Aggelos K. Katsaggelos. SPIE, 1994. http://dx.doi.org/10.1117/12.185871.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Arya, Sunil, Theocharis Malamatos und David M. Mount. „On the importance of idempotence“. In the thirty-eighth annual ACM symposium. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1132516.1132598.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Buzzi, J., und F. Guichard. „Idempotence and automatic linear contrast enhancements“. In rnational Conference on Image Processing. IEEE, 2005. http://dx.doi.org/10.1109/icip.2005.1530170.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hurd, Lyman, und Jose G. Rosiles. „Achieving idempotence in near-lossless JPEG-LS“. In Electronic Imaging, herausgegeben von Bhaskaran Vasudev, T. Russell Hsing, Andrew G. Tescher und Robert L. Stevenson. SPIE, 2000. http://dx.doi.org/10.1117/12.383004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Pan, Zhihong, Baopu Li, Dongliang He, Mingde Yao, Wenhao Wu, Tianwei Lin, Xin Li und Errui Ding. „Towards Bidirectional Arbitrary Image Rescaling: Joint Optimization and Cycle Idempotence“. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022. http://dx.doi.org/10.1109/cvpr52688.2022.01687.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ricci, Roberto Ghiselli. „Asymptotic Idempotency“. In 2007 IEEE International Fuzzy Systems Conference. IEEE, 2007. http://dx.doi.org/10.1109/fuzzy.2007.4295598.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kim, Seon Wook, Chong-liang Ooi, Rudolf Eigenmann, Babak Falsafi und T. N. Vijaykumar. „Reference idempotency analysis“. In the eighth ACM SIGPLAN symposium. New York, New York, USA: ACM Press, 2001. http://dx.doi.org/10.1145/379539.379547.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Neergaard, Peter Møller, und Harry G. Mairson. „Types, potency, and idempotency“. In the ninth ACM SIGPLAN international conference. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1016850.1016871.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Fagin, Barry. „Idempotent Factorizations“. In ITiCSE '19: Innovation and Technology in Computer Science Education. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3304221.3325557.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Idempotence"

1

McEneaney, William M. Idempotent Methods for Control and Games. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada590145.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Knight, Tom. Idempotent Vector Design for Standard Assembly of Biobricks. Fort Belvoir, VA: Defense Technical Information Center, Januar 2003. http://dx.doi.org/10.21236/ada457791.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Fitzpatrick, Ben G. Idempotent Methods for Continuous Time Nonlinear Stochastic Control. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada580394.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Baader, Franz, Pavlos Marantidis und Alexander Okhotin. Approximately Solving Set Equations. Technische Universität Dresden, 2016. http://dx.doi.org/10.25368/2022.227.

Der volle Inhalt der Quelle
Annotation:
Unification with constants modulo the theory ACUI of an associative (A), commutative (C) and idempotent (I) binary function symbol with a unit (U) corresponds to solving a very simple type of set equations. It is well-known that solvability of systems of such equations can be decided in polynomial time by reducing it to satisfiability of propositional Horn formulae. Here we introduce a modified version of this problem by no longer requiring all equations to be completely solved, but allowing for a certain number of violations of the equations. We introduce three different ways of counting the number of violations, and investigate the complexity of the respective decision problem, i.e., the problem of deciding whether there is an assignment that solves the system with at most l violations for a given threshold value l.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie