Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Hyperbolic dynamical systems.

Zeitschriftenartikel zum Thema „Hyperbolic dynamical systems“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Hyperbolic dynamical systems" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Bandtlow, Oscar F., Wolfram Just und Julia Slipantschuk. „A numerical study of rigidity of hyperbolic splittings in simple two-dimensional maps“. Nonlinearity 37, Nr. 4 (04.03.2024): 045007. http://dx.doi.org/10.1088/1361-6544/ad2b58.

Der volle Inhalt der Quelle
Annotation:
Abstract Chaotic hyperbolic dynamical systems enjoy a surprising degree of rigidity, a fact which is well known in the mathematics community but perhaps less so in theoretical physics circles. Low-dimensional hyperbolic systems are either conjugate to linear automorphisms, that is, dynamically equivalent to the Arnold cat map and its variants, or their hyperbolic structure is not smooth. We illustrate this dichotomy using a family of analytic maps, for which we show by means of numerical simulations that the corresponding hyperbolic structure is not smooth, thereby providing an example for a global mechanism which produces non-smooth phase space structures in an otherwise smooth dynamical system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Barinova, Marina K., und Evgenia K. Shustova. „Dynamical properties of direct products of discrete dynamical systems“. Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva 24, Nr. 1 (31.03.2022): 21–30. http://dx.doi.org/10.15507/2079-6900.24.202201.21-30.

Der volle Inhalt der Quelle
Annotation:
A natural way for creating new dynamical systems is to consider direct products of already known systems. The paper studies some dynamical properties of direct products of homeomorphisms and diffeomorphisms. In particular, authors prove that a chain-recurrent set of the direct product of homeomorphisms is a direct product of the chain-recurrent sets. Another result established in the paper is that the direct product of diffeomorphisms holds hyperbolic structure on the direct product of hyperbolic sets. It is known that if a diffeomorphism has a hyperbolic chain-recurrent set, then this mapping is Ω-stable. Therefore, it follows from the results of the paper that the direct product of Ω-stable diffeomorphisms is also Ω-stable. Another question which is raised in the article concerns the existence of an energy function for the direct product of diffeomorphisms which already have such functions (recall that energy function is a smooth Lyapunov function whose set of critical points coincides with the chain-recurrent set of the system). Authors show that in this case the function can be found as a weighted sum of energy functions of initial diffeomorphisms.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Whittaker, Michael. „Spectral triples for hyperbolic dynamical systems“. Journal of Noncommutative Geometry 7, Nr. 2 (2013): 563–82. http://dx.doi.org/10.4171/jncg/127.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Gogolev, Andrey, Pedro Ontaneda und Federico Rodriguez Hertz. „New partially hyperbolic dynamical systems I“. Acta Mathematica 215, Nr. 2 (2015): 363–93. http://dx.doi.org/10.1007/s11511-016-0135-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Lokutsievskii, L. V. „Fractal structure of hyperbolic Lipschitzian dynamical systems“. Russian Journal of Mathematical Physics 19, Nr. 1 (März 2012): 27–43. http://dx.doi.org/10.1134/s1061920812010050.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

CARVALHO, ALEXANDRE N., JOSÉ A. LANGA und JAMES C. ROBINSON. „Lower semicontinuity of attractors for non-autonomous dynamical systems“. Ergodic Theory and Dynamical Systems 29, Nr. 6 (03.02.2009): 1765–80. http://dx.doi.org/10.1017/s0143385708000850.

Der volle Inhalt der Quelle
Annotation:
AbstractThis paper is concerned with the lower semicontinuity of attractors for semilinear non-autonomous differential equations in Banach spaces. We require the unperturbed attractor to be given as the union of unstable manifolds of time-dependent hyperbolic solutions, generalizing previous results valid only for gradient-like systems in which the hyperbolic solutions are equilibria. The tools employed are a study of the continuity of the local unstable manifolds of the hyperbolic solutions and results on the continuity of the exponential dichotomy of the linearization around each of these solutions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Blankers, Vance, Tristan Rendfrey, Aaron Shukert und Patrick Shipman. „Julia and Mandelbrot Sets for Dynamics over the Hyperbolic Numbers“. Fractal and Fractional 3, Nr. 1 (20.02.2019): 6. http://dx.doi.org/10.3390/fractalfract3010006.

Der volle Inhalt der Quelle
Annotation:
Julia and Mandelbrot sets, which characterize bounded orbits in dynamical systems over the complex numbers, are classic examples of fractal sets. We investigate the analogs of these sets for dynamical systems over the hyperbolic numbers. Hyperbolic numbers, which have the form x + τ y for x , y ∈ R , and τ 2 = 1 but τ ≠ ± 1 , are the natural number system in which to encode geometric properties of the Minkowski space R 1 , 1 . We show that the hyperbolic analog of the Mandelbrot set parameterizes the connectedness of hyperbolic Julia sets. We give a wall-and-chamber decomposition of the hyperbolic plane in terms of these Julia sets.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Pesin, Ya B. „Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties“. Ergodic Theory and Dynamical Systems 12, Nr. 1 (März 1992): 123–51. http://dx.doi.org/10.1017/s0143385700006635.

Der volle Inhalt der Quelle
Annotation:
AbstractWe introduce a class of dynamical systems on a Riemannian manifold with singularities having attractors with strong hyperbolic behavior of trajectories. This class includes a number of famous examples such as the Lorenz type attractor, the Lozi attractor and some others which have been of great interest in recent years. We prove the existence of a special invariant measure which is an analog of the Bowen-Ruelle-Sinai measure for classical hyperbolic attractors and study the ergodic properties of the system with respect to this measure. We also describe some topological properties of the system on the attractor. Our results can be considered a dissipative version of the theory of systems with singularities preserving the smooth measure.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Cong, Nguyen Dinh. „Structural stability of linear random dynamical systems“. Ergodic Theory and Dynamical Systems 16, Nr. 6 (Dezember 1996): 1207–20. http://dx.doi.org/10.1017/s0143385700009998.

Der volle Inhalt der Quelle
Annotation:
AbstractIn this paper, structural stability of discrete-time linear random dynamical systems is studied. A random dynamical system is called structurally stable with respect to a random norm if it is topologically conjugate to any random dynamical system which is sufficiently close to it in this norm. We prove that a discrete-time linear random dynamical system is structurally stable with respect to its Lyapunov norms if and only if it is hyperbolic.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

REY-BELLET, LUC, und LAI-SANG YOUNG. „Large deviations in non-uniformly hyperbolic dynamical systems“. Ergodic Theory and Dynamical Systems 28, Nr. 2 (April 2008): 587–612. http://dx.doi.org/10.1017/s0143385707000478.

Der volle Inhalt der Quelle
Annotation:
AbstractWe prove large deviation principles for ergodic averages of dynamical systems admitting Markov tower extensions with exponential return times. Our main technical result from which a number of limit theorems are derived is the analyticity of logarithmic moment generating functions. Among the classes of dynamical systems to which our results apply are piecewise hyperbolic diffeomorphisms, dispersing billiards including Lorentz gases, and strange attractors of rank one including Hénon-type attractors.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Diamond, P., P. Kloeden, V. Kozyakin und A. Pokrovskii. „Expansivity of semi-hyperbolic Lipschitz mappings“. Bulletin of the Australian Mathematical Society 51, Nr. 2 (April 1995): 301–8. http://dx.doi.org/10.1017/s0004972700014131.

Der volle Inhalt der Quelle
Annotation:
Semi-hyperbolic dynamical systems generated by Lipschitz mappings are shown to be exponentially expansive, locally at least, and explicit rates of expansion are determined. The result is applicable to nonsmooth noninvertible systems such as those with hysteresis effects as well as to classical systems involving hyperbolic diffeomorphisms.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Urbański, Mariusz. „Recurrence rates for loosely Markov dynamical systems“. Journal of the Australian Mathematical Society 82, Nr. 1 (Februar 2007): 39–57. http://dx.doi.org/10.1017/s1446788700017468.

