Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Hyperplanes arrangements“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Hyperplanes arrangements" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Hyperplanes arrangements"
Bergerová, Diana. „Symmetry of f-Vectors of Toric Arrangements in General Position and Some Applications“. PUMP Journal of Undergraduate Research 7 (15.02.2024): 96–123. http://dx.doi.org/10.46787/pump.v7i0.3921.
Der volle Inhalt der QuelleGao, Ruimei, Qun Dai und Zhe Li. „On the freeness of hypersurface arrangements consisting of hyperplanes and spheres“. Open Mathematics 16, Nr. 1 (23.04.2018): 437–46. http://dx.doi.org/10.1515/math-2018-0041.
Der volle Inhalt der QuellePfeiffer, Götz, und Hery Randriamaro. „The Varchenko determinant of a Coxeter arrangement“. Journal of Group Theory 21, Nr. 4 (01.07.2018): 651–65. http://dx.doi.org/10.1515/jgth-2018-0009.
Der volle Inhalt der QuelleFaenzi, Daniele, Daniel Matei und Jean Vallès. „Hyperplane arrangements of Torelli type“. Compositio Mathematica 149, Nr. 2 (14.12.2012): 309–32. http://dx.doi.org/10.1112/s0010437x12000577.
Der volle Inhalt der QuelleOrlik, Peter, und Hiroaki Terao. „Commutative algebras for arrangements“. Nagoya Mathematical Journal 134 (Juni 1994): 65–73. http://dx.doi.org/10.1017/s0027763000004852.
Der volle Inhalt der QuelleJambu, Michel, und Luis Paris. „Factored arrangements of hyperplanes“. Kodai Mathematical Journal 17, Nr. 3 (1994): 402–8. http://dx.doi.org/10.2996/kmj/1138040032.
Der volle Inhalt der QuelleLinhart, J. „Arrangements of oriented hyperplanes“. Discrete & Computational Geometry 10, Nr. 4 (Dezember 1993): 435–46. http://dx.doi.org/10.1007/bf02573989.
Der volle Inhalt der QuelleZaslavsky, Thomas. „EXTREMAL ARRANGEMENTS OF HYPERPLANES“. Annals of the New York Academy of Sciences 440, Nr. 1 Discrete Geom (Mai 1985): 69–87. http://dx.doi.org/10.1111/j.1749-6632.1985.tb14540.x.
Der volle Inhalt der QuelleGallet, Matteo, und Elia Saini. „The diffeomorphism type of small hyperplane arrangements is combinatorially determined“. Advances in Geometry 19, Nr. 1 (28.01.2019): 89–100. http://dx.doi.org/10.1515/advgeom-2018-0015.
Der volle Inhalt der QuelleAbe, Takuro, Hiroaki Terao und Masahiko Yoshinaga. „Totally free arrangements of hyperplanes“. Proceedings of the American Mathematical Society 137, Nr. 04 (05.11.2008): 1405–10. http://dx.doi.org/10.1090/s0002-9939-08-09755-4.
Der volle Inhalt der QuelleDissertationen zum Thema "Hyperplanes arrangements"
Charles, Balthazar. „Combinatorics and computations : Cartan matrices of monoids & minimal elements of Shi arrangements“. Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG063.
Der volle Inhalt der QuelleThis thesis presents an investigation into two distinct combinatorial subjects: the effective computation of Cartan matrices in monoid representation theory and the exploration of properties of minimal elements in Shi arrangements of Coxeter groups. Although disparate, both of these research focuses share a commonality in the utilization of combinatorial methods and computer exploration either as an end in itself for the former or as a help to research for the latter. In the first part of the dissertation, we develop methods for the effective computation of character tables and Cartan matrices in monoid representation theory. To this end, we present an algorithm based on our results for the efficient computations of fixed points under a conjugacy-like action, with the goal to implement Thiéry's formula for the Cartan matrix from [Thiéry '12]. After a largely self-contained introduction to the necessary background, we present our results for fixed-point counting, as well as a new formula for the character table of finite monoids. We evaluate the performance of the resulting algorithms in terms of execution time and memory usage and find that they are more efficient than algorithms not specialized for monoids by orders of magnitude. We hope that the resulting (public) implementation will contribute to the monoid representation community by allowing previously impractical computations. The second part of the thesis focuses on the properties of minimal elements in Shi arrangements. The Shi arrangements were introduced in [Shi '87] and are the object of Conjecture 2 from [Dyer, Hohlweg '14]. Originally motivated by this conjecture, we present two results. Firstly, a direct proof in the case of rank 3 groups. Secondly, in the special case of Weyl groups, we give a description of the minimal elements of the Shi regions by extending a bijection from [Athanasiadis, Linusson '99] and [Armstrong, Reiner, Rhoades '15] between parking functions and Shi regions. This allows for the effective computation of the minimal elements. From the properties of this computation, we provide a type-free proof of the conjecture in Weyl groups as an application. These results reveal an intriguing interplay between the non-nesting and non-crossing worlds in the case of classical Weyl groups
Johnston, David. „Quasi-invariants of hyperplane arrangements“. Thesis, University of Glasgow, 2012. http://theses.gla.ac.uk/3169/.
Der volle Inhalt der QuelleZiegler, Günter M. (Günter Matthias). „Algebraic combinatorics of hyperplane arrangements“. Thesis, Massachusetts Institute of Technology, 1987. http://hdl.handle.net/1721.1/14854.
Der volle Inhalt der QuelleMoseley, Daniel, und Daniel Moseley. „Group Actions on Hyperplane Arrangements“. Thesis, University of Oregon, 2012. http://hdl.handle.net/1794/12373.
Der volle Inhalt der QuelleBibby, Christin. „Abelian Arrangements“. Thesis, University of Oregon, 2015. http://hdl.handle.net/1794/19273.
Der volle Inhalt der QuelleSleumer, Nora Helena. „Hyperplane arrangements : construction, visualization and applications /“. [S.l.] : [s.n.], 2000. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=13502.
Der volle Inhalt der QuelleAgosti, Claudia. „Cohomology of hyperplane and toric arrangements“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19510/.
Der volle Inhalt der QuelleMücksch, Paul [Verfasser]. „Combinatorics and freeness of hyperplane arrangements and reflection arrangements / Paul Mücksch“. Hannover : Technische Informationsbibliothek (TIB), 2018. http://d-nb.info/1169961169/34.
Der volle Inhalt der QuelleBiyikoglu, Türker, Wim Hordijk, Josef Leydold, Tomaz Pisanski und Peter F. Stadler. „Graph Laplacians, Nodal Domains, and Hyperplane Arrangements“. Department of Statistics and Mathematics, Abt. f. Angewandte Statistik u. Datenverarbeitung, WU Vienna University of Economics and Business, 2002. http://epub.wu.ac.at/1036/1/document.pdf.
Der volle Inhalt der QuelleSeries: Preprint Series / Department of Applied Statistics and Data Processing
Moss, Aaron. „Basis Enumeration of Hyperplane Arrangements up to Symmetries“. Thesis, Fredericton: University of New Brunswick, 2012. http://hdl.handle.net/1882/44593.
Der volle Inhalt der QuelleBücher zum Thema "Hyperplanes arrangements"
Orlik, Peter, und Hiroaki Terao. Arrangements of Hyperplanes. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02772-1.
Der volle Inhalt der Quelle1951-, Terao Hiroaki, Hrsg. Arrangements of hyperplanes. Berlin: Springer-Verlag, 1992.
Den vollen Inhalt der Quelle findenDimca, Alexandru. Hyperplane Arrangements. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56221-6.
Der volle Inhalt der QuelleYoshinaga, Masahiko. Hyperplane arrangements and Lefschetz's hyperplane section theorem. Kyoto, Japan: Kyōto Daigaku Sūri Kaiseki Kenkyūjo, 2005.
Den vollen Inhalt der Quelle findenAlexeev, Valery. Moduli of Weighted Hyperplane Arrangements. Herausgegeben von Gilberto Bini, Martí Lahoz, Emanuele Macrí und Paolo Stellari. Basel: Springer Basel, 2015. http://dx.doi.org/10.1007/978-3-0348-0915-3.
Der volle Inhalt der QuelleDe Concini, Corrado, und Claudio Procesi. Topics in Hyperplane Arrangements, Polytopes and Box-Splines. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-0-387-78963-7.
Der volle Inhalt der QuelleClaudio, Procesi, Hrsg. Topics in hyperplane arrangements, polytopes and box-splines. New York: Springer, 2011.
Den vollen Inhalt der Quelle findenBarg, Alexander, und O. R. Musin. Discrete geometry and algebraic combinatorics. Providence, Rhode Island: American Mathematical Society, 2014.
Den vollen Inhalt der Quelle findenOrlik, Peter, und Hiroaki Terao. Arrangements of Hyperplanes. Springer London, Limited, 2013.
Den vollen Inhalt der Quelle findenOrlik, Peter, und Hiroaki Terao. Arrangements of Hyperplanes. Springer Berlin / Heidelberg, 2010.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Hyperplanes arrangements"
Grünbaum, Branko. „Arrangements of Hyperplanes“. In Convex Polytopes, 432–54. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4613-0019-9_18.
Der volle Inhalt der QuelleOvchinnikov, Sergei. „Hyperplane Arrangements“. In Universitext, 207–35. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0797-3_7.
Der volle Inhalt der QuelleDe Concini, Corrado, und Claudio Procesi. „Hyperplane Arrangements“. In Topics in Hyperplane Arrangements, Polytopes and Box-Splines, 25–68. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-0-387-78963-7_2.
Der volle Inhalt der QuelleKastner, Lars, und Marta Panizzut. „Hyperplane Arrangements in polymake“. In Lecture Notes in Computer Science, 232–40. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52200-1_23.
Der volle Inhalt der QuelleAlexeev, Valery. „Weighted Stable Hyperplane Arrangements“. In Advanced Courses in Mathematics - CRM Barcelona, 75–92. Basel: Springer Basel, 2015. http://dx.doi.org/10.1007/978-3-0348-0915-3_5.
Der volle Inhalt der QuelleDenham, Graham. „Homological Aspects of Hyperplane Arrangements“. In Arrangements, Local Systems and Singularities, 39–58. Basel: Birkhäuser Basel, 2009. http://dx.doi.org/10.1007/978-3-0346-0209-9_2.
Der volle Inhalt der QuelleDe Concini, Corrado, und Claudio Procesi. „Toric Arrangements“. In Topics in Hyperplane Arrangements, Polytopes and Box-Splines, 241–67. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-0-387-78963-7_14.
Der volle Inhalt der QuelleDimca, Alexandru. „Hyperplane Arrangements and Their Combinatorics“. In Universitext, 15–43. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56221-6_2.
Der volle Inhalt der QuelleMassey, David B. „Lê numbers and hyperplane arrangements“. In Lê Cycles and Hypersurface Singularities, 61–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/bfb0094415.
Der volle Inhalt der QuelleStanley, Richard. „An introduction to hyperplane arrangements“. In Geometric Combinatorics, 389–496. Providence, Rhode Island: American Mathematical Society, 2007. http://dx.doi.org/10.1090/pcms/013/08.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Hyperplanes arrangements"
Mulmuley, Ketan, und Sandeep Sen. „Dynamic point location in arrangements of hyperplanes“. In the seventh annual symposium. New York, New York, USA: ACM Press, 1991. http://dx.doi.org/10.1145/109648.109663.
Der volle Inhalt der QuelleStoican, Florin, Ionela Prodan und Sorin Olaru. „On the hyperplanes arrangements in mixed-integer techniques“. In 2011 American Control Conference. IEEE, 2011. http://dx.doi.org/10.1109/acc.2011.5990908.
Der volle Inhalt der QuelleHagerup, Torben, H. Jung und E. Welzl. „Efficient parallel computation of arrangements of hyperplanes in d dimensions“. In the second annual ACM symposium. New York, New York, USA: ACM Press, 1990. http://dx.doi.org/10.1145/97444.97696.
Der volle Inhalt der QuelleJambu, Michel. „Arrangements of Hyperplanes, Lower Central Series, Chen Lie Algebras and Resonance Varieties“. In The International Conference on Algebra 2010 - Advances in Algebraic Structures. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814366311_0022.
Der volle Inhalt der Quelle„Cutting hyperplane arrangements“. In the sixth annual symposium, herausgegeben von Jiří Matoušek. New York, New York, USA: ACM Press, 1990. http://dx.doi.org/10.1145/98524.98528.
Der volle Inhalt der QuelleJAMBU, MICHEL. „KOSZUL ALGEBRAS AND HYPERPLANE ARRANGEMENTS“. In Proceedings of the Second International Congress in Algebra and Combinatorics. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812790019_0011.
Der volle Inhalt der QuelleJAMBU, MICHEL. „HYPERGEOMETRIC FUNCTIONS AND HYPERPLANE ARRANGEMENTS“. In Algebraic Approach to Differential Equations. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814273244_0005.
Der volle Inhalt der QuelleStoican, Florin, Ionela Prodan und Sorin Olaru. „Enhancements on the hyperplane arrangements in mixed integer techniques“. In 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC 2011). IEEE, 2011. http://dx.doi.org/10.1109/cdc.2011.6161361.
Der volle Inhalt der QuelleIoan, Daniel, Sorin Olaru, Ionela Prodan, Florin Stoican und Silviu-Iulian Niculescu. „Parametrized Hyperplane Arrangements for Control Design with Collision Avoidance Constraints“. In 2019 IEEE 15th International Conference on Control and Automation (ICCA). IEEE, 2019. http://dx.doi.org/10.1109/icca.2019.8899977.
Der volle Inhalt der QuelleAronov, Boris, Jiří Matoušek und Micha Sharir. „On the sum of squares of cell complexities in hyperplane arrangements“. In the seventh annual symposium. New York, New York, USA: ACM Press, 1991. http://dx.doi.org/10.1145/109648.109682.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Hyperplanes arrangements"
Paul, Thomas J. Enumerative Geometry of Hyperplane Arrangements. Fort Belvoir, VA: Defense Technical Information Center, Mai 2012. http://dx.doi.org/10.21236/ada575879.
Der volle Inhalt der Quelle