Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Hypoxic translation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Hypoxic translation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Hypoxic translation"
Melanson, Gaelan, Sara Timpano und James Uniacke. „The eIF4E2-Directed Hypoxic Cap-Dependent Translation Machinery Reveals Novel Therapeutic Potential for Cancer Treatment“. Oxidative Medicine and Cellular Longevity 2017 (2017): 1–12. http://dx.doi.org/10.1155/2017/6098107.
Der volle Inhalt der QuelleBlais, Jaime D., Vasilisa Filipenko, Meixia Bi, Heather P. Harding, David Ron, Costas Koumenis, Bradly G. Wouters und John C. Bell. „Activating Transcription Factor 4 Is Translationally Regulated by Hypoxic Stress“. Molecular and Cellular Biology 24, Nr. 17 (01.09.2004): 7469–82. http://dx.doi.org/10.1128/mcb.24.17.7469-7482.2004.
Der volle Inhalt der QuelleMao, Xianrong R., und C. Michael Crowder. „Protein Misfolding Induces Hypoxic Preconditioning via a Subset of the Unfolded Protein Response Machinery“. Molecular and Cellular Biology 30, Nr. 21 (23.08.2010): 5033–42. http://dx.doi.org/10.1128/mcb.00922-10.
Der volle Inhalt der QuelleCho, Sung-Yup, Seungun Lee, Jeonghun Yeom, Hyo-Jun Kim, Jin-Haeng Lee, Ji-Woong Shin, Mee-ae Kwon et al. „Transglutaminase 2 mediates hypoxia-induced selective mRNA translation via polyamination of 4EBPs“. Life Science Alliance 3, Nr. 3 (19.02.2020): e201900565. http://dx.doi.org/10.26508/lsa.201900565.
Der volle Inhalt der QuelleConnor, John H., Christine Naczki, Costas Koumenis und Douglas S. Lyles. „Replication and Cytopathic Effect of Oncolytic Vesicular Stomatitis Virus in Hypoxic Tumor Cells In Vitro and In Vivo“. Journal of Virology 78, Nr. 17 (01.09.2004): 8960–70. http://dx.doi.org/10.1128/jvi.78.17.8960-8970.2004.
Der volle Inhalt der QuelleHettiarachchi, Gaya K., Upendra K. Katneni, Ryan C. Hunt, Jacob M. Kames, John C. Athey, Haim Bar, Zuben E. Sauna, Joseph R. McGill, Juan C. Ibla und Chava Kimchi-Sarfaty. „Translational and transcriptional responses in human primary hepatocytes under hypoxia“. American Journal of Physiology-Gastrointestinal and Liver Physiology 316, Nr. 6 (01.06.2019): G720—G734. http://dx.doi.org/10.1152/ajpgi.00331.2018.
Der volle Inhalt der QuelleRon, David, und Alan G. Hinnebusch. „Targeting Translation in Hypoxic Tumors“. ACS Chemical Biology 1, Nr. 3 (April 2006): 145–48. http://dx.doi.org/10.1021/cb600125y.
Der volle Inhalt der QuelleLang, Kenneth J. D., Andreas Kappel und Gregory J. Goodall. „Hypoxia-inducible Factor-1α mRNA Contains an Internal Ribosome Entry Site That Allows Efficient Translation during Normoxia and Hypoxia“. Molecular Biology of the Cell 13, Nr. 5 (Mai 2002): 1792–801. http://dx.doi.org/10.1091/mbc.02-02-0017.
Der volle Inhalt der QuelleVumbaca, Frank, Kathryn N. Phoenix, Daniel Rodriguez-Pinto, David K. Han und Kevin P. Claffey. „Double-Stranded RNA-Binding Protein Regulates Vascular Endothelial Growth Factor mRNA Stability, Translation, and Breast Cancer Angiogenesis“. Molecular and Cellular Biology 28, Nr. 2 (26.11.2007): 772–83. http://dx.doi.org/10.1128/mcb.02078-06.
Der volle Inhalt der QuelleIvanova, Iglika G., Catherine V. Park und Niall S. Kenneth. „Translating the Hypoxic Response—the Role of HIF Protein Translation in the Cellular Response to Low Oxygen“. Cells 8, Nr. 2 (01.02.2019): 114. http://dx.doi.org/10.3390/cells8020114.
Der volle Inhalt der QuelleDissertationen zum Thema "Hypoxic translation"
Perera, Joseph Kishan Rex. „The eIF4E2-Mediated Hypoxic Protein Synthesis Complex Permits Tumourigenesis in Several Genetically Distinct Cancers“. Thesis, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/26198.
Der volle Inhalt der QuelleKasti, M. „Experimental neuroinflammation : a study of hypoxia and protein translation“. Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1413014/.
Der volle Inhalt der QuelleMagagnin, Michaël Gaston Pietro. „Cellular adaptation to hypoxia and reoxygenation through gene specific mRNA translation“. [Maastricht : Maastricht : Maastricht University] ; University Library, Universiteit Maastricht [host], 2008. http://arno.unimaas.nl/show.cgi?fid=12817.
Der volle Inhalt der QuelleLiang, Manfei. „Molecular mechanisms of translational control under hypoxia in Drosophila melanogaster“. Doctoral thesis, Universite Libre de Bruxelles, 2021. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/327261.
Der volle Inhalt der QuelleL'adaptation aux variations de la concentration en oxygène est un mécanisme conservé chez tous les métazoaires car ce processus est central pour le maintien de l'homéostasie cellulaire et tissulaire. Deux processus hautement conservés contribuent à la reprogrammation génétique induite par l'hypoxie. Le premier repose sur l'activation transcriptionnelle de l'expression génique par les facteurs inductibles de l'hypoxie (HIF) conduisant à l’induction d'un large panel de gènes. Le second correspond à une forte modification du programme traductionnel. Alors que les mécanismes sous-jacents à l'activation transcriptionnelle dépendante de HIF ont été bien caractérisés, ceux qui régissent la reprogrammation de la traduction ne sont que partiellement compris.Pour découvrir comment la traduction de l'ARNm se déroule à faible tension d'oxygène, nous avons utilisé la drosophile comme modèle d’étude, car les mouches Drosophila melanogaster et les cellules S2 issue de cet organisme sont très résistantes à de faibles teneurs en O2. Nous avons tout d’abord démontré que plusieurs gènes sont efficacement traduits en hypoxie dans les cellules S2 de drosophile. Par une approche basée sur l’utilisation de gènes rapporteurs, nous avons démontré que la région 3’ Non traduite (3’UTR) de l’ARNm Ldh est suffisante pour promouvoir l’association de l’ARNm du rapporteur aux polysomes en conditions hypoxiques. Une analyse par délétion de la région 3’UTR de l’ARNm Ldh a conduit à l’identification d’une séquence riche en ACAAA importante pour l’association polysomale et la traduction en hypoxie. La reconnaissance de la coiffe joue un rôle clé dans le contrôle de l'initiation de la traduction Nous avons montré que le facteur d'initiation de la traduction eIF4EHP (4EHP), qui se lie à la coiffe, joue un double rôle sur la traduction dans des conditions hypoxiques. Bien qu'il ait une fonction répressive sur la traduction générale dans des conditions normoxiques et hypoxiques, nous avons démontré que 4EHP contrôle aussi positivement la traduction d'ARNm spécifiques dans des conditions hypoxiques. L'inactivation de 4ehp réduit la synthèse de la protéine LDH et altère la traduction de l'ARNm rapporteur contenant la partir 3’UTR du messager Ldh en hypoxie. La délétion de 4ehp peut atténuer la traduction de plusieurs gènes candidats contenant un motif ACAAA dans leur région 3’UTR 3' en hypoxie, ce qui suggère que 4EHP est nécessaire pour la traduction hypoxique des ARNm portant des motifs riches en ACAAA. De façon intéressante, nous avons observé que 4EHP est fortement enrichi dans les fractions polysomales en hypoxie, ce qui confirme le rôle de ce facteur d'initiation dans la traduction en hypoxie. La réduction de l'expression de 4ehp altère également le développement de la Drosophile dans des conditions hypoxiques. Ensemble, nos résultats indiquent que des ARNm spécifiques peuvent contourner le blocage traductionnel imposé par les conditions hypoxiques. Ce processus est contrôlé par l'élément riche en "CA" situé dans la partie 3'UTR de l’ARNm et est régulé positivement par le facteur d'initiation de la traduction 4EHP.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Sikarwar, Anurag Singh. „Post-translational modifications of thromboxane receptor G-protein alpha q complex in hypoxic PPHN“. American Thoracic Society, 2014. http://hdl.handle.net/1993/31664.
Der volle Inhalt der QuelleOctober 2016
Staudacher, Jonas Jaromir [Verfasser]. „Bedeutung des endoplasmatischen Retikulums für die mRNA Translation unter Hypoxie / Jonas Jaromir Staudacher“. Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2016. http://d-nb.info/1082237574/34.
Der volle Inhalt der QuelleStaudacher, Jonas [Verfasser]. „Bedeutung des endoplasmatischen Retikulums für die mRNA Translation unter Hypoxie / Jonas Jaromir Staudacher“. Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2016. http://d-nb.info/1082237574/34.
Der volle Inhalt der QuelleRispal, Delphine. „Etude des facteurs impliqués dans la terminaison de la traduction et la dégradation des ARNm chez Saccaromyces cerevisiae“. Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112128.
Der volle Inhalt der QuelleDuring my PhD thesis, I analyzed the relation between factors that participate intranslation termination and those participating in mRNA decay in yeast S. cerevisiae.First, I focused on Tpa1, that had been proposed to participate in translationtermination and mRNA decay in S. cerevisiae, and whose homologue in S. pombe, Ofd1,participates to the control of hypoxic response. Based on the structure of Tpa1, established byour collaborators, I performed functional analysis to understand more precisely the molecularfunction of Tpa1 and similarities with its role in S. pombe. Tpa1 is composed of two DSBHdomains; the first, which contains the catalytic site, has structural homologies with the familyof prolyl-hydroxylase. We could reproduce the effect of Tpa1 on stop codon readthrough invivo and we showed that the predicted catalytic site and the presence of the two domains ofTpa1 were necessary for its activity. We also showed that Tpa1 inhibited one factor, Hap1,implicated in regulation of gene expression by oxygen. The existence of an inhibitor of Ofd1in S. pombe, allowed the identification of Ett1 (its homologue in S. cerevisiae). We showedthat Ett1 has a role similar to the one of Tpa1 in translational readthrough. A collaborativestructural and functional study of Ett1 revealed a conserved region, which binds a sulfate ion,and an unknown ligand. This region is important for the readthrough. However, thesubstrate(s) of Tpa1 remain(s) for the moment unknown, and the precise roles of Tpa1 andEtt1 in translation termination and in response to hypoxia remain to be deciphered.I also analyzed the NMD process by focusing more particularly on the mechanism thatallows the discrimination between a normal stop and a PTC (premature termination codon)and on the analysis of the post-translational modification of an important factor for the NMD,Upf1. This study revealed that, not only the region downstream of the PTC but also theupstream region participates to its recognition. We have tested several hypotheses on the roleof this upstream region, which confirmed its implication but did not reveal a definitivemechanism. In parallel, we started the study of the post-translational modifications of Upf1,and more particularly by phosphorylation. Indeed, the phosphorylation of Upf1 in human isvery important for the NMD process. We could confirm the presence of a modified form ofyeast Upf1 and we have demonstrated that it was localized between amino acids 153 and 971.This modification appeared to be highly labile. This prevented us to confirm definitively thatit was really a phosphorylation and to cartography precisely its location
Joshi, Shrinidh Ashokkumar. „Hypoxic Regulation of Angiotensin-Converting Enzyme 2 and Mas Receptor in Hematopoietic Stem/Progenitor Cells: A Translational Study“. Diss., North Dakota State University, 2018. https://hdl.handle.net/10365/28961.
Der volle Inhalt der QuelleAmerican Heart Association grant, 13SDG16960025
National Institutes of Health, National institute of Aging (NIA), 1R01AG056881
Godet, Anne-Claire. „Régulation de la traduction des facteurs de croissance (lymph)angiogéniques et rôle de l'ARN non codant NEAT1 lors du stress hypoxique“. Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30061.
Der volle Inhalt der QuelleTranslation is a highly regulated step of gene expression. During cellular stress, global protein synthesis is blocked but translation of specific subsets of mRNAs is activated by alternative mechanisms. One of these mechanisms involves an RNA structure called IRES (Internal Ribosome Entry Site), that enables the recruitment of the translational machinery in a 5' cap-independent manner. IRES activity is regulated by factors called ITAF (IRES trans-acting factor). Hypoxic stress occurs in different pathologies such as cardiac ischemia and cancer. In response to stress, the cell produces (lymph)angiogenic growth factors that stimulate blood and lymphatic vessel formation, allowing reperfusion of the injured area in ischemic heart, or stimulation of tumor growth and metastatic spread in cancer. My thesis project is focused on identification of ITAF-controlled translation of (lymph)angiogenic growth factor mRNAs during hypoxia. The first part of my thesis addresses translational regulation in hypoxic cardiomyocytes. A semi-global study showed that (lymph)angiogenic genes are mostly regulated at the translational level. Furthermore IRESs of mRNAs coding (lymph)angiogenic growth factors are activated in early hypoxia while IRESs of mRNAs non-related to (lymph)angiogenesis are activated later. Finally, we have identified a new ITAF, vasohibin (VASH1), that specifically activates the FGF1 IRES, but not the other IRES tested. A PCR array study indicates however that VASH1 is able to inhibit or stimulate translation of numerous mRNAs. Identification of a global mechanism of FGF and VEGF IRES activation is the main focus of the second chapter of my thesis. Considering that VASH1 is not a common ITAF, I searched for new candidates. I started from the observation that another ITAF previously identified in the laboratory, P54nrb, is also a component of the paraspeckle, a nuclear body formed during cellular stress. We make the hypothesis that other paraspeckle components could be ITAFs, particularly the backbone of the paraspeckle, the long non-coding RNA NEAT1. I established a correlation between NEAT1 induction in hypoxia and FGF1 IRES activation in cardiomyocytes. Moreover, NEAT1 depletion leads to inactivation of the FGF1 IRES, suggesting that NEAT1 is an ITAF. I also highlighted that another paraspeckle component, PSPC1, has an ITAF function. Analysis of IRESsome composition by mass spectrometry allowed me to identify three other candidates: hnRNPM, Rps2 and nucleolin. We then expanded the study to the other IRESs studied in chapter 1 and demonstrated that P54nrb and PSPC1 are able to activate several IRES whilst the non-coding RNA NEAT1 is a positive ITAF of all tested IRES. Thus NEAT1 seems to be the key of IRES activation, and confers on the paraspeckle the novel function of assembly platform for IRESsome formation in cardiomyocytes during hypoxia. In a third chapter, we investigated the same way in other cellular types, metastatic and non metastatic mammary carcinoma 4T1 and 67NR. NEAT1 is induced in correlation with FGF1 IRES activation when the cells are subjected to hypoxia, suggesting that the role of NEAT1 in translational control can be associated to tumoral hypoxia as well as to ischemia. Thus, this work reveal the unique potential of NEAT1 as a therapeutic target
Bücher zum Thema "Hypoxic translation"
Hackett, Peter H., Peter D. Wagner und Robert C. Roach. Hypoxia: Translation in Progress. Springer, 2018.
Den vollen Inhalt der Quelle findenHackett, Peter H., Peter D. Wagner und Robert C. Roach. Hypoxia: Translation in Progress. Springer, 2016.
Den vollen Inhalt der Quelle findenStocchetti, Nino, und Marco Carbonara. Pharmacologic Neuroprotection. Herausgegeben von David L. Reich, Stephan Mayer und Suzan Uysal. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190280253.003.0002.
Der volle Inhalt der QuelleBuchteile zum Thema "Hypoxic translation"
Li, Lu-Ping, Bradley Hack, Erdmann Seeliger und Pottumarthi V. Prasad. „MRI Mapping of the Blood Oxygenation Sensitive Parameter T2* in the Kidney: Basic Concept“. In Methods in Molecular Biology, 171–85. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-0978-1_10.
Der volle Inhalt der QuelleYi, Tingfang, und Gerhard Wagner. „Translation in Cancer at Hypoxia“. In Translation and Its Regulation in Cancer Biology and Medicine, 421–32. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9078-9_20.
Der volle Inhalt der QuelleFeng, Zhong-Ping, und Hong-Shuo Sun. „ATP-Sensitive Potassium Channels (KATP) Play a Role in Hypoxic Preconditioning Against Neonatal Hypoxic-Ischemic Brain Injury“. In Springer Series in Translational Stroke Research, 185–201. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-45345-3_7.
Der volle Inhalt der QuelleChen, Chunhua, und Changman Zhou. „Hypoxia-Inducible Factor: A New Hope to Counteract Stroke“. In Translational Stroke Research, 175–88. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-9530-8_8.
Der volle Inhalt der QuelleKarunakaran, C., T. Madasamy, M. Pandiaraj, Niroj K. Sethy und Kalpana Bhargava. „Electrochemical Biosensors for Hypoxia Markers“. In Translational Research in Environmental and Occupational Stress, 93–107. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1928-6_9.
Der volle Inhalt der QuelleBhattacharya, Rahul, und M. P. Kaushik. „Hypoxia in Acute Chemical Emergencies: Toxicity, Mechanism, and Treatment“. In Translational Research in Environmental and Occupational Stress, 229–42. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1928-6_19.
Der volle Inhalt der QuelleDimova, Elitsa Y., und Thomas Kietzmann. „Hypoxia-Inducible Factors: Post-translational Crosstalk of Signaling Pathways“. In Methods in Molecular Biology, 215–36. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-738-9_13.
Der volle Inhalt der QuelleNavarrete-Opazo, A., E. A. Dale und Gordon S. Mitchell. „Therapeutic Potential of Intermittent Hypoxia: Lessons from Respiratory Motor Plasticity“. In Translational Research in Environmental and Occupational Stress, 31–42. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1928-6_4.
Der volle Inhalt der QuelleSerebrovskaya, T. V. „Lessons from a 20-Year Investigation of Intermittent Hypoxia: Principles and Practices“. In Translational Research in Environmental and Occupational Stress, 267–74. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1928-6_22.
Der volle Inhalt der QuelleMishra, Aastha, und M. A. Qadar Pasha. „HIF-1 and EGLN1 Under Hypobaric Hypoxia: Regulation of Master Regulator Paradigm“. In Translational Research in Environmental and Occupational Stress, 81–91. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1928-6_8.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Hypoxic translation"
Brady, Lauren K., Rohil Shekher, Vladimir Popov, Mircea Ivan, Milan Radovich und Constantinos Koumenis. „Abstract 733: Analysis of the hypoxic transcriptome in cells and solid tumors reveals a novel spliced isoform of the key regulator of mRNA translation, eIF2B5“. In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-733.
Der volle Inhalt der QuelleWoo, Jong Kyu, und Ho-Young Lee. „Abstract 217: Modulation of Hsp90 chaperone activity by hypoxic condition: Hypoxia stimulates ARD1-mediated Hsp90 post-translational modification“. In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-217.
Der volle Inhalt der QuelleGiblin, John, Krvılcım Kiliҫ, John Jiang, Anderson Chen, Baoqiang Li, Sava Sakadžić, Anna Devor und David A. Boas. „Long-Term Monitoring of Capillary Flow to Measure Hypoxic Effects of Capillary Flow Disruptions“. In Clinical and Translational Biophotonics. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/translational.2020.jtu3a.37.
Der volle Inhalt der QuelleNoor, Siti Noor Fazliah Mohd, Maria Azevedo, Hasmaliza Mohamad und Hélène Autefage. „Hypoxia-mimicking bioactive glass regenerative effects on dental stem cells“. In TRANSLATIONAL CRANIOFACIAL CONFERENCE 2016 (TCC 2016): Proceedings of the 1st Translational Craniofacial Conference 2016. Author(s), 2016. http://dx.doi.org/10.1063/1.4968864.
Der volle Inhalt der QuelleZhou, B., O. Larsson, M. Peterson, J. Smith, PB Bitterman und DH Inbgar. „Transcriptional and Translational Profiling in Hypoxic Alveolar Epithelial Cells.“ In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a1875.
Der volle Inhalt der QuelleSun, Jessica D., Qian Liu, Dharmendra Ahluwalia, Yan Wang, Fanying Meng, Deepthi Bhupathi, John G. Curd, Mark D. Matteucci und Charles P. Hart. „Abstract A22: Hypoxia-dependent antitumor activity of TH-302, a hypoxia-activated prodrug, in preclinical pancreatic xenograft models“. In Abstracts: AACR International Conference on Translational Cancer Medicine-- Jul 11-14, 2010; San Francisco, CA. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1078-0432.tcmusa10-a22.
Der volle Inhalt der QuelleZhou, Bing, Dan H. Fan, Wayne Xu, Ola Larsson, Mark S. Peterson, Jen Smith, Peter B. Bitterman und David H. Ingbar. „GENOME-WIDE ANALYSIS OF TRANSLATIONAL-REGULATED GEGE In Hypoxic Alveolar Epithelial Cells“. In American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans. American Thoracic Society, 2010. http://dx.doi.org/10.1164/ajrccm-conference.2010.181.1_meetingabstracts.a6795.
Der volle Inhalt der QuelleCheng, Yuping, und Teik C. Lim. „Dynamics of Hypoid Gear Transmission With Non-Linear Time-Varying Mesh“. In ASME 2000 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/detc2000/ptg-14432.
Der volle Inhalt der QuelleSimon, M. Celeste. „Abstract IA5-3: HIFs, hypoxia, and tumor progression“. In Abstracts: AACR International Conference on Translational Cancer Medicine-- Jul 11-14, 2010; San Francisco, CA. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1078-0432.tcmusa10-ia5-3.
Der volle Inhalt der QuelleGarmy-Susini, Barbara H., Francoise Pujol, Loic Van den Berghe und Anne-Catherine Prats. „Abstract 3482: Hypoxia induces translational regulation of lymphangiogenic growth factors“. In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-3482.
Der volle Inhalt der Quelle