Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Hyperplanes arrangements.

Zeitschriftenartikel zum Thema „Hyperplanes arrangements“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Hyperplanes arrangements" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Bergerová, Diana. „Symmetry of f-Vectors of Toric Arrangements in General Position and Some Applications“. PUMP Journal of Undergraduate Research 7 (15.02.2024): 96–123. http://dx.doi.org/10.46787/pump.v7i0.3921.

Der volle Inhalt der Quelle
Annotation:
A toric hyperplane is the preimage of a point in a circle of a continuous surjective group homomorphism from the n-torus to the circle. A toric hyperplane arrangement is a finite collection of such hyperplanes. In this paper, we study the combinatorial properties of toric hyperplane arrangements on n-tori which are spanning and in general position. Specifically, we describe the symmetry of f-vectors arising in such arrangements and a few applications of the result to count configurations of hyperplanes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gao, Ruimei, Qun Dai und Zhe Li. „On the freeness of hypersurface arrangements consisting of hyperplanes and spheres“. Open Mathematics 16, Nr. 1 (23.04.2018): 437–46. http://dx.doi.org/10.1515/math-2018-0041.

Der volle Inhalt der Quelle
Annotation:
AbstractLet V be a smooth variety. A hypersurface arrangement 𝓜 in V is a union of smooth hypersurfaces, which locally looks like a union of hyperplanes. We say 𝓜 is free if all these local models can be chosen to be free hyperplane arrangements. In this paper, we use Saito’s criterion to study the freeness of hypersurface arrangements consisting of hyperplanes and spheres, and construct the bases for the derivation modules explicitly.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Pfeiffer, Götz, und Hery Randriamaro. „The Varchenko determinant of a Coxeter arrangement“. Journal of Group Theory 21, Nr. 4 (01.07.2018): 651–65. http://dx.doi.org/10.1515/jgth-2018-0009.

Der volle Inhalt der Quelle
Annotation:
AbstractThe Varchenko determinant is the determinant of a matrix defined from an arrangement of hyperplanes. Varchenko proved that this determinant has a beautiful factorization. It is, however, not possible to use this factorization to compute a Varchenko determinant from a certain level of complexity. Precisely at this point, we provide an explicit formula for this determinant for the hyperplane arrangements associated to the finite Coxeter groups. The intersections of hyperplanes with the chambers of such arrangements have nice properties which play a central role for the calculation of their associated determinants.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Faenzi, Daniele, Daniel Matei und Jean Vallès. „Hyperplane arrangements of Torelli type“. Compositio Mathematica 149, Nr. 2 (14.12.2012): 309–32. http://dx.doi.org/10.1112/s0010437x12000577.

Der volle Inhalt der Quelle
Annotation:
AbstractWe give a necessary and sufficient condition in order for a hyperplane arrangement to be of Torelli type, namely that it is recovered as the set of unstable hyperplanes of its Dolgachev sheaf of logarithmic differentials. Decompositions and semistability of non-Torelli arrangements are investigated.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Orlik, Peter, und Hiroaki Terao. „Commutative algebras for arrangements“. Nagoya Mathematical Journal 134 (Juni 1994): 65–73. http://dx.doi.org/10.1017/s0027763000004852.

Der volle Inhalt der Quelle
Annotation:
Let V be a vector space of dimension l over some field K. A hyperplane H is a vector subspace of codimension one. An arrangement is a finite collection of hyperplanes in V. We use [7] as a general reference.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Jambu, Michel, und Luis Paris. „Factored arrangements of hyperplanes“. Kodai Mathematical Journal 17, Nr. 3 (1994): 402–8. http://dx.doi.org/10.2996/kmj/1138040032.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Linhart, J. „Arrangements of oriented hyperplanes“. Discrete & Computational Geometry 10, Nr. 4 (Dezember 1993): 435–46. http://dx.doi.org/10.1007/bf02573989.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Zaslavsky, Thomas. „EXTREMAL ARRANGEMENTS OF HYPERPLANES“. Annals of the New York Academy of Sciences 440, Nr. 1 Discrete Geom (Mai 1985): 69–87. http://dx.doi.org/10.1111/j.1749-6632.1985.tb14540.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Gallet, Matteo, und Elia Saini. „The diffeomorphism type of small hyperplane arrangements is combinatorially determined“. Advances in Geometry 19, Nr. 1 (28.01.2019): 89–100. http://dx.doi.org/10.1515/advgeom-2018-0015.

Der volle Inhalt der Quelle
Annotation:
Abstract It is known that there exist hyperplane arrangements with the same underlying matroid that admit non-homotopy equivalent complement manifolds. Here we show that, in any rank, complex central hyperplane arrangements with up to 7 hyperplanes and the same underlying matroid are isotopic. In particular, the diffeomorphism type of the complement manifold and the Milnor fiber and fibration of these arrangements are combinatorially determined, that is, they depend only on the underlying matroid. To prove this, we associate to every such matroid a topological space, that we call the reduced realization space; its connectedness, shown by means of symbolic computation, implies the desired result.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Abe, Takuro, Hiroaki Terao und Masahiko Yoshinaga. „Totally free arrangements of hyperplanes“. Proceedings of the American Mathematical Society 137, Nr. 04 (05.11.2008): 1405–10. http://dx.doi.org/10.1090/s0002-9939-08-09755-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Arvola, William A. „Complexified real arrangements of hyperplanes“. manuscripta mathematica 71, Nr. 1 (Dezember 1991): 295–306. http://dx.doi.org/10.1007/bf02568407.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Abe, Takuro. „Divisionally free arrangements of hyperplanes“. Inventiones mathematicae 204, Nr. 1 (06.08.2015): 317–46. http://dx.doi.org/10.1007/s00222-015-0615-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Gao, Ruimei, Xiupeng Cui und Zhe Li. „Supersolvable orders and inductively free arrangements“. Open Mathematics 15, Nr. 1 (06.05.2017): 587–94. http://dx.doi.org/10.1515/math-2017-0052.

Der volle Inhalt der Quelle
Annotation:
Abstract In this paper, we define the supersolvable order of hyperplanes in a supersolvable arrangement, and obtain a class of inductively free arrangements according to this order. Our main results improve the conclusion that every supersolvable arrangement is inductively free. In addition, we assert that the inductively free arrangement with the required induction table is supersolvable.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Cuntz, M., und D. Geis. „Combinatorial simpliciality of arrangements of hyperplanes“. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry 56, Nr. 2 (30.01.2014): 439–58. http://dx.doi.org/10.1007/s13366-014-0190-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Terao, Hiroaki, und Masahiko Yoshinaga. „Recent topics of arrangements of hyperplanes“. Sugaku Expositions 31, Nr. 1 (20.03.2018): 43–67. http://dx.doi.org/10.1090/suga/428.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Meiser, S. „Point Location in Arrangements of Hyperplanes“. Information and Computation 106, Nr. 2 (Oktober 1993): 286–303. http://dx.doi.org/10.1006/inco.1993.1057.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Paris, Luis. „Arrangements of hyperplanes with property D“. Geometriae Dedicata 45, Nr. 2 (Februar 1993): 171–76. http://dx.doi.org/10.1007/bf01264519.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Frønsdal, Christian. „q-algebras and arrangements of hyperplanes“. Journal of Algebra 278, Nr. 2 (August 2004): 433–55. http://dx.doi.org/10.1016/j.jalgebra.2004.03.024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

HUBARD, ALFREDO, und ROMAN KARASEV. „Bisecting measures with hyperplane arrangements“. Mathematical Proceedings of the Cambridge Philosophical Society 169, Nr. 3 (31.10.2019): 639–47. http://dx.doi.org/10.1017/s0305004119000380.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Lee, Ki-Suk, und Mi-Yeon Kwon. „ARRANGEMENTS OF HYPERPLANES IN ℝ3AND THEIR FREENESS“. Honam Mathematical Journal 31, Nr. 1 (25.03.2009): 25–29. http://dx.doi.org/10.5831/hmj.2009.31.1.025.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

LEÓN TRUJILLO, Francisco James. „$\mathcal{D}$-Modules and Arrangements of Hyperplanes“. Tokyo Journal of Mathematics 29, Nr. 2 (Dezember 2006): 429–44. http://dx.doi.org/10.3836/tjm/1170348177.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Mulmuley, Ketan, und Sandeep Sen. „Dynamic point location in arrangements of hyperplanes“. Discrete & Computational Geometry 8, Nr. 3 (September 1992): 335–60. http://dx.doi.org/10.1007/bf02293052.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Abe, Takuro. „Erratum to: Divisionally free arrangements of hyperplanes“. Inventiones mathematicae 207, Nr. 3 (19.12.2016): 1377–78. http://dx.doi.org/10.1007/s00222-016-0714-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Dolgachev, Igor V. „Logarithmic sheaves attached to arrangements of hyperplanes“. Journal of Mathematics of Kyoto University 47, Nr. 1 (2007): 35–64. http://dx.doi.org/10.1215/kjm/1250281067.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Schechtman, Vadim V., und Alexander N. Varchenko. „Arrangements of hyperplanes and Lie algebra homology“. Inventiones Mathematicae 106, Nr. 1 (Dezember 1991): 139–94. http://dx.doi.org/10.1007/bf01243909.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

CHO, KOJI, und MASAAKI YOSHIDA. „VERONESE ARRANGEMENTS OF HYPERPLANES IN REAL PROJECTIVE SPACES“. International Journal of Mathematics 23, Nr. 05 (Mai 2012): 1250061. http://dx.doi.org/10.1142/s0129167x12500619.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Amend, Nils, Pierre Deligne und Gerhard Röhrle. „On the -problem for restrictions of complex reflection arrangements“. Compositio Mathematica 156, Nr. 3 (20.01.2020): 526–32. http://dx.doi.org/10.1112/s0010437x19007796.

Der volle Inhalt der Quelle
Annotation:
Let $W\subset \operatorname{GL}(V)$ be a complex reflection group and $\mathscr{A}(W)$ the set of the mirrors of the complex reflections in $W$. It is known that the complement $X(\mathscr{A}(W))$ of the reflection arrangement $\mathscr{A}(W)$ is a $K(\unicode[STIX]{x1D70B},1)$ space. For $Y$ an intersection of hyperplanes in $\mathscr{A}(W)$, let $X(\mathscr{A}(W)^{Y})$ be the complement in $Y$ of the hyperplanes in $\mathscr{A}(W)$ not containing $Y$. We hope that $X(\mathscr{A}(W)^{Y})$ is always a $K(\unicode[STIX]{x1D70B},1)$. We prove it in case of the monomial groups $W=G(r,p,\ell )$. Using known results, we then show that there remain only three irreducible complex reflection groups, leading to just eight such induced arrangements for which this $K(\unicode[STIX]{x1D70B},1)$ property remains to be proved.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Terao, Hiroaki, und Sergey Yuzvinsky. „Logarithmic forms on affine arrangements“. Nagoya Mathematical Journal 139 (September 1995): 129–49. http://dx.doi.org/10.1017/s002776300000533x.

Der volle Inhalt der Quelle
Annotation:
Let V be an affine of dimension l over some field K. An arrangement A is a finite collection of affine hyperplanes in V. We call A an l-arrangement when we want to emphasize the dimension of V. We use [6] as a general reference. Choose an arbitrary point of V and fix it throughout this paper. We will use it as the origin.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Kanarek, Herbert. „Gauß-Manin Connection arising from arrangements of hyperplanes“. Illinois Journal of Mathematics 44, Nr. 4 (Dezember 2000): 741–66. http://dx.doi.org/10.1215/ijm/1255984690.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Roudneff, Jean-Pierre. „Cells with many facets in arrangements of hyperplanes“. Discrete Mathematics 98, Nr. 3 (Dezember 1991): 185–91. http://dx.doi.org/10.1016/0012-365x(91)90375-c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Edelsbrunner, H., J. O’Rourke und R. Seidel. „Constructing Arrangements of Lines and Hyperplanes with Applications“. SIAM Journal on Computing 15, Nr. 2 (Mai 1986): 341–63. http://dx.doi.org/10.1137/0215024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

BOSE, PROSENJIT, HAZEL EVERETT und STEPHEN WISMATH. „PROPERTIES OF ARRANGEMENT GRAPHS“. International Journal of Computational Geometry & Applications 13, Nr. 06 (Dezember 2003): 447–62. http://dx.doi.org/10.1142/s0218195903001281.

Der volle Inhalt der Quelle
Annotation:
An arrangement graph G is the abstract graph obtained from an arrangement of lines L, in general position by associating vertices of G with the intersection points of L, and the edges of G with the line segments joining the intersection points of L. A simple polygon (respectively path) of n sides in general position, induces a set of n lines by extension of the line segments into lines. The main results of this paper are: • Given a graph G, it is NP-Hard to determine if G is the arrangement graph of some set of lines. • There are non-Hamiltonian arrangement graphs for arrangements of six lines and for odd values of n>6 lines. • All arrangements of n lines contain a subarrangement of size [Formula: see text] with an inducing polygon. • All arrangements on n lines contain an inducing path consisting of n line segments. A Java applet implementing the algorithm for determining such a path is also provided. • All arrangements on n hyperplanes in Rd contain a simple inducing polygonal cycle of size n.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Athanasiadis, Christos A. „A Combinatorial Reciprocity Theorem for Hyperplane Arrangements“. Canadian Mathematical Bulletin 53, Nr. 1 (01.03.2010): 3–10. http://dx.doi.org/10.4153/cmb-2010-004-7.

Der volle Inhalt der Quelle
Annotation:
AbstractGiven a nonnegative integer m and a finite collection of linear forms on ℚd, the arrangement of affine hyperplanes in ℚd defined by the equations α(x) = k for α ∈ and integers k ∈ [–m,m] is denoted by . It is proved that the coefficients of the characteristic polynomial of are quasi-polynomials in m and that they satisfy a simple combinatorial reciprocity law.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

COHEN, DANIEL C., und ALEXANDER I. SUCIU. „Characteristic varieties of arrangements“. Mathematical Proceedings of the Cambridge Philosophical Society 127, Nr. 1 (Juli 1999): 33–53. http://dx.doi.org/10.1017/s0305004199003576.

Der volle Inhalt der Quelle
Annotation:
The kth Fitting ideal of the Alexander invariant B of an arrangement [Ascr ] of n complex hyperplanes defines a characteristic subvariety, Vk([Ascr ]), of the algebraic torus ([Copf ]*)n. In the combinatorially determined case where B decomposes as a direct sum of local Alexander invariants, we obtain a complete description of Vk([Ascr ]). For any arrangement [Ascr ], we show that the tangent cone at the identity of this variety coincides with [Rscr ]1k(A), one of the cohomology support loci of the Orlik–Solomon algebra. Using work of Arapura [1], we conclude that all irreducible components of Vk([Ascr ]) which pass through the identity element of ([Copf ]*)n are combinatorially determined, and that [Rscr ]1k(A) is the union of a subspace arrangement in [Copf ]n, thereby resolving a conjecture of Falk [11]. We use these results to study the reflection arrangements associated to monomial groups.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Dolgachev, I., und M. Kapranov. „Arrangements of hyperplanes and vector bundles on $P^n$“. Duke Mathematical Journal 71, Nr. 3 (September 1993): 633–64. http://dx.doi.org/10.1215/s0012-7094-93-07125-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

ATHANASIADIS, CHRISTOS A. „GENERALIZED CATALAN NUMBERS, WEYL GROUPS AND ARRANGEMENTS OF HYPERPLANES“. Bulletin of the London Mathematical Society 36, Nr. 03 (28.04.2004): 294–302. http://dx.doi.org/10.1112/s0024609303002856.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Guibas, L. J., D. Halperin, J. Matoušek und M. Sharir. „Vertical decomposition of arrangements of hyperplanes in four dimensions“. Discrete & Computational Geometry 14, Nr. 2 (September 1995): 113–22. http://dx.doi.org/10.1007/bf02570698.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Blanco, Víctor, Alberto Japón und Justo Puerto. „Optimal arrangements of hyperplanes for SVM-based multiclass classification“. Advances in Data Analysis and Classification 14, Nr. 1 (26.07.2019): 175–99. http://dx.doi.org/10.1007/s11634-019-00367-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Aronov, Boris, Daniel Q. Naiman, János Pach und Micha Sharir. „An invariant property of balls in arrangements of hyperplanes“. Discrete & Computational Geometry 10, Nr. 4 (Dezember 1993): 421–25. http://dx.doi.org/10.1007/bf02573987.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Bespamyatnikh, Sergei, und Michael Segal. „Selecting distances in arrangements of hyperplanes spanned by points“. Journal of Discrete Algorithms 2, Nr. 3 (September 2004): 333–45. http://dx.doi.org/10.1016/j.jda.2003.12.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Liu, Ding. „A note on point location in arrangements of hyperplanes“. Information Processing Letters 90, Nr. 2 (April 2004): 93–95. http://dx.doi.org/10.1016/j.ipl.2004.01.010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Terao, Hiroaki. „Chambers of arrangements of hyperplanes and Arrow's impossibility theorem“. Advances in Mathematics 214, Nr. 1 (September 2007): 366–78. http://dx.doi.org/10.1016/j.aim.2007.02.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Varchenko, A. „Bethe Ansatz for Arrangements of Hyperplanes and the Gaudin Model“. Moscow Mathematical Journal 6, Nr. 1 (2006): 195–210. http://dx.doi.org/10.17323/1609-4514-2006-6-1-195-210.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Wiens, Jonathan, und Sergey Yuzvinsky. „De Rham cohomology of logarithmic forms on arrangements of hyperplanes“. Transactions of the American Mathematical Society 349, Nr. 4 (1997): 1653–62. http://dx.doi.org/10.1090/s0002-9947-97-01894-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Fukuda, Komei, Shigemasa Saito, Akihisa Tamura und Takeshi Tokuyama. „Bounding the number of k-faces in arrangements of hyperplanes“. Discrete Applied Mathematics 31, Nr. 2 (April 1991): 151–65. http://dx.doi.org/10.1016/0166-218x(91)90067-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Prodan, Ionela, Florin Stoican, Sorin Olaru und Silviu-Iulian Niculescu. „Enhancements on the Hyperplanes Arrangements in Mixed-Integer Programming Techniques“. Journal of Optimization Theory and Applications 154, Nr. 2 (24.03.2012): 549–72. http://dx.doi.org/10.1007/s10957-012-0022-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Haggui, Fathi, und Abdessami Jalled. „Hyperbolicity of the complement of arrangements of non complex lines“. Filomat 34, Nr. 9 (2020): 3109–18. http://dx.doi.org/10.2298/fil2009109h.

Der volle Inhalt der Quelle
Annotation:
The goal of this paper is twofold. We study holomorphic curves f:C ? C3 avoiding four complex hyperplanes and a real subspace of real dimension five in C3 where we study the cases where the projection of f into the complex projective space CP2 is constant. On the other hand, we investigate the kobayashi hyperbolicity of the complement of five perturbed lines in CP2.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Prudhom, Andrew, und Alexander Varchenko. „Potentials of a Family of Arrangements of Hyperplanes and Elementary Subarrangements“. Moscow Mathematical Journal 19, Nr. 1 (2019): 153–80. http://dx.doi.org/10.17323/1609-4514-2019-19-1-153-180.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Ezra, Esther, Sariel Har-Peled, Haim Kaplan und Micha Sharir. „Decomposing Arrangements of Hyperplanes: VC-Dimension, Combinatorial Dimension, and Point Location“. Discrete & Computational Geometry 64, Nr. 1 (17.12.2019): 109–73. http://dx.doi.org/10.1007/s00454-019-00141-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Paris, Luis. „Universal Cover of Salvetti's Complex and Topology of Simplicial Arrangements of Hyperplanes“. Transactions of the American Mathematical Society 340, Nr. 1 (November 1993): 149. http://dx.doi.org/10.2307/2154550.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie