Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Ice layer crystallization“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Ice layer crystallization" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Ice layer crystallization"
Osmanbegovic, Nahla, Lina Yuan, Heike Lorenz und Marjatta Louhi-Kultanen. „Freeze Concentration of Aqueous [DBNH][OAc] Ionic Liquid Solution“. Crystals 10, Nr. 3 (26.02.2020): 147. http://dx.doi.org/10.3390/cryst10030147.
Der volle Inhalt der QuelleMakhinova, А. F., A. N. Makhinov und Liu Shuguang. „Mechanisms of Crystallization of Chemical Compounds in Amur Ice and The Role of Heavy Metals in River Pollution“. Ecology and Industry of Russia 27, Nr. 3 (14.03.2023): 54–59. http://dx.doi.org/10.18412/1816-0395-2023-3-54-59.
Der volle Inhalt der QuelleKlbik, Ivan, Katarína Čechová, Igor Maťko, Ján Lakota und Ondrej Šauša. „On crystallization of water confined in liposomes and cryoprotective action of DMSO“. RSC Advances 12, Nr. 4 (2022): 2300–2309. http://dx.doi.org/10.1039/d1ra08935h.
Der volle Inhalt der QuelleHasan, M., und M. Louhi-Kultanen. „Ice growth kinetics modeling of air-cooled layer crystallization from sodium sulfate solutions“. Chemical Engineering Science 133 (September 2015): 44–53. http://dx.doi.org/10.1016/j.ces.2015.01.050.
Der volle Inhalt der QuelleJiang, Panxing, Zhigang Zhan, Di Zhang, Chenlong Wang, Heng Zhang und Mu Pan. „Two-Dimensional Simulation of the Freezing Characteristics in PEMFCs during Cold Start Considering Ice Crystallization Kinetics“. Polymers 14, Nr. 15 (05.08.2022): 3203. http://dx.doi.org/10.3390/polym14153203.
Der volle Inhalt der QuelleDursch, T. J., G. J. Trigub, R. Lujan, J. F. Liu, R. Mukundan, C. J. Radke und A. Z. Weber. „Ice-Crystallization Kinetics in the Catalyst Layer of a Proton-Exchange-Membrane Fuel Cell“. Journal of The Electrochemical Society 161, Nr. 3 (17.12.2013): F199—F207. http://dx.doi.org/10.1149/2.004403jes.
Der volle Inhalt der QuelleDursch, T. J., M. A. Ciontea, C. J. Radke und A. Z. Weber. „Isothermal Ice Crystallization Kinetics in the Gas-Diffusion Layer of a Proton-Exchange-Membrane Fuel Cell“. Langmuir 28, Nr. 2 (03.01.2012): 1222–34. http://dx.doi.org/10.1021/la2033737.
Der volle Inhalt der QuelleSánchez, J., Y. Ruiz, J. M. Auleda, E. Hernández und M. Raventós. „Review. Freeze Concentration in the Fruit Juices Industry“. Food Science and Technology International 15, Nr. 4 (August 2009): 303–15. http://dx.doi.org/10.1177/1082013209344267.
Der volle Inhalt der QuelleNizovtseva, Irina. „Nonlinear model of the mushy layer in the time-dependent crystallization of sea water in ice cracks“. Advanced Studies in Theoretical Physics 7 (2013): 1011–16. http://dx.doi.org/10.12988/astp.2013.39112.
Der volle Inhalt der QuelleDursch, T. J., M. A. Ciontea, G. J. Trigub, C. J. Radke und A. Z. Weber. „Pseudo-isothermal ice-crystallization kinetics in the gas-diffusion layer of a fuel cell from differential scanning calorimetry“. International Journal of Heat and Mass Transfer 60 (Mai 2013): 450–58. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.12.048.
Der volle Inhalt der QuelleDissertationen zum Thema "Ice layer crystallization"
Huang, Xiaoqian. „Purification de l’eau usée par congélation sur paroi : modélisation par la méthode du champ de phase“. Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10205.
Der volle Inhalt der QuelleThis work focuses on studying a wastewater purification process by freezing on a cold wall. Several studies show that the growth of the ice layer depends on the characteristics of the liquid phase (solute concentration, liquid temperature, etc.) and the experimental conditions (cooling rate, seeding, supercooling, and liquid phase circulation, etc.). However, the solute distribution in the solid phase, a crucial factor for improving the process performance, has been the focus of few studies. Therefore, precise and rigorous control of the process is necessary to achieve well-controlled ice purity. To achieve this goal, this thesis includes an experimental part and a modeling part. In the experimental part, the H2O-NaCl mixture was chosen as the model solution. An experimental setup for crystallization on a cold wall was specifically designed for this work. The setup is equipped with temperature and thermal conductivity sensors, and a camera is used to monitor the in-situ growth of ice during the manipulations. After a bibliographical study on the principle of crystallization and the implementation of the process, a series of manipulations for a parametric study was carried out. Dendritic growth was observed with a high growth rate. This phenomenon depends on the effect of convection, supercooling, the temperature gradient in the liquid phase, and the initial concentration of the solution to be purified. For the modeling part, the phase-field method was chosen. This method allows simulating the morphology and growth kinetics of the solid, the inclusion of liquid (pockets and interstices) in the solid, as well as the liquid phase. The simulations help better understand the phenomena occurring during crystallization, such as the incorporation of impurities into the ice. This method, rarely used in chemical engineering, was first applied to the freezing of a pure substance (water/ice) to understand the equations and study the model's parameters. This model was then extended to the freezing of a binary mixture (H2O-NaCl), corresponding to the product chosen for the experiment. To asses the thermodynamic consistency of this method, the Pitzer model was chosen to predict equilibrium and thermodynamic properties. Based on this thermodynamic data, the mass balance, thermal balance, and phase-field equations are solved. The effects of supercooling, concentration, and anisotropy on the dendritic growth of crystals are compared and discussed. This innovative work has demonstrated the relevance of the phase-field method, which has been little developed in chemical engineering until now. This method allows describing the phenomena occurring at the liquid/solid interface, predicting the behavior of the solid phase to limit the incorporation of solute into the ice, and more generally, understanding the phenomena involved during the crystallization step
Buchteile zum Thema "Ice layer crystallization"
McGregor, Maree, Christopher R. M. McFarlane und John G. Spray. „U-Pb geochronology of apatite crystallized within a terrestrial impact melt sheet: Manicouagan as a geochronometer test site“. In Large Meteorite Impacts and Planetary Evolution VI. Geological Society of America, 2021. http://dx.doi.org/10.1130/2021.2550(22).
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Ice layer crystallization"
Sun, Jinjuan, Jianying Gong, Guojun Li und Tieyu Gao. „Lattice Boltzmann Simulation of Frost Formation Process“. In ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17700.
Der volle Inhalt der QuelleTakahashi, Hozumi, Yuka Tsuri, Mihoko Maruyama, Masashi Yoshimura, Seiichiro Nakabayashi, Yusuke Mori und Hiroshi Y. Yoshikawa. „High-Speed Imaging of Ice Crystallization Dynamics Triggered by Laser Ablation“. In Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.p_cth5_01.
Der volle Inhalt der QuelleTakahashi, Hozumi, Yuka Tsuri, Mihoko Maruyama, Masashi Yoshimura, Seiichiro Nakabayashi, Yusuke Mori und Hiroshi Y. Yoshikawa. „High-Speed Imaging of Ice Crystallization Dynamics Triggered by Laser Ablation“. In 2022 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR). IEEE, 2022. http://dx.doi.org/10.1109/cleo-pr62338.2022.10432146.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Ice layer crystallization"
Plouffe, A., D. Petts, I M Kjarsgaard und M. Polivchuk. Laser ablation inductively coupled plasma mass spectrometry mapping of porphyry -related epidote from south-central British Columbia. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331671.
Der volle Inhalt der Quelle