Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Ice recrystallization inhibitors.

Zeitschriftenartikel zum Thema „Ice recrystallization inhibitors“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-47 Zeitschriftenartikel für die Forschung zum Thema "Ice recrystallization inhibitors" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

William, Nishaka, und Jason Acker. „Modulating intracellular ice recrystallization in hepatocytes using small carbohydrate-based ice recrystallization inhibitors“. Cryobiology 97 (Dezember 2020): 258. http://dx.doi.org/10.1016/j.cryobiol.2020.10.040.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

William, Nishaka, Robert Ben, Jayan Nagendran und Jason Acker. „Controlling Intra- And Extracellular Ice Recrystallization In Liver Tissues Using Small Molecule Ice Recrystallization Inhibitors“. Cryobiology 91 (Dezember 2019): 180–81. http://dx.doi.org/10.1016/j.cryobiol.2019.10.136.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Poisson, J., T. Turner, A. Hill, J. P. Acker und R. Ben. „Ice recrystallization inhibitors as novel cell-permeating cryoprotectants“. Cryobiology 73, Nr. 3 (Dezember 2016): 412. http://dx.doi.org/10.1016/j.cryobiol.2016.09.055.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Meyer, J., J. Poisson, T. R. Turner, D. Burger, J. P. Acker und R. Ben. „Investigating microparticle formation with novel ice recrystallization inhibitors“. Cryobiology 73, Nr. 3 (Dezember 2016): 428. http://dx.doi.org/10.1016/j.cryobiol.2016.09.114.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Charlton, T. A., D. McCulloch und R. N. Ben. „Sulfated alditol derivatives as novel ice recrystallization inhibitors“. Cryobiology 73, Nr. 3 (Dezember 2016): 436. http://dx.doi.org/10.1016/j.cryobiol.2016.09.144.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Adam, Madeleine K., Jessica S. Poisson, Yingxue Hu, Geethika Prasannakumar, Matthew J. Pottage, Robert N. Ben und Brendan L. Wilkinson. „Carbohydrate-based surfactants as photocontrollable inhibitors of ice recrystallization“. RSC Advances 6, Nr. 45 (2016): 39240–44. http://dx.doi.org/10.1039/c6ra07030b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Poisson, Jessica S., Jason P. Acker, Jennie G. Briard, Julia E. Meyer und Robert N. Ben. „Modulating Intracellular Ice Growth with Cell-Permeating Small-Molecule Ice Recrystallization Inhibitors“. Langmuir 35, Nr. 23 (17.08.2018): 7452–58. http://dx.doi.org/10.1021/acs.langmuir.8b02126.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Balcerzak, Anna K., Michela Febbraro und Robert N. Ben. „The importance of hydrophobic moieties in ice recrystallization inhibitors“. RSC Advances 3, Nr. 10 (2013): 3232. http://dx.doi.org/10.1039/c3ra23220d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Adam, M. K., J. S. Poisson, Y. Hu, G. Prasannakumar, M. J. Pottage, B. L. Wilkinson und R. N. Ben. „Carbohydrate-based surfactants as photocontrollable inhibitors of ice recrystallization“. Cryobiology 73, Nr. 3 (Dezember 2016): 436. http://dx.doi.org/10.1016/j.cryobiol.2016.09.143.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Adam, Madeleine K., Yingxue Hu, Jessica S. Poisson, Matthew J. Pottage, Robert N. Ben und Brendan L. Wilkinson. „Photoswitchable carbohydrate-based fluorosurfactants as tuneable ice recrystallization inhibitors“. Carbohydrate Research 439 (Februar 2017): 1–8. http://dx.doi.org/10.1016/j.carres.2016.12.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Tonelli, Devin, Chantelle J. Capicciotti, Malay Doshi und Robert N. Ben. „Inhibiting gas hydrate formation using small molecule ice recrystallization inhibitors“. RSC Advances 5, Nr. 28 (2015): 21728–32. http://dx.doi.org/10.1039/c4ra14746d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Balcerzak, Anna K., Chantelle J. Capicciotti, Jennie G. Briard und Robert N. Ben. „Designing ice recrystallization inhibitors: from antifreeze (glyco)proteins to small molecules“. RSC Adv. 4, Nr. 80 (2014): 42682–96. http://dx.doi.org/10.1039/c4ra06893a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Balcerzak, Anna K., Kyle McClymont und Robert N. Ben. „140 The importance of hydrophobic moieties in ice recrystallization inhibitors“. Cryobiology 67, Nr. 3 (Dezember 2013): 438. http://dx.doi.org/10.1016/j.cryobiol.2013.09.146.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Briard, Jennie G., Jessica S. Poisson, Tracey R. Turner, Jayme D. R. Kurach, Jason P. Acker und Robert N. Ben. „Small molecule ice recrystallization inhibitors – A novel class of cryoprotectants“. Cryobiology 71, Nr. 3 (Dezember 2015): 540–41. http://dx.doi.org/10.1016/j.cryobiol.2015.10.018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Meyer, Julia E., Tracey R. Turner, Thomas A. Charlton, Jessica S. Poisson, Jason P. Acker und Robert N. Ben. „Combining Ice Recrystallization Inhibitors To Improve Red Blood Cell Cryopreservation“. Cryobiology 91 (Dezember 2019): 163. http://dx.doi.org/10.1016/j.cryobiol.2019.10.074.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Musca, V., und R. Ben. „Importance of the C1 heteroatom in aryl glycoside ice recrystallization inhibitors“. Cryobiology 73, Nr. 3 (Dezember 2016): 436–37. http://dx.doi.org/10.1016/j.cryobiol.2016.09.145.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Turner, Tracey R., Jessica S. Poisson, Julia E. Meyer, Robert Ben und Jason P. Acker. „Ice recrystallization inhibitors mitigate damage due to transient warming of cryopreserved RBCS“. Cryobiology 85 (Dezember 2018): 131. http://dx.doi.org/10.1016/j.cryobiol.2018.10.057.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Poisson, Jessica S., Tracey R. Turner, Jason P. Acker und Robert N. Ben. „Cryopreservation of red blood cells using ice recrystallization inhibitors as novel cryoprotectants“. Cryobiology 85 (Dezember 2018): 131–32. http://dx.doi.org/10.1016/j.cryobiol.2018.10.058.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Mitchell, Daniel E., Mary Lilliman, Sebastian G. Spain und Matthew I. Gibson. „Quantitative study on the antifreeze protein mimetic ice growth inhibition properties of poly(ampholytes) derived from vinyl-based polymers“. Biomater. Sci. 2, Nr. 12 (2014): 1787–95. http://dx.doi.org/10.1039/c4bm00153b.

Der volle Inhalt der Quelle
Annotation:
Antifreeze (glyco) proteins (AF(G)Ps) from the blood of polar fish species are extremely potent ice recrystallization inhibitors (IRI), but are difficult to synthesise or extract from natural sources.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Capicciotti, Chantelle J., Ross S. Mancini, Tracey R. Turner, Toshie Koyama, Matthew G. Alteen, Malay Doshi, Takaaki Inada, Jason P. Acker und Robert N. Ben. „O-Aryl-Glycoside Ice Recrystallization Inhibitors as Novel Cryoprotectants: A Structure–Function Study“. ACS Omega 1, Nr. 4 (24.10.2016): 656–62. http://dx.doi.org/10.1021/acsomega.6b00163.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Khan, S., J. Poisson, L. Davila, R. N. Ben und D. W. Courtman. „Small-molecule ice recrystallization inhibitors improve post-thaw recovery of mesenchymal stromal cells“. Cytotherapy 21, Nr. 5 (Mai 2019): S76. http://dx.doi.org/10.1016/j.jcyt.2019.03.477.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Ben, Robert, Jennie G. Briard, Jessica S. Poisson, Tracey R. Turner, Jayme D. R. Kurach und Jason P. Acker. „25. Ice recrystallization inhibitors – Mitigating cellular damage during freezing, transient warming and thawing“. Cryobiology 71, Nr. 1 (August 2015): 171. http://dx.doi.org/10.1016/j.cryobiol.2015.05.031.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Briard, Jennie, Jessica Poisson, Tracey Turner, Priya Chandran, Jason Acker, David Allan und Robert Ben. „Carbohydrate-based small molecule ice recrystallization inhibitors as cryopreservatives for red blood cells“. Cryobiology 71, Nr. 3 (Dezember 2015): 554. http://dx.doi.org/10.1016/j.cryobiol.2015.10.072.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Acker, Jason. „Application Of Small Molecule Ice Recrystallization Inhibitors In The Cryopreservation Of Cell Therapies“. Cryobiology 91 (Dezember 2019): 156. http://dx.doi.org/10.1016/j.cryobiol.2019.10.046.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Raju, Rekha, Theresa Merl, Madeleine K. Adam, Emiliyan Staykov, Robert N. Ben, Gary Bryant und Brendan L. Wilkinson. „n-Octyl (Thio)glycosides as Potential Cryoprotectants: Glass Transition Behaviour, Membrane Permeability, and Ice Recrystallization Inhibition Studies“. Australian Journal of Chemistry 72, Nr. 8 (2019): 637. http://dx.doi.org/10.1071/ch19159.

Der volle Inhalt der Quelle
Annotation:
A series of eight n-octyl (thio)glycosides (1α, β–4α, β) with d-glucose or d-galactose-configured head groups and varying anomeric configuration were synthesized and evaluated for glass transition behaviour, membrane permeability, and ice recrystallization inhibition (IRI) activity. Of these, n-octyl β-d-glucopyranoside (2β) exhibited a high glass transition temperatures (Tg), both as a neat sample and 20 wt-% aqueous solution. Membrane permeability studies of this compound revealed cellular uptake to concentrations relevant to the inhibition of intracellular ice formation, thus presenting a promising lead candidate for further biophysical and cryopreservation studies. Compounds were also evaluated as ice recrystallization inhibitors; however, no detectable activity was observed for the newly tested compounds.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Wang, Yannan, Laurie A. Graham, Zhifu Han, Robert Eves, Audrey K. Gruneberg, Robert L. Campbell, Heqiao Zhang und Peter L. Davies. „Carrot ‘antifreeze’ protein has an irregular ice-binding site that confers weak freezing point depression but strong inhibition of ice recrystallization“. Biochemical Journal 477, Nr. 12 (22.06.2020): 2179–92. http://dx.doi.org/10.1042/bcj20200238.

Der volle Inhalt der Quelle
Annotation:
Ice-binding proteins (IBPs) are found in many biological kingdoms where they protect organisms from freezing damage as antifreeze agents or inhibitors of ice recrystallization. Here, the crystal structure of recombinant IBP from carrot (Daucus carota) has been solved to a resolution of 2.3 Å. As predicted, the protein is a structural homologue of a plant polygalacturonase-inhibiting protein forming a curved solenoid structure with a leucine-rich repeat motif. Unexpectedly, close examination of its surface did not reveal any large regions of flat, regularly spaced hydrophobic residues that characterize the ice-binding sites (IBSs) of potent antifreeze proteins from freeze-resistant fish and insects. An IBS was defined by site-directed mutagenesis of residues on the convex surface of the carrot solenoid. This imperfect site is reminiscent of the irregular IBS of grass ‘antifreeze’ protein. Like the grass protein, the carrot IBP has weak freezing point depression activity but is extremely active at nanomolar concentrations in inhibiting ice recrystallization. Ice crystals formed in the presence of both plant proteins grow slowly and evenly in all directions. We suggest that this slow, controlled ice growth is desirable for freeze tolerance. The fact that two plant IBPs have evolved very different protein structures to affect ice in a similar manner suggests this pattern of weak freezing point depression and strong ice recrystallization inhibition helps their host to tolerate freezing rather than to resist it.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Abraham, Stephanie, Kerkeslin Keillor, Chantelle J. Capicciotti, G. Evan Perley-Robertson, Jeffrey W. Keillor und Robert N. Ben. „Quantitative Analysis of the Efficacy and Potency of Novel Small Molecule Ice Recrystallization Inhibitors“. Crystal Growth & Design 15, Nr. 10 (22.09.2015): 5034–39. http://dx.doi.org/10.1021/acs.cgd.5b00995.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Trant, John F., Robyn A. Biggs, Chantelle J. Capicciotti und Robert N. Ben. „Developing highly active small molecule ice recrystallization inhibitors based upon C-linked antifreeze glycoprotein analogues“. RSC Advances 3, Nr. 48 (2013): 26005. http://dx.doi.org/10.1039/c3ra43835j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Ben, Robert, Jessica Poisson, Jennie Briard, Tracey Turner und Jason Acker. „Hydroxyethyl Starch Supplemented with Ice Recrystallization Inhibitors Greatly Improves Cryopreservation of Human Red Blood Cells“. BioProcessing Journal 15, Nr. 4 (15.02.2017): 16–21. http://dx.doi.org/10.12665/j154.ben.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Turner, T., A. Hill, J. Briard, J. Poisson, R. Ben und J. Acker. „Translating small molecule ice recrystallization inhibitors in the clinic: Establishing a large scale-up protocol“. Cryobiology 73, Nr. 3 (Dezember 2016): 402. http://dx.doi.org/10.1016/j.cryobiol.2016.09.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Briard, Jennie G., Suria Jahan, Priya Chandran, David Allan, Nicolas Pineault und Robert N. Ben. „Small-Molecule Ice Recrystallization Inhibitors Improve the Post-Thaw Function of Hematopoietic Stem and Progenitor Cells“. ACS Omega 1, Nr. 5 (28.11.2016): 1010–18. http://dx.doi.org/10.1021/acsomega.6b00178.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Acker, Jason P., Chantelle J. Capicciotti, Jayme D. R. Kurach, Tracey R. Turner, Ross S. Mancini und Robert N. Ben. „Small molecule ice recrystallization inhibitors enable freezing of human red blood cells with reduced glycerol concentrations“. Transfusion Medicine Reviews 29, Nr. 4 (Oktober 2015): 277. http://dx.doi.org/10.1016/j.tmrv.2015.05.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Ben, Robert. „065 Designing potent inhibitors of Ice recrystallization - from C-linked antifreeze glycoproteins (AFGPs) to small molecules“. Cryobiology 67, Nr. 3 (Dezember 2013): 416. http://dx.doi.org/10.1016/j.cryobiol.2013.09.071.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Capicciotti, Chantelle J., Jayme Tchir, Tracey Turner, Ross Mancini, Jason P. Acker und Robert N. Ben. „067 Small carbohydrate-based molecules as potent ice recrystallization inhibitors and their application in red blood cell cryopreservation“. Cryobiology 67, Nr. 3 (Dezember 2013): 416. http://dx.doi.org/10.1016/j.cryobiol.2013.09.073.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Lautner, Larissa, Robert N. Ben, Jason Acker und Jayan Nagendran. „The Use Of Ice Recrystallization Inhibitors (Iris) In Pneumocyte Monolayer Cryopreservation To Reduce Cryoprotectant Toxicity, Control Intracellular Ice Growth And Improve Post-Thaw Survival“. Cryobiology 91 (Dezember 2019): 176. http://dx.doi.org/10.1016/j.cryobiol.2019.10.119.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Chopra, Karishma, Salma Alasmar, Ahmed Zafer, Junzhuo Huang, Anna Jezierski, Scott Mccomb, Ewa Bauman und Robert N. Ben. „Improving The Cryopreservation Of Human Induced Pluripotent Stem Cells (Ipscs) And Human T-Cells With Ice Recrystallization Inhibitors (Iris)“. Cryobiology 91 (Dezember 2019): 162. http://dx.doi.org/10.1016/j.cryobiol.2019.10.070.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Lautner, Larissa, Jason Acker und Jayan Nagendran. „Characterizing the efficacy of ice recrystallization inhibitors in rat lung cryopreservation using a low-cost subnormothermic ex vivo lung perfusion technique“. Cryobiology 97 (Dezember 2020): 271. http://dx.doi.org/10.1016/j.cryobiol.2020.10.088.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Lautner, Larissa, Sayed Himmat, Jason P. Acker und Jayan Nagendran. „The efficacy of ice recrystallization inhibitors in rat lung cryopreservation using a low cost technique for ex vivo subnormothermic lung perfusion“. Cryobiology 97 (Dezember 2020): 93–100. http://dx.doi.org/10.1016/j.cryobiol.2020.10.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Pedchenko, Nazar, Ivan Zezekalo, Larysa Pedchenko und Mykhailo Pedchenko. „Research into phase transformations in reservoir systems models in the presence of thermodynamic hydrate formation inhibitors of high concentration“. E3S Web of Conferences 230 (2021): 01014. http://dx.doi.org/10.1051/e3sconf/202123001014.

Der volle Inhalt der Quelle
Annotation:
Gas hydrates have been and still remain a difficult problem in the oil and gas industry, solution of which requires considerable efforts and resources. In this work, the mechanism of phase transformations at negative temperatures in the formation of the solid phase is preliminarily studied using the reservoir system models consisting of a gas mixture and a solution of gas hydrate formation inhibitor of thermodynamic action with high concentration in distilled water. A system of three-dimensional lighting and image magnification is used to visually detect phase boundaries by creating optical effects. Thus, in the system “inhibitor solution – gas hydrate – gas” in the process of gas hydrate recrystallization in the conditions close to equilibrium, microzones of supercooled water may occur, which in the absence of gas molecules access is crystallized into ice. The result of such solid phase structure formation is its increased stability in nonequilibrium conditions for a relatively long period of time.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Six, Katrijn R., Stijn Lyssens, Rosalie Devloo, Veerle Compernolle und Hendrik B. Feys. „The ice recrystallization inhibitor polyvinyl alcohol does not improve platelet cryopreservation“. Transfusion 59, Nr. 9 (September 2019): 3029–31. http://dx.doi.org/10.1111/trf.15395.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Waters, Lauren, Robert Ben, Jason P. Acker, Matthew P. Padula, Denese C. Marks und Lacey Johnson. „Characterizing the ability of an ice recrystallization inhibitor to improve platelet cryopreservation“. Cryobiology 96 (Oktober 2020): 152–58. http://dx.doi.org/10.1016/j.cryobiol.2020.07.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Briard, Jennie G., Michael Fernandez, Phil De Luna, Tom K. Woo und Robert N. Ben. „QSAR Accelerated Discovery of Potent Ice Recrystallization Inhibitors“. Scientific Reports 6, Nr. 1 (24.05.2016). http://dx.doi.org/10.1038/srep26403.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Ghobadloo, Shahrokh M., Anna K. Balcerzak, Ana Gargaun, Darija Muharemagic, Gleb G. Mironov, Chantelle J. Capicciotti, Jennie G. Briard, Robert N. Ben und Maxim V. Berezovski. „Carbohydrate-Based Ice Recrystallization Inhibitors Increase Infectivity and Thermostability of Viral Vectors“. Scientific Reports 4, Nr. 1 (31.07.2014). http://dx.doi.org/10.1038/srep05903.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Provesi, João Gustavo, Pedro Alexandre Valentim Neto, Ana Carolina Maisonnave Arisi und Edna Regina Amante. „Antifreeze proteins in naturally cold acclimated leaves of Drimys angustifolia, Senecio icoglossus, and Eucalyptus ssp.“ Brazilian Journal of Food Technology 19 (2016). http://dx.doi.org/10.1590/1981-6723.11016.

Der volle Inhalt der Quelle
Annotation:
Summary Antifreeze proteins (AFPs) present in plants may inhibit ice recrystallization even at low concentrations, and show potential application to many frozen foods. This study evaluated the presence of antifreeze proteins in naturally cold acclimated and non-acclimated leaves of Drimys angustifolia, Senecio icoglossus and Eucalyptus ssp. No proteins were detected in apoplastic extracts of Eucalyptus ssp. Extracts of cold acclimated and non-acclimated S. icoglossus showed protein concentrations of 42.89 and 17.76 µg mL-1, both with bands between 25 and 37 kDa in the SDS-PAGE. However, they did not inhibit recrystallization. The extract of cold acclimated D. angustifolia contained a protein concentration of 95.17 µg mL-1, almost five times higher than the extract of non-acclimated D. angustifolia. In the extract of cold acclimated D. angustifolia, there was presence of ice recrystallization inhibitors. This extract showed a protein band just below 37 kDa and another more intense band between 20 and 25 kDa. It is the first time that the presence of antifreeze proteins in this species is being described.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Capicciotti, Chantelle J., Jayme D. R. Kurach, Tracey R. Turner, Ross S. Mancini, Jason P. Acker und Robert N. Ben. „Small Molecule Ice Recrystallization Inhibitors Enable Freezing of Human Red Blood Cells with Reduced Glycerol Concentrations“. Scientific Reports 5, Nr. 1 (08.04.2015). http://dx.doi.org/10.1038/srep09692.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Briard, Jennie G., Jessica S. Poisson, Tracey R. Turner, Chantelle J. Capicciotti, Jason P. Acker und Robert N. Ben. „Small molecule ice recrystallization inhibitors mitigate red blood cell lysis during freezing, transient warming and thawing“. Scientific Reports 6, Nr. 1 (29.03.2016). http://dx.doi.org/10.1038/srep23619.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

„Study of polyvinyl alcohols (9 and 31 kDa) aggregation in aqueous solutions by fluorescent probing“. Biophysical Bulletin, Nr. 44 (2020). http://dx.doi.org/10.26565/2075-3810-2020-44-01.

Der volle Inhalt der Quelle
Annotation:
Background: When developing low-temperature cell storage methods, a serious problem is recrystallization, which leads to cell damage during thawing. Previous studies have shown the promising use of polyvinyl alcohol (PVA) as an inhibitor of recrystallization. But the mechanisms of protective action of PVA are not finally clarified. So, it is not known what structural features contribute to implementation of PVA antirecrystallization properties in the cryoprotective concentration range. Objectives: Establishing the peculiarities of structuring PVA molecules in aqueous solutions using the fluorescent probe. Materials and Methods: Aqueous solutions of 0.1–5% (wt.%) PVA with molecular mass (m.m.) of 9 and 31 kDa) were studied. Fluorescence probe method, photometry, stalagmometry, and molecular modeling were used. Results: Using the 3-hydroxy-4¢-(N,N-dimethylamino)flavones (FME) fluorescent probe it was found that in 0.1–5% of PVA (m.m. 9 and 31 kDa) aqueous solutions the structural organization of polymers changes with formation of different in size and structure of local hydrophobic regions. In PVA solutions, m.m. 9 kDa micelles with smaller cavities are formed in which FME is densely surrounded by polymer segments. In the case of PVA m.m. 31 kDa, it forms micelles with smaller cavities surrounded by polymer segments. PVA m.m. 31 kDa forms micelles with larger in size and more hydrophilic cavities. If the content is more than 3%, PVA m.m. 31 kDa aggregates are partially destroyed, which may be the result of increased water content. Under these conditions, PVA m.m. 9 kDa micelles are enlarged. as a result of aggregation. According to molecular modeling data, PVA is able to form strong hydrogen-linked complexes with the surface of ice nanocrystals. Such complex, having a hydrophobic surface, can depolarize water molecules, thus slowing down further growth of ice crystals. Conclusions: Changes in the structural organization, which may affect the recrystallization properties, have been found in water solutions of PVA. The mechanism of implementation of polymer anticrystallization activity has been suggested. The possible role of structure and supramolecular organization of PVA in aqueous solutions in understanding the mechanisms of depressing recrystallization during freeze-thawing of cells is discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie