Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Hyperspectral signature“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Hyperspectral signature" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Hyperspectral signature"
Papp, Adam, Julian Pegoraro, Daniel Bauer, Philip Taupe, Christoph Wiesmeyr und Andreas Kriechbaum-Zabini. „Automatic Annotation of Hyperspectral Images and Spectral Signal Classification of People and Vehicles in Areas of Dense Vegetation with Deep Learning“. Remote Sensing 12, Nr. 13 (01.07.2020): 2111. http://dx.doi.org/10.3390/rs12132111.
Der volle Inhalt der QuelleWang, Jing. „Progressive coding for hyperspectral signature characterization“. Optical Engineering 45, Nr. 9 (01.09.2006): 097002. http://dx.doi.org/10.1117/1.2353113.
Der volle Inhalt der QuelleGromov, V. P., L. I. Lebedev und V. E. Turlapov. „Analysis and object markup of hyperspectral images for machine learning methods“. Information Technology and Nanotechnology, Nr. 2391 (2019): 309–17. http://dx.doi.org/10.18287/1613-0073-2019-2391-309-317.
Der volle Inhalt der QuelleHartfield, Kyle, Jeffrey K. Gillan, Cynthia L. Norton, Charles Conley und Willem J. D. van Leeuwen. „A Novel Spectral Index to Identify Cacti in the Sonoran Desert at Multiple Scales Using Multi-Sensor Hyperspectral Data Acquisitions“. Land 11, Nr. 6 (26.05.2022): 786. http://dx.doi.org/10.3390/land11060786.
Der volle Inhalt der QuelleChang, Chein-I., Sumit Chakravarty, Hsian-Min Chen und Yen-Chieh Ouyang. „Spectral derivative feature coding for hyperspectral signature analysis“. Pattern Recognition 42, Nr. 3 (März 2009): 395–408. http://dx.doi.org/10.1016/j.patcog.2008.07.016.
Der volle Inhalt der QuelleKim, Sungho, Jungho Kim, Jinyong Lee und Junmo Ahn. „AS-CRI: A New Metric of FTIR-Based Apparent Spectral-Contrast Radiant Intensity for Remote Thermal Signature Analysis“. Remote Sensing 11, Nr. 7 (01.04.2019): 777. http://dx.doi.org/10.3390/rs11070777.
Der volle Inhalt der QuelleMESSINGER, DAVID W., CARL SALVAGGIO und NATALIE M. SINISGALLI. „DETECTION OF GASEOUS EFFLUENTS FROM AIRBORNE LWIR HYPERSPECTRAL IMAGERY USING PHYSICS-BASED SIGNATURES“. International Journal of High Speed Electronics and Systems 17, Nr. 04 (Dezember 2007): 801–12. http://dx.doi.org/10.1142/s0129156407004990.
Der volle Inhalt der QuelleHonkavaara, E., T. Hakala, O. Nevalainen, N. Viljanen, T. Rosnell, E. Khoramshahi, R. Näsi, R. Oliveira und A. Tommaselli. „GEOMETRIC AND REFLECTANCE SIGNATURE CHARACTERIZATION OF COMPLEX CANOPIES USING HYPERSPECTRAL STEREOSCOPIC IMAGES FROM UAV AND TERRESTRIAL PLATFORMS“. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B7 (17.06.2016): 77–82. http://dx.doi.org/10.5194/isprs-archives-xli-b7-77-2016.
Der volle Inhalt der QuelleHonkavaara, E., T. Hakala, O. Nevalainen, N. Viljanen, T. Rosnell, E. Khoramshahi, R. Näsi, R. Oliveira und A. Tommaselli. „GEOMETRIC AND REFLECTANCE SIGNATURE CHARACTERIZATION OF COMPLEX CANOPIES USING HYPERSPECTRAL STEREOSCOPIC IMAGES FROM UAV AND TERRESTRIAL PLATFORMS“. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B7 (17.06.2016): 77–82. http://dx.doi.org/10.5194/isprsarchives-xli-b7-77-2016.
Der volle Inhalt der QuelleMiljković, V., und D. Gajski. „ADAPTATION OF INDUSTRIAL HYPERSPECTRAL LINE SCANNER FOR ARCHAEOLOGICAL APPLICATIONS“. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B5 (15.06.2016): 343–45. http://dx.doi.org/10.5194/isprs-archives-xli-b5-343-2016.
Der volle Inhalt der QuelleDissertationen zum Thema "Hyperspectral signature"
Mathur, Abhinav. „DIMENSIONALITY REDUCTION OF HYPERSPECTRAL SIGNATURES FOR OPTIMIZED DETECTION OF INVASIVE SPECIES“. MSSTATE, 2003. http://sun.library.msstate.edu/ETD-db/theses/available/etd-07112003-160125/.
Der volle Inhalt der QuelleHemissi, Selim. „Modélisation multidimensionnelle de signature spectrale pour le démixage et la classification en imagerie hyperspectrale multi-temporelle“. Télécom Bretagne, 2014. http://www.theses.fr/2014TELB0307.
Der volle Inhalt der QuelleHyperspectral imaging transcribes each specific spectrum of the received energy from a material in a specific pixel of the image. Since heterogeneous land occupation types exhibit different spectral signatures, hyperspectral imaging can be considered as an effective technology for precise image classification. Nevertheless, the temporal variability of spectral signatures complicates the image analysis task due to the interlacement of spectral properties of different land occupation types throughout the year. Standard classification approaches treat each date separately whereas recent research has proven that modelling hyperspectral images incorporating time dimension is crucial. In this dissertation, we propose new methods and algorithms for the classification of time series of hyperspectral images. Our first contribution in the inclusion the temporal dimension into the classical model of spectral signature using the Delaunay reconstruction. This investigation allows us to develop a 3D multi-temporal model of spectral signatures incorporating spectral, temporal and spatial facets of objects. Indeed, we have proposed a new set of spectral signatures based on the above-mentioned model and have developed an appropriate conceptual schema. The database of satellite images is supported by a hierarchical indexing model using Kohonen's Self Organizing Feature Maps. We also studied boosting learning techniques for the selection of the most relevant features. This proposal is based on the Rankboost algorithm. Our second contribution is tackling the problem of mixed pixels in hyperspectral imagery for time series images. Indeed, for the extraction of multi-temporal endmembers, we developed two approaches: a matrix-based approach and a tensor-based approach which has its roots in the multilinear algebra. Moreover, for the purpose of the classification of non-linearly separable data and modelling imperfect data, we used the Fisher discriminant analysis and the Dempster-Shafer theory, respectively. We also proposed a new classification algorithm that is an evidential extension of the discriminant analysis. Our third contribution consists in modelling the spectral unmixing problem as a constrained optimization problem. Experimental results show that the new methods and algorithms proposed in our work improve the classification results compared to standard methods, and thus reveal a real potential for various scenarios of image sequences interpretation
Sirois, Jean-Philippe. „Impact et suivi de la variabilité climatique sur la production viticole dans le sud du Québec à l’aide de la télédétection hyperspectrale“. Mémoire, Université de Sherbrooke, 2015. http://hdl.handle.net/11143/6011.
Der volle Inhalt der QuelleRousseau, Sylvain. „Détection de points d'intérêts dans une image multi ou hyperspectral par acquisition compressée“. Thesis, Poitiers, 2013. http://www.theses.fr/2013POIT2269/document.
Der volle Inhalt der QuelleMulti- and hyper-spectral sensors generate a huge stream of data. A way around thisproblem is to use a compressive acquisition of the multi- and hyper-spectral object. Theobject is then reconstructed when needed. The next step is to avoid this reconstruction and towork directly with compressed data to achieve a conventional treatment on an object of thisnature. After introducing a first approach using Riemannian tools to perform edge detectionin multispectral image, we present the principles of the compressive sensing and algorithmsused to solve its problems. Then we devote an entire chapter to the detailed study of one ofthem, Bregman type algorithms which by their flexibility and efficiency will allow us to solvethe minimization encountered later. We then focuses on the detection of signatures in amultispectral image relying on an original algorithm of Guo and Osher based on minimizingL1. This algorithm is generalized in connection with the acquisition compressed. A secondgeneralization will help us to achieve the pattern detection in a multispectral image. Andfinally, we introduce new matrices of measures that greatly simplifies calculations whilemaintaining a good quality of measurements
TENG, Chih-Heng, und 鄧至亨. „A spectral signature based non-local mean for hyperspectral image denoising“. Thesis, 2017. http://ndltd.ncl.edu.tw/handle/5wtabh.
Der volle Inhalt der Quelle國立臺灣大學
電信工程學研究所
106
A new spectral signature method for hyperspectral images denoising named as hyperspectral non-local mean is proposed in this thesis. This method uses spectral information and spatial information to denoise hyperspectral images. Traditionally, spectral information and spatial information are used separately. Thus, there are two different groups of methods to denoise hyperspectral images, spatial algorithms and spectral algorithms. The spatial denoising methods such as smoothing filter, non-local mean and non-local Bayesian consider the correlation in an image. The spectral denoising methods such as PCA (Principal component analysis), HySime (Hyperspectral subspace identification by minimum error) and MNF (Minimum noise fraction) consider the correlation in spectral. Hyperspectral non-local mean takes the advantages of these two groups of algorithms and processes spectral information and spatial information in the same time. Our contributions are 1) reduction of the processing complexity of algorithm. 2) choice of the proper algorithm parameters according to the properties of hyperspectral images. 3) combination and comparison with state-of-the-art.
Feng, Siwei. „Wavelet-Based Non-Homogeneous Hidden Markov Chain Model For Hyperspectral Signature Classification“. 2015. https://scholarworks.umass.edu/masters_theses_2/145.
Der volle Inhalt der QuelleHoffman, Forrest McCoy. „Analysis of reflected spectral signatures and detection of geophysical disturbance using hyperspectral imagery“. 2004. http://etd.utk.edu/2004/HoffmanForrest.pdf.
Der volle Inhalt der QuelleTitle from title page screen (viewed Jan. 14, 2005). Thesis advisor: William E. Blass. Document formatted into pages (xi, 197 p. : ill. (some col.), maps)). Vita. Includes bibliographical references (p. 81-85).
HSIEH, MINGCHE, und 謝明哲. „Study on the Modeling and Classification of the Mixed Pixel Analysis on Vegetation Hyperspectral Signatures“. Thesis, 2011. http://ndltd.ncl.edu.tw/handle/63526429667807224219.
Der volle Inhalt der Quelle國立嘉義大學
森林暨自然資源學系研究所
99
Accurate measurement and characterization of fluctuations in the remote sensing data from satellite, airborne or in situ measurement. The adjacency effect increases the reflection of the target pixel from nearby pixels and path scattering. When substances with different spectral properties in the same pixel within the time, there will be mixed pixel. Mixed pixel is not entirely belong to a particular surface features, in order to make image classification more precise, It is necessary to divide into a variety of features in the percentage of pixel. There are many mathematic models and atmospheric correction methods, which could remove the adjacency effect from the satellite and airborne imaginary, but few discusses are made about the influence of adjacency effect on field spectroscopy, especially the variable come from the measure distance, which means the size of the target pixel, and furthermore. As long as the measure distance increases, it may cause the path scattering unpolarized reflectance come from nearby pixels. Owing to the atmosphere and solar irradiance change varyingly in outdoor measurements, the research is indoor test under artificial light source to reduce the effect of uncertainties by measuring the reflectance of light energy from spectroradiometer. We evaluate the influence of pixel sizes on the adjacency effect from different background canopy density and selective absorption by polarizer. In this study, we discuss the contribution from differerent ratio of the vegetation and soil spectral reflectance and spectral characteristics, and the use of polarized lens that filter polarized light outside the pixal to find out the contribution to spectral reflectance, the results show a quadratic function can model its response mode.
Bücher zum Thema "Hyperspectral signature"
1968-, Rajendran S., Hrsg. Hyperspectral remote sensing & spectral signature applications. New Delhi: New India Pub. Agency, 2009.
Den vollen Inhalt der Quelle findenPonder, Henley J., und U.S. Army Engineer Topographic Laboratories., Hrsg. Hyperspectral signatures (400 to 2500 nm) of vegetation, minerals, soils, rocks, and cultural features: Laboratory and field measurements. Fort Belvoir, Va: U.S. Army Corps of Engineers, Engineer Topographic Laboratories, 1990.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Hyperspectral signature"
Chang, Chein-I. „Target Signature-Constrained Mixed Pixel Classification (TSCMPC): LCMV Classifiers“. In Hyperspectral Imaging, 207–27. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9170-6_11.
Der volle Inhalt der QuelleChang, Chein-I. „Target Signature-Constrained Subpixel Detection: Linearly Constrained Minimum Variance (LCMV)“. In Hyperspectral Imaging, 51–71. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9170-6_4.
Der volle Inhalt der QuelleChang, Chein-I. „Target Signature-Constrained Mixed Pixel Classification (TSCMPC): Linearly Constrained Discriminant Analysis (LCDA)“. In Hyperspectral Imaging, 229–42. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9170-6_12.
Der volle Inhalt der QuelleLeshem, Guy, und Menachem Domb. „Face Authentication Using Image Signature Generated from Hyperspectral Inner Images“. In Advances in Intelligent Systems and Computing, 113–25. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0637-6_9.
Der volle Inhalt der QuelleAppice, Annalisa, und Pietro Guccione. „Exploiting Spatial Correlation of Spectral Signature for Training Data Selection in Hyperspectral Image Classification“. In Discovery Science, 295–309. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46307-0_19.
Der volle Inhalt der QuellePatil, Trunal, Claudia Pagano, Roberto Marani, Tiziana D’Orazio, Giacomo Copani und Irene Fassi. „Hyperspectral Imaging for Non-destructive Testing of Composite Materials and Defect Classification“. In Lecture Notes in Mechanical Engineering, 404–12. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-18326-3_39.
Der volle Inhalt der QuelleTurra, Giovanni, Simone Arrigoni und Alberto Signoroni. „CNN-Based Identification of Hyperspectral Bacterial Signatures for Digital Microbiology“. In Image Analysis and Processing - ICIAP 2017, 500–510. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68548-9_46.
Der volle Inhalt der QuelleCarmona-Zuluaga, Pablo, Maria C. Torres-Madronero, Manuel Goez, Tatiana Rondon, Manuel Guzman und Maria Casamitjana. „Abiotic Maize Stress Detection Using Hyperspectral Signatures and Band Selection“. In Smart Technologies, Systems and Applications, 480–93. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-32213-6_35.
Der volle Inhalt der Quelle„Binary Coding for Spectral Signatures“. In Hyperspectral Data Processing, 719–40. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118269787.ch24.
Der volle Inhalt der Quelle„Vector Coding for Hyperspectral Signatures“. In Hyperspectral Data Processing, 741–71. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118269787.ch25.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Hyperspectral signature"
Morgan, Seldon O., Richard B. Gomez und William E. Roper. „Squeezed signature analysis hyperspectral classification“. In AeroSense 2003, herausgegeben von Nickolas L. Faust und William E. Roper. SPIE, 2003. http://dx.doi.org/10.1117/12.502414.
Der volle Inhalt der QuelleCathcart, J. Michael, Robert V. Worrall und Daniel P. Cash. „Hyperspectral signature modeling for terrain backgrounds“. In Defense and Security Symposium, herausgegeben von Wendell R. Watkins und Dieter Clement. SPIE, 2006. http://dx.doi.org/10.1117/12.666478.
Der volle Inhalt der QuelleVyas, Saurabh, Amit Banerjee, Luis Garza, Sewon Kang und Philippe Burlina. „Hyperspectral signature analysis of skin parameters“. In SPIE Medical Imaging, herausgegeben von Carol L. Novak und Stephen Aylward. SPIE, 2013. http://dx.doi.org/10.1117/12.2001428.
Der volle Inhalt der QuelleKnaeps, Els, und Mehrdad Moshtaghi. „Evaluating the hyperspectral signature of marine plastics“. In Hyperspectral Imaging and Sounding of the Environment. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/hise.2021.htu2c.5.
Der volle Inhalt der QuelleSettouti, Nesma, Olga Assainova, Nadine Abdallah Saab und Marwa El Bouz. „Automated Hyperspectral Apple Variety Identification Based on Patch-wise Classification“. In Applied Industrial Spectroscopy. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ais.2023.jw2a.28.
Der volle Inhalt der QuelleOzdemir, Okan Bilge, Hilal Soydan, Yasemin Yardimci Cetin und H. Sebnem Duzgun. „Signature based vegetation detection on hyperspectral images“. In 2015 23th Signal Processing and Communications Applications Conference (SIU). IEEE, 2015. http://dx.doi.org/10.1109/siu.2015.7130392.
Der volle Inhalt der QuelleChakravarty, Sumit, und Chein-I. Chang. „Block truncation signature coding for hyperspectral analysis“. In Optical Engineering + Applications, herausgegeben von Sylvia S. Shen und Paul E. Lewis. SPIE, 2008. http://dx.doi.org/10.1117/12.796711.
Der volle Inhalt der QuellePereira, Wellesley, David Less, Leonard Rodriguez, Allen Curran, Uri Bernstein und Yit-Tsi Kwan. „Hyperspectral extensions in the MuSES signature code“. In SPIE Defense and Security Symposium, herausgegeben von Dawn A. Trevisani. SPIE, 2008. http://dx.doi.org/10.1117/12.783933.
Der volle Inhalt der QuelleShah, Dharambhai, Y. N. Trivedi und Tanish Zaveri. „Non-Linear Spectral Unmixing: A Case Study On Mangalore Aviris-Ng Hyperspectral Data“. In 2020 IEEE Bombay Section Signature Conference (IBSSC). IEEE, 2020. http://dx.doi.org/10.1109/ibssc51096.2020.9332215.
Der volle Inhalt der QuelleSeyfioglu, Mehmet Saygin, Seyma Bayindir und Sevgi Zubeyde Gurbuz. „Automatic spectral signature extraction for hyperspectral target detection“. In IGARSS 2015 - 2015 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2015. http://dx.doi.org/10.1109/igarss.2015.7326815.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Hyperspectral signature"
Chang, Chein-I., Jing Wang, Chein-Chi Chang und Chinsu Lin. Progressive Coding for Hyperspectral Signature Characterization. Fort Belvoir, VA: Defense Technical Information Center, Januar 2006. http://dx.doi.org/10.21236/ada455705.
Der volle Inhalt der QuellePokrzywinski, Kaytee, Cliff Morgan, Scott Bourne, Molly Reif, Kenneth Matheson und Shea Hammond. A novel laboratory method for the detection and identification of cyanobacteria using hyperspectral imaging : hyperspectral imaging for cyanobacteria detection. Engineer Research and Development Center (U.S.), Juni 2021. http://dx.doi.org/10.21079/11681/40966.
Der volle Inhalt der QuelleWhite, H. P., L. Sun, K. Staenz, R. A. Fernandes und C. Champagne. Determining the Contribution of Shaded Elements of a Canopy to Remotely Sensed Hyperspectral Signatures. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2002. http://dx.doi.org/10.4095/219961.
Der volle Inhalt der QuelleLesser, Michael P. Coastal Benthic Optical Properties (CoBOP) of Coral Reef Environments: Small Scale Fluorescent Optical Signatures and Hyperspectral Remote Sensing of Coral Reef Habitats. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada627969.
Der volle Inhalt der QuelleLesser, Michael P. Coastal Benthic Optical Properties (CoBOP) of Coral Reef Environments: Small Scale Fluorescent Optical Signatures and Hyperspectral Remote Sensing of Coral Reef Habitats. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada628422.
Der volle Inhalt der QuelleBudkewitsch, P., K. Staenz, J. Secker, A. Rencz und D. Sangster. Spectral Signatures of Carbonate Rocks Surrounding the Nanisivik MVT Zn-Pb Mine and Implications of Hyperspectral Imaging for Exploration in Arctic Environments. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2000. http://dx.doi.org/10.4095/219736.
Der volle Inhalt der QuelleHodul, M., H. P. White und A. Knudby. A report on water quality monitoring in Quesnel Lake, British Columbia, subsequent to the Mount Polley tailings dam spill, using optical satellite imagery. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/330556.
Der volle Inhalt der Quelle