Der volle Inhalt der Quelle
Annotation:
AbstractThe concept of loosely Markov dynamical systems is introduced. We show that for these systems the recurrence rates and pointwise dimensions coincide. The systems generated by hyperbolic exponential maps, arbitrary rational functions of the Riemann sphere, and measurable dynamical systems generated by infinite conformal iterated function systems are all checked to be loosely Markov.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Zizza, Frank. „Automorphisms of Hyperbolic Dynamical Systems and K 2“. Transactions of the American Mathematical Society 307, Nr. 2 (Juni 1988): 773. http://dx.doi.org/10.2307/2001198.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Young, Lai-Sang. „Geometric and Ergodic Theory of Hyperbolic Dynamical Systems“. Current Developments in Mathematics 1998, Nr. 1 (1998): 237–78. http://dx.doi.org/10.4310/cdm.1998.v1998.n1.a6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Feres, Renato. „Hyperbolic dynamical systems, invariant geometric structures, and rigidity“. Mathematical Research Letters 1, Nr. 1 (1994): 11–26. http://dx.doi.org/10.4310/mrl.1994.v1.n1.a2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Wu, Xinxing, Xu Zhang und Xin Ma. „Various Shadowing in Linear Dynamical Systems“. International Journal of Bifurcation and Chaos 29, Nr. 03 (März 2019): 1950042. http://dx.doi.org/10.1142/s0218127419500421.

Der volle Inhalt der Quelle
Annotation:
This paper proves that the linear transformation [Formula: see text] on [Formula: see text] has the (asymptotic) average shadowing property if and only if [Formula: see text] is hyperbolic, where [Formula: see text] is a nonsingular matrix, giving a positive answer to a question in [Lee, 2012a]. Besides, it is proved that [Formula: see text] does not have the [Formula: see text]-shadowing property, thus does not have the ergodic shadowing property for every nonsingular matrix [Formula: see text].
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

PARISÉ, PIERRE-OLIVIER, und DOMINIC ROCHON. „TRICOMPLEX DYNAMICAL SYSTEMS GENERATED BY POLYNOMIALS OF ODD DEGREE“. Fractals 25, Nr. 03 (Mai 2017): 1750026. http://dx.doi.org/10.1142/s0218348x17500268.

Der volle Inhalt der Quelle
Annotation:
In this paper, we give the exact interval of the cross section of the Multibrot sets generated by the polynomial [Formula: see text] where [Formula: see text] and [Formula: see text] are complex numbers and [Formula: see text] is an odd integer. Furthermore, we show that the same Multibrots defined on the hyperbolic numbers are always squares. Moreover, we give a generalized 3D version of the hyperbolic Multibrot set and prove that our generalization is an octahedron for a specific 3D slice of the dynamical system generated by the tricomplex polynomial [Formula: see text] where [Formula: see text] is an odd integer.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Massoukou, R. Y. M’pika, und K. S. Govinder. „Symmetry analysis for hyperbolic equilibria using a TB/dengue fever model“. International Journal of Modern Physics B 30, Nr. 28n29 (10.11.2016): 1640022. http://dx.doi.org/10.1142/s0217979216400221.

Der volle Inhalt der Quelle
Annotation:
We investigate the interplay between Lie symmetry analysis and dynamical systems analysis. As an example, we take a toy model describing the spread of TB and dengue fever. We first undertake a comprehensive dynamical systems analysis including a discussion about local stability. For those regions in which such analyzes cannot be translated to global behavior, we undertake a Lie symmetry analysis. It is shown that the Lie analysis can be useful in providing information for systems where the (local) dynamical systems analysis breaks down.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Kifer, Yuri. „Limit theorems in averaging for dynamical systems“. Ergodic Theory and Dynamical Systems 15, Nr. 6 (Dezember 1995): 1143–72. http://dx.doi.org/10.1017/s0143385700009834.

Der volle Inhalt der Quelle
Annotation:
AbstractThis paper yields diffusion and moderate deviation type asymptotics for solutions of differential equations of the form dZε(t)/dt = εB(Zε(t), fty) where ft is a suspension flow (in particular, a hyperbolic flow) over a sufficiently fast mixing transformation. Such problems emerge in the study of perturbed Hamiltonian systems. These exhibit a new class of limit theorems for dynamical systems and extend a number of previously known results.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

COLLET, P. „Statistics of closest return for some non-uniformly hyperbolic systems“. Ergodic Theory and Dynamical Systems 21, Nr. 2 (30.03.2001): 401–20. http://dx.doi.org/10.1017/s0143385701001201.

Der volle Inhalt der Quelle
Annotation:
For non-uniformly hyperbolic maps of the interval with exponential decay of correlations we prove that the law of closest return to a given point when suitably normalized is almost surely asymptotically exponential. A similar result holds when the reference point is the initial point of the trajectory. We use the framework for non-uniformly hyperbolic dynamical systems developed by L. S. Young.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

BANKS, S. P., und SONG YI. „ELLIPTIC AND AUTOMORPHIC DYNAMICAL SYSTEMS ON SURFACES“. International Journal of Bifurcation and Chaos 16, Nr. 04 (April 2006): 911–23. http://dx.doi.org/10.1142/s0218127406015209.

Der volle Inhalt der Quelle
Annotation:
We derive explicit differential equations for dynamical systems defined on generic surfaces applying elliptic and automorphic function theory to make uniform the surfaces in the upper half of the complex plane with the hyperbolic metric. By modifying the definition of the standard theta series we will determine general meromorphic systems on a fundamental domain in the upper half plane the solution trajectories of which "roll up" onto an appropriate surface of any given genus.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Su, Yaofeng, und Leonid A. Bunimovich. „Poisson Approximations and Convergence Rates for Hyperbolic Dynamical Systems“. Communications in Mathematical Physics 390, Nr. 1 (19.01.2022): 113–68. http://dx.doi.org/10.1007/s00220-022-04309-w.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Zizza, Frank. „Automorphisms of hyperbolic dynamical systems and $K\sb 2$“. Transactions of the American Mathematical Society 307, Nr. 2 (01.02.1988): 773. http://dx.doi.org/10.1090/s0002-9947-1988-0940227-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Fokkink, R. J., J. Keesling und L. G. Oversteegen. „Extensions of zero-dimensional dynamical systems and hyperbolic attractors“. Topology and its Applications 152, Nr. 1-2 (Juli 2005): 83–86. http://dx.doi.org/10.1016/j.topol.2004.08.016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

de la Llave, R. „Invariants for smooth conjugacy of hyperbolic dynamical systems II“. Communications in Mathematical Physics 109, Nr. 3 (September 1987): 369–78. http://dx.doi.org/10.1007/bf01206141.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Marco, J. M., und R. Moriy�n. „Invariants for smooth conjugacy of hyperbolic dynamical systems. I“. Communications in Mathematical Physics 109, Nr. 4 (Dezember 1987): 681–89. http://dx.doi.org/10.1007/bf01208962.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

de la Llave, R., und R. Moriyón. „Invariants for smooth conjugacy of hyperbolic dynamical systems. IV“. Communications in Mathematical Physics 116, Nr. 2 (Juni 1988): 185–92. http://dx.doi.org/10.1007/bf01225254.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Palmer, Kenneth J. „Normally Hyperbolic Invariant Manifolds in Dynamical Systems (Stephen Wiggins)“. SIAM Review 37, Nr. 3 (September 1995): 472. http://dx.doi.org/10.1137/1037110.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Marco, Jos� Manuel, und Roberto Moriy�n. „Invariants for smooth conjugacy of hyperbolic dynamical systems, III“. Communications in Mathematical Physics 112, Nr. 2 (Juni 1987): 317–33. http://dx.doi.org/10.1007/bf01217815.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Putnam, Ian F., und Jack Spielberg. „The Structure ofC*-Algebras Associated with Hyperbolic Dynamical Systems“. Journal of Functional Analysis 163, Nr. 2 (April 1999): 279–99. http://dx.doi.org/10.1006/jfan.1998.3379.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Guillarmou, Colin, und Thibault de Poyferré. „A paradifferential approach for hyperbolic dynamical systems and applications“. Tunisian Journal of Mathematics 4, Nr. 4 (31.12.2022): 673–718. http://dx.doi.org/10.2140/tunis.2022.4.673.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Kryzhevich, Sergey. „Chaotic Dynamics and Bifurcations in Impact Systems“. International Journal of Energy Optimization and Engineering 1, Nr. 4 (Oktober 2012): 15–37. http://dx.doi.org/10.4018/ijeoe.2012100102.

Der volle Inhalt der Quelle
Annotation:
Bifurcations of dynamical systems described byseveral second order differential equations and by an impact condition are studied. It is shown that the variation of parameters when the number of impacts of a periodic solution increases, leads to the occurrence of a hyperbolic chaotic invariant set.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Hoang, Manh Tuan, Thi Kim Quy Ngo und Ha Hai Truong. „A simple method for studying asymptotic stability of discrete dynamical systems and its applications“. An International Journal of Optimization and Control: Theories & Applications (IJOCTA) 13, Nr. 1 (23.01.2023): 10–25. http://dx.doi.org/10.11121/ijocta.2023.1243.

Der volle Inhalt der Quelle
Annotation:
In this work, we introduce a simple method for investigating the asymptotic stability of discrete dynamical systems, which can be considered as an extension of the classical Lyapunov's indirect method. This method is constructed based on the classical Lyapunov's indirect method and the idea proposed by Ghaffari and Lasemi in a recent work. The new method can be applicable even when equilibia of dynamical systems are non-hyperbolic. Hence, in many cases, the classical Lyapunov's indirect method fails but the new one can be used simply. In addition, by combining the new stability method with the Mickens' methodology, we formulate some nonstandard finite difference (NSFD) methods which are able to preserve the asymptotic stability of some classes of differential equation models even when they have non-hyperbolic equilibrium points. As an important consequence, some well-known results on stability-preserving NSFD schemes for autonomous dynamical systems are improved and extended. Finally, a set of numerical examples are performed to illustrate and support the theoretical findings.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

MAULDIN, R. D., und M. URBAŃSKI. „Parabolic iterated function systems“. Ergodic Theory and Dynamical Systems 20, Nr. 5 (Oktober 2000): 1423–47. http://dx.doi.org/10.1017/s0143385700000778.

Der volle Inhalt der Quelle
Annotation:
In this paper we introduce and explore conformal parabolic iterated function systems. We define and study topological pressure, Perron–Frobenius-type operators, semiconformal and conformal measures and the Hausdorff dimension of the limit set. With every parabolic system we associate an infinite hyperbolic conformal iterated function system and we employ it to study geometric and dynamical features (properly defined invariant measures for example) of the limit set.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Kong, De-Xing, und Fa Wu. „A New Type of Distributed Parameter Control Systems: Two-Point Boundary Value Problems for Infinite-Dimensional Dynamical Systems“. Journal of Applied Mathematics 2013 (2013): 1–3. http://dx.doi.org/10.1155/2013/454857.

Der volle Inhalt der Quelle
Annotation:
This survey note describes a new type of distributed parameter control systems—the two-point boundary value problems for infinite-dimensional dynamical systems, particularly, for hyperbolic systems of partial differential equations of second order, some of the discoveries that have been done about it and some unresolved questions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

MELBOURNE, IAN, VIOREL NIŢICĂ und ANDREI TÖRÖK. „Transitivity of Heisenberg group extensions of hyperbolic systems“. Ergodic Theory and Dynamical Systems 32, Nr. 1 (05.04.2011): 223–35. http://dx.doi.org/10.1017/s014338571000091x.

Der volle Inhalt der Quelle
Annotation:
AbstractWe show that amongCrextensions (r>0) of a uniformly hyperbolic dynamical system with fiber the standard real Heisenberg group ℋnof dimension 2n+1, those that avoid an obvious obstruction to topological transitivity are generically topologically transitive. Moreover, if one considers extensions with fiber a connected nilpotent Lie group with a compact commutator subgroup (for example ℋn/ℤ), among those that avoid the obvious obstruction, topological transitivity is open and dense.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Peidong, Liu, Qian Minping und Tang Fuchang. „Pseudo-orbit tracing property for random diffeomorphisms“. Proceedings of the Royal Society of Edinburgh: Section A Mathematics 126, Nr. 5 (1996): 1027–33. http://dx.doi.org/10.1017/s0308210500023234.

Der volle Inhalt der Quelle
Annotation:
In this paper we consider the pseudo-orbit tracing property for dynamical systems generated by iterations of random diffeomorphisms. We first define a type of hyperbolicity by means of a ‘random’ multiplicative ergodic theorem, and then prove our shadowing result by employing the graph transformation methods. That result applies to, for example, the case of small random diffeomorphisms type perturbations of hyperbolic sets of deterministic dynamical systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

BENATTI, F., V. CAPPELLINI, M. DE COCK, M. FANNES und D. VANPETEGHEM. „CLASSICAL LIMIT OF QUANTUM DYNAMICAL ENTROPIES“. Reviews in Mathematical Physics 15, Nr. 08 (Oktober 2003): 847–75. http://dx.doi.org/10.1142/s0129055x03001837.

Der volle Inhalt der Quelle
Annotation:
Two non-commutative dynamical entropies are studied in connection with the classical limit. For systems with a strongly chaotic classical limit, the Kolmogorov–Sinai invariant is recovered on time scales that are logarithmic in the quantization parameter. The model of the quantized hyperbolic automorphisms of the 2-torus is examined in detail.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Grines, V. Z., E. V. Zhuzhoma und O. V. Pochinka. „Dynamical Systems and Topology of Magnetic Fields in Conducting Medium“. Contemporary Mathematics. Fundamental Directions 63, Nr. 3 (15.12.2017): 455–74. http://dx.doi.org/10.22363/2413-3639-2017-63-3-455-474.

Der volle Inhalt der Quelle
Annotation:
We discuss application of contemporary methods of the theory of dynamical systems with regular and chaotic hyperbolic dynamics to investigation of topological structure of magnetic fields in conducting media. For substantial classes of magnetic fields, we consider well-known physical models allowing us to reduce investigation of such fields to study of vector fields and Morse-Smale diffeomorphisms as well as diffeomorphisms with nontrivial basic sets satisfying the A axiom introduced by Smale. For the point-charge magnetic field model, we consider the problem of separator playing an important role in the reconnection processes and investigate relations between its singularities. We consider the class of magnetic fields in the solar corona and solve the problem of topological equivalency of fields in this class. We develop a topological modification of the Zeldovich funicular model of the nondissipative cinematic dynamo, constructing a hyperbolic diffeomorphism with chaotic dynamics that is conservative in the neighborhood of its transitive invariant set.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

AFRAIMOVICH, V. S., SHUI-NEE CHOW und WENXIAN SHEN. „HYPERBOLIC HOMOCLINIC POINTS OF ℤd-ACTIONS IN LATTICE DYNAMICAL SYSTEMS“. International Journal of Bifurcation and Chaos 06, Nr. 06 (Juni 1996): 1059–75. http://dx.doi.org/10.1142/s0218127496000576.

Der volle Inhalt der Quelle
Annotation:
We study ℤd action on a set of equilibrium solutions of a lattice dynamical system, i.e., a system with discrete spatial variables, and the stability and hyperbolicity of the equilibrium solutions. Complicated behavior of ℤd-action corresponds to the existence of an infinite number of equilibrium solutions which are randomly situated along spatial coordinates. We prove that the existence of a homoclinic point of a ℤd-action implies complicated behavior, provided the hyperbolicity of the homoclinic solution with respect to the lattice dynamical system (this is a generalization of the previous work of the first two authors). Similar result holds for hyperbolic partially homoclinic and heteroclinic points. We show the equivalence of stability for any equilibrium solutions and the equivalence of hyperbolicity for homoclinic points under various norms.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Nusse, Helena E., und James A. Yorke. „Analysis of a procedure for finding numerical trajectories close to chaotic saddle hyperbolic sets“. Ergodic Theory and Dynamical Systems 11, Nr. 1 (März 1991): 189–208. http://dx.doi.org/10.1017/s0143385700006076.

Der volle Inhalt der Quelle
Annotation:
AbstractIn dynamical systems examples are common in which there are regions containing chaotic sets that are not attractors, e.g. systems with horseshoes have such regions. In such dynamical systems one will observe chaotic transients. An important problem is the ‘Dynamical Restraint Problem’: given a region that contains a chaotic set but contains no attractor, find a chaotic trajectory numerically that remains in the region for an arbitrarily long period of time.We present two procedures (‘PIM triple procedures’) for finding trajectories which stay extremely close to such chaotic sets for arbitrarily long periods of time.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

SAUSSOL, BENOIT. „AN INTRODUCTION TO QUANTITATIVE POINCARÉ RECURRENCE IN DYNAMICAL SYSTEMS“. Reviews in Mathematical Physics 21, Nr. 08 (September 2009): 949–79. http://dx.doi.org/10.1142/s0129055x09003785.

Der volle Inhalt der Quelle
Annotation:
We present some recurrence results in the context of ergodic theory and dynamical systems. The main focus will be on smooth dynamical systems, in particular, those with some chaotic/hyperbolic behavior. The aim is to compute recurrence rates, limiting distributions of return times, and short returns. We choose to give the full proofs of the results directly related to recurrence, avoiding as much as possible to hide the ideas behind technical details. This drove us to consider as our basic dynamical system a one-dimensional expanding map of the interval. We note, however, that most of the arguments still apply to higher dimensional or less uniform situations, so that most of the statements continue to hold. Some basic notions from the thermodynamic formalism and the dimension theory of dynamical systems will be recalled.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Babalic, Elena, und Calin Lazaroiu. „Cosmological flows on hyperbolic surfaces“. Facta universitatis - series: Physics, Chemistry and Technology 17, Nr. 1, spec.issue (2019): 1–9. http://dx.doi.org/10.2298/fupct1901001b.

Der volle Inhalt der Quelle
Annotation:
We outline the geometric formulation of cosmological flows for FLRW models with the scalar matter as well as certain aspects which arise in their study with methods originating from the geometric theory of dynamical systems. We briefly summarize certain results of numerical analysis which we carried out when the scalar manifold of the model is a hyperbolic surface of the finite or infinite area.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

WARD, T. B. „Almost all $S$-integer dynamical systems have many periodic points“. Ergodic Theory and Dynamical Systems 18, Nr. 2 (April 1998): 471–86. http://dx.doi.org/10.1017/s0143385798113378.

Der volle Inhalt der Quelle
Annotation:
We show that for almost every ergodic $S$-integer dynamical system the radius of convergence of the dynamical zeta function is no larger than $\exp(-\frac{1}{2}h_{\rm top})<1$. In the arithmetic case almost every zeta function is irrational.We conjecture that for almost every ergodic $S$-integer dynamical system the radius of convergence of the zeta function is exactly $\exp(-h_{\rm top})<1$ and the zeta function is irrational.In an important geometric case (the $S$-integer systems corresponding to isometric extensions of the full $p$-shift or, more generally, linear algebraic cellular automata on the full $p$-shift) we show that the conjecture holds with the possible exception of at most two primes $p$.Finally, we explicitly describe the structure of $S$-integer dynamical systems as isometric extensions of (quasi-)hyperbolic dynamical systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Mohtashamipour, Maliheh, und Alireza Zamani Bahabadi. „Non-stationary dynamical systems; Shadowing theorem and some applications“. Filomat 37, Nr. 18 (2023): 6245–53. http://dx.doi.org/10.2298/fil2318245m.

Der volle Inhalt der Quelle
Annotation:
In the present paper, we mean a sequence of maps along a sequence of spaces by a non-stationary dynamical system. We use an Anosov family as a generalization of an Anosov map, which is a sequence of diffeomorphisms along a sequence of compact Riemannian manifolds, so that the tangent bundles split into expanding and contracting subspaces, with uniform bounds for the contraction and the expansion. Also, we introduce the shadowing property on non-stationary dynamical systems. Then, we prepare the necessary conditions for the existence of the shadowing property to prove the shadowing theorem in nonstationary dynamical systems. The shadowing theorem is a known result in dynamical systems, which states that any dynamical system with a hyperbolic structure has the shadowing property. Here, we prove that the shadowing theorem is established on any invariant Anosov family in a non-stationary dynamical system. Then, as in some applications of the shadowing theorem, we check the stability of Anosov families, and also we peruse the stability of isolated invariant Anosov families in non-stationary dynamical systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Molaei, Mohammadreza. „Hyperbolic dynamics of discrete dynamical systems on pseudo-riemannian manifolds“. Electronic Research Announcements 25 (2018): 8–15. http://dx.doi.org/10.3934/era.2018.25.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Demers, Mark F., und Paul Wright. „Behaviour of the escape rate function in hyperbolic dynamical systems“. Nonlinearity 25, Nr. 7 (19.06.2012): 2133–50. http://dx.doi.org/10.1088/0951-7715/25/7/2133.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Putnam, Ian F. „Functoriality of the C *-Algebras Associated with Hyperbolic Dynamical Systems“. Journal of the London Mathematical Society 62, Nr. 3 (Dezember 2000): 873–84. http://dx.doi.org/10.1112/s002461070000140x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Alves, José F., und Vilton Pinheiro. „Slow Rates of Mixing for Dynamical Systems with Hyperbolic Structures“. Journal of Statistical Physics 131, Nr. 3 (31.01.2008): 505–34. http://dx.doi.org/10.1007/s10955-008-9482-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Holland, Mark, und Matthew Nicol. „Speed of convergence to an extreme value distribution for non-uniformly hyperbolic dynamical systems“. Stochastics and Dynamics 15, Nr. 04 (14.10.2015): 1550028. http://dx.doi.org/10.1142/s0219493715500288.

Der volle Inhalt der Quelle
Annotation:
Suppose (f, 𝒳, ν) is a dynamical system and ϕ : 𝒳 → ℝ is an observation with a unique maximum at a (generic) point in 𝒳. We consider the time series of successive maxima Mn(x) := max {ϕ(x),…,ϕ ◦ fn-1(x)}. Recent works have focused on the distributional convergence of such maxima (under suitable normalization) to an extreme value distribution. In this paper, for certain dynamical systems, we establish convergence rates to the limiting distribution. In contrast to the case of i.i.d. random variables, the convergence rates depend on the rate of mixing and the recurrence time statistics. For a range of applications, including uniformly expanding maps, quadratic maps, and intermittent maps, we establish corresponding convergence rates. We also establish convergence rates for certain hyperbolic systems such as Anosov systems, and discuss convergence rates for non-uniformly hyperbolic systems, such as Hénon maps.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie