Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Hydroponic greenhouse“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Hydroponic greenhouse" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Hydroponic greenhouse"
Arif Supriyanto und Fathurrahmani Fathurrahmani. „The prototype of the Greenhouse Smart Control and Monitoring System in Hydroponic Plants“. Digital Zone: Jurnal Teknologi Informasi dan Komunikasi 10, Nr. 2 (01.11.2019): 131–43. http://dx.doi.org/10.31849/digitalzone.v10i2.3265.
Der volle Inhalt der QuelleTatas, Konstantinos, Ahmad Al-Zoubi, Nicholas Christofides, Chrysostomos Zannettis, Michael Chrysostomou, Stavros Panteli und Anthony Antoniou. „Reliable IoT-Based Monitoring and Control of Hydroponic Systems“. Technologies 10, Nr. 1 (02.02.2022): 26. http://dx.doi.org/10.3390/technologies10010026.
Der volle Inhalt der QuelleZhuravleva, L. A. „GREENHOUSES WITH NARROW-RACK HYDROPONICS TECHNOLOGY BASED ON DIGITAL CONTROL SYSTEMS“. Scientific Life 15, Nr. 9 (30.09.2020): 1195–203. http://dx.doi.org/10.35679/1991-9476-2020-15-7-1195-1203.
Der volle Inhalt der QuelleWalters, Kellie J., und Christopher J. Currey. „Hydroponic Greenhouse Basil Production: Comparing Systems and Cultivars“. HortTechnology 25, Nr. 5 (Oktober 2015): 645–50. http://dx.doi.org/10.21273/horttech.25.5.645.
Der volle Inhalt der QuellePinchuk, E. V., L. V. Bespalko, E. G. Kozar, I. T. Balashova, S. M. Sirota und T. E. Shevchenko. „VALUABLE VEGETABLE GREEN ON HYDROPONICS FOR SEASONAL USE“. Vegetable crops of Russia, Nr. 3 (14.06.2019): 45–53. http://dx.doi.org/10.18619/2072-9146-2019-3-45-53.
Der volle Inhalt der QuelleNgosong, Christopher, Moshe T. Halpern, Joann K. Whalen und Donald L. Smith. „Purslane (Portulaca oleracea L.) has potential for desalinizing greenhouse recirculation water“. Canadian Journal of Plant Science 93, Nr. 5 (September 2013): 961–64. http://dx.doi.org/10.4141/cjps2012-271.
Der volle Inhalt der QuelleSumarni, Eni, Loekas Soesanto, Noor Farid und Hanif Nasiatul Baroroh. „POTENSI PERTUMBUHAN PURWOCENG DENGAN TEKNIK IRIGASI TETES, NUTRIENT FILM TECHNIQUE (NFT) DAN PENANAMAN DI LAHAN TERBUKA“. Jurnal Litbang Provinsi Jawa Tengah 16, Nr. 2 (01.12.2018): 175–81. http://dx.doi.org/10.36762/litbangjateng.v16i2.763.
Der volle Inhalt der QuelleGirma, F., und B. Gebremariam. „Review on Hydroponic Feed Value to Livestock Production“. Journal of Scientific and Innovative Research 7, Nr. 4 (30.12.2018): 106–9. http://dx.doi.org/10.31254/jsir.2018.7405.
Der volle Inhalt der QuelleEgilla, Jonathan N., und Isabelle Nyirakabibi. „(212) Influence of Mineral Nutrient Source in NFT System and Temperature on the Yield of Cos Lettuce `Cimmaron'“. HortScience 41, Nr. 4 (Juli 2006): 1083D—1084. http://dx.doi.org/10.21273/hortsci.41.4.1083d.
Der volle Inhalt der QuelleCunha, Samuel Henrique, Amador Eduardo Lima, Alex Mendonça Carvalho, Rubens José Guimarães, Elisa Melo Castro, Mauro Magalhães Faria und Erico Tadao Teramoto. „Modified hydroponics and phenolic foam as technological innovations in the production of coffee seedlings from cuttings“. Semina: Ciências Agrárias 43, Nr. 1 (10.01.2022): 351–66. http://dx.doi.org/10.5433/1679-0359.2022v43n1p351.
Der volle Inhalt der QuelleDissertationen zum Thema "Hydroponic greenhouse"
Håkansson, David, und Anna Lund. „Hydroponic Greenhouse: Autonomous identification of a plant s growth cycle“. Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264458.
Der volle Inhalt der QuelleI en värld med en ständigt växande befolkning är förmågan att odla mat effektivt nödvändig. En metod för att öka denna effektivitet är genom automatisering. Syftet för detta projekt är därför att undersöka hur identifieringen av en plantans stadie i dess växtcykel kan automatiseras. Detta gjordes genom att mäta antalet gröna pixlar i en bild av plantan. För att kunna svara våra forskningsfrågor byggdes en testmiljö. Testmiljön bestod av ett växthus med ett oreglerat aeroponiskt system, ett regulationssystem för luftfuktighet och ett identifikationsssystem för att avgöra en plantas stadie i dess växtcykel. Plantan som valdes för att testa identifikationssystemet var basilika. Identifikationssystemet som togs fram kunde med framgång identifiera stadiet av en planta som är långt in i dess vuxna stadie, i förstadiet eller i mitten av dess groddstadie. Plantor som precis övergått från grodd till vuxet stadie blev däremot inte alltid identifierade korrekt.
Nelkin, Jennifer B. „Development of Cultural Practices and Environmental Control Strategies for the Production of Basil (Ocimum basilicum L.) in a Semi-Arid Climate“. Thesis, Tucson, Arizona : University of Arizona, 2005. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu%5Fetd%5F1056%5F1%5Fm.pdf&type=application/pdf.
Der volle Inhalt der QuelleJohnsson, Emma, und Virginia Cheung. „Vertikalt växthus i Kiruna : Med spillvärme från LKABs gruvindustri“. Thesis, KTH, Byggteknik och design, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-126096.
Der volle Inhalt der QuelleWhile the cities are expanding the demand for locally grown and organic crops is increasing. To be able to produce locally and more sustainable crops, one option could be to grow in a so-called vertical greenhouse. In Kiruna the largest ore mine in Sweden is operated by the company LKAB. Various processes in the mining industry lead to waste heat. In Kiruna, the climate is cold compared to most parts of Sweden, and therefore requires heating for the cultivation to be able to take place all year round in a greenhouse. The project’s task is to explore how to utilize waste heat from the mine to a vertical greenhouse in the context of a new office building at LKAB's mining area. LKAB's new office building has a square footprint on the ground with one of the corners in the south direction. The division between the greenhouse and the office can be simplified by the square divided diagonally where the southern half is the greenhouse and the northern half the office. Since the sunlight is limited in Kiruna the greenhouse walls has been design to adjust to the sun’s low position. The sun’s low position requires a sloped facade in the south direction. The greenhouse’s floor area decreases with each floor. As the external material for the greenhouse glass is used and as framing material steel is used. A hydroponically system is used where the seedlings are put directly in a circulating nutrient solution and in this way the system can be designed with horizontal pipes in several vertical cultivated floors. The greenhouse will be heated with waste heat from LKAB's industry, the project examines two alternatives of waste heat sources, and the result is that both of the alternatives studied can be used to heat the entire volume of the greenhouse.
Zhang, Xuemei. „Ecology and Management of Pythium species in Float Greenhouse Tobacco Transplant Production“. Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/101779.
Der volle Inhalt der QuelleDoctor of Philosophy
Pythium diseases are common in tobacco transplant production and can cause up to 70% seedling losses in hydroponic (float-bed) tobacco transplant greenhouses. However, little is known about the composition and distribution of Pythium communities in tobacco transplant greenhouses. This project began with a tobacco transplant greenhouse survey, in which 12 Pythium species were recovered from center walkways, weeds, greenhouse bay water, and tobacco seedlings. Pythium dissotocum and P. myriotylum were the two types (species) of Pythium most commonly found in the survey. Pythium myriotylum, P. coloratum, and P. dissotocum were aggressive pathogens that suppressed seed germination and caused root rot, stunting, foliar chlorosis, and death of tobacco seedlings. Pythium aristosporum, P. porphyrae, P. torulosum, P. inflatum, P. irregulare, P. catenulatum, and an isolate of P. dissotocum, were weak pathogens causing root symptoms without affecting the upper part of tobacco seedlings. Pythium adhaerens, P. attrantheridium, and P. pectinolyticum did not affect tobacco seeds or seedlings. The symptoms caused by infection by Pythium species differed among host (tobacco) growth stages, except for the most aggressive species, P. myriotylum. High levels of variation were observed among isolates of P. dissotocum, in terms of vegetative growth rate (on V8 agar media) and aggressiveness on tobacco seed and seedlings. Pythium myriotylum was found to co-exist with multiple other Pythium or oomycete species (neighbor isolates) in the same environments within tobacco greenhouses. Significant interactions between P. myriotylum and some neighbor isolates were revealed, and these interactions significantly affect the consequences of P. myriotylum infection of tobacco seeds. Greenhouse Pythium control trials identified two chemical water treatments (ethaboxam and mefenoxam), and a non-chemical water treatment (copper ionization) as potentially promising alternatives to the current standard Pythium control (etridiazole) for Pythium disease management in tobacco transplant production. The outcomes of this project provide useful new information to both better understand the composition, distribution, and diversity of Pythium communities in tobacco transplant greenhouses and to improve Pythium disease management for tobacco transplant production.
Korssell, Caroline, und Emelie Rudert. „Implementering av hydroponisk odling i en livsmedelsbutik : En fallstudie av en aktör inom Stockholmsområdet“. Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297542.
Der volle Inhalt der QuelleThis report is the result and outcome of a bachelor's thesis project conducted during the spring of 2021. The report presents the performed case study of a grocery store, in the area of Stockholm, where the company is aiming to implement a hydroponic self-cultivation inside their grocery store. The work is based on conducting interviews and reviewing established scientific articles in the field. In the case study, it has been investigated how a potential collaboration between the grocery store and a cultivation company can be established. The study was limited to investigating two cultivation companies active on the Swedish market. These two cultivation companies have different solutions of how the cultivation can be implemented on the store area, but both offer vertical hydroponic solutions. Further, both systems of the individual cultivation companies’ have been implemented in other grocery stores that can be used as reference for validation of data. The literature review of existing publications were conducted by searching in different databases by using the keywords of this work, for the researcher to increase knowledge to create guides for the interviews and for creating the theoretical frame of reference. Thereafter, literature findings and answers from the interviewees were compiled, analyzed and discussed to make a proposition of which cultivation company is best suited for a potential collaboration, with regard to the grocery stores’ wishes of implementing a hydroponic solution. The results show that several of the grocery stores’ sustainability goals would benefit from a potential implementation of a self-cultivation. Also, implementing a hydroponic farm on the store area would increase the grocery store’s contribution towards achieving the Sustainable Development Goals.
Flôres, Migacir Trindade Duarte. „Efeito da densidade de semeadura e da idade de colheita na produtividade e na composição bromatológica de milho (Zea mays L.)“. Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/11/11136/tde-10112009-103027/.
Der volle Inhalt der QuelleThe present work is a study of the use of hydroponic forage as an option for feeding ruminant during period of the year with food scarcity. The experiment was carried out in greenhouse, at Federal Institute of Rio Grande do Sul in Sertão, Brazil, in 2009, with the objective of evaluating the effect of the sowing density and crop age in the productivity and bromatological composition of maize under hydroponic system, produced under oat hay substrate. The statistical design was completely randomized, with four replications, using plots of 1,0 m2 (1,0 x 1,0 m). The densities were distributed in outline factorial (3 x 2), constituted of 3 sowing densities (1.0, 2.0 and 3.0 kg.m-2). The fertirrigation was used from the 3rd to the 17th day. There were two harvests, at 10 and 17 days, which were determined the green and dry mass (kg.m-2), the plant height and the PB, FDA, FDN and NDT content. The results were submitted to the statistical analysis by the Tukey test (P > 0.05). There was no statistical difference between values obtained by the bromatological analysis related to the sowing densities. The dry matter at 17 days using the seeding rate of 3.0 kg.m-2 was statistical lower than others treatments. For the use of the green forage, the harvesting can be performed at 17 days (there was no significant difference in relation to seeding rates of 2.0 and 3.0 kg.m-2).
Шевченко, І. М. „Оздоровлення сортів картоплі за використання біотехнологічних методів“. Thesis, Чернігів, 2021. http://ir.stu.cn.ua/123456789/25194.
Der volle Inhalt der QuelleОб’єктом досліджень є процеси оздоровлення картоплі від вірусної інфекції та прискореного розмноження безвірусного матеріалу в умовах гідропонної теплиці. Предметом дослідження є використання біотехнологічних методів в технології оздоровлення картоплі від вірусних хвороб. На сьогодні відомо про новітні технології отримання першого покоління міні бульб картоплі за використання гідропоніки. Гідропонне вирощування, є альтернативою більш традиційному процесу вирощування рослин у ґрунті. Використовуючи системи, засновані на вирощуванні рослин шляхом подачі води наповненої поживними речовинами, значно прискорює виробництво продукції. В господарстві ПрАТ НВО «Чернігівеліткартопля» успішно працює „Промислова гідропонна технологiя виробництва міні бульбоздоровленої картоплi”, яка закоефiцiєнтом розмноження перевищує iснуючi технологiї прискоренного розмноження в 5 – 10 разiв і забезпечує одержання від однієї оздоровленої пробіркової рослини, висадженої у гідропонну установку, за вегетаційний період 50 – 100 мінібульб масою 3 – 5 грамів. Це дозволяє відтворювати еліту за скороченою трьохрічною схемою, до того ж без добору клонів.
The object of research is the processes of recovery of potatoes from viral infection and accelerated reproduction of virus-free material in a hydroponic greenhouse. The subject of research is the use of biotechnological methods in the technology of recovery of potatoes from viral diseases. Today we know about the latest technologies for obtaining the first generation of mini potato tubers using hydroponics. Hydroponic cultivation is an alternative to the more traditional process of growing plants in the soil. Using systems based on growing plants by supplying water filled with nutrients, significantly accelerates production. In the economy of PJSC NPO "Chernigivelitkartoplya" successfully works "Industrial hydroponic technology for the production of mini-bulb potatoes", which by the coefficient of reproduction exceeds the existing technologies of accelerated reproduction in 5 - 10 times and provides from one healthy, - 100 minibulbs weighing 3 - 5 grams. This allows you to reproduce the elite on a shortened three-year scheme, in addition, without the selection of clones.
Lundin, Karl, und Oscar Olli. „Automated hydroponics greenhouse : Regulation of pH and nutrients“. Thesis, KTH, Maskinkonstruktion (Inst.), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-226662.
Der volle Inhalt der QuelleSyftet med det här projektet är att skapa ett automatiserat växthus som kan producera grödor året runt med hjälp av sensorer och aktuatorer. Med olika sensorer mäts temperaturen i både vattnet och luften, relativa luftfuktigheten, vattennivå, pH- och näringsvärden. Dock kommer endast vattennivå, pH- och näringsvärden regleras. Växthuset använder sig av så kallad hydroponisk odling, vilket innebär att odlingen inte sker i jord utan i vatten. Detta underlättar bland annat mätningar och kontrollering av systemet men minimerar även vattenkonsumptionen och bidrar till ett mera miljövänligt system. Projektet kommer i huvudsak inrikta sig på reglering av pH och näringsnivåer av vattnet. Systemet har visats stabilt och har förmågan att reglera sig självt inom önskat intervall för näringskoncentration och pH för att odla basilika.
Littlefield, Joanne. „Controlled Environment Agriculture: Greenhouses Feature High-Tech Hydroponics“. College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 2001. http://hdl.handle.net/10150/622255.
Der volle Inhalt der QuelleLicamele, Jason David. „Biomass Production and Nutrient Dynamics in an Aquaponics System“. Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/193835.
Der volle Inhalt der QuelleBücher zum Thema "Hydroponic greenhouse"
Planning a profitable hydroponic greenhouse business. Sark, Channel Islands, U.K: Sovereign University Pub. House, 1996.
Den vollen Inhalt der Quelle finden1936-, DeKorne James B., Hrsg. The hydroponic hot house: Low-cost, high-yield greenhouse gardening. Port Townsend, Wash: Loompanics Unlimited, 1992.
Den vollen Inhalt der Quelle findenM, Taylor T. Secrets to a successful greenhouse and business: A complete guide to starting & operating a high-profit organic or hydroponic business that benefits the environment. 7. Aufl. Melbourne, FL: GreenEarth Pub. Co., 2000.
Den vollen Inhalt der Quelle findenPapadopoulos, Athanasios P. Growing greenhouse tomatoes in soil and in soilless media. Ottawa, Ont: Available from Communications Branch, Agriculture Canada, 1991.
Den vollen Inhalt der Quelle findenPapadopoulos, Athanasios P. Growing greenhouse seedless cucumbers in soil and in soilless media. Ottawa, Ont: Agriculture and Agri-Food Canada, 1994.
Den vollen Inhalt der Quelle findenJung, M. C. Victoria. The role of selected plant and microbial metabolites in the nutrient solution of closed growing systems in greenhouses. Alnarp: Swedish University of Agricultural Sciences, 2003.
Den vollen Inhalt der Quelle findenHydroponics and protected cultivation: a practical guide. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0000.
Der volle Inhalt der QuelleHydroponic Hot House: Low-Cost, High-Yield Greenhouse Gardening. Breakout Productions, 1999.
Den vollen Inhalt der Quelle findenDekorne, James B. The Hydroponic Hothouse: Low-Cost, High-Yield Greenhouse Gardening. Loompanics Unlimited, 1992.
Den vollen Inhalt der Quelle findenSavage, Adam J. Master Guide to Planning Profitable Hydroponic-Greenhouse and S-Cea Operations. International Center for Special Studies, 1987.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Hydroponic greenhouse"
Morgan, Lynette. „Organic soilless greenhouse systems.“ In Hydroponics and protected cultivation: a practical guide, 100–117. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0100.
Der volle Inhalt der QuelleMorgan, Lynette. „Organic soilless greenhouse systems.“ In Hydroponics and protected cultivation: a practical guide, 100–117. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0007.
Der volle Inhalt der QuelleResh, Howard M. „Greenhouse Environmental Control and Automation“. In Hydroponic Food Production, 297–357. 8. Aufl. New York: CRC Press, 2022. http://dx.doi.org/10.1201/9781003133254-12.
Der volle Inhalt der QuelleMorgan, Lynette. „Greenhouses and protected cropping structures.“ In Hydroponics and protected cultivation: a practical guide, 11–29. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0011.
Der volle Inhalt der QuelleMorgan, Lynette. „Greenhouses and protected cropping structures.“ In Hydroponics and protected cultivation: a practical guide, 11–29. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0002.
Der volle Inhalt der QuelleMorgan, Lynette. „Hydroponic production of selected crops.“ In Hydroponics and protected cultivation: a practical guide, 196–228. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0196.
Der volle Inhalt der QuelleMorgan, Lynette. „Hydroponic production of selected crops.“ In Hydroponics and protected cultivation: a practical guide, 196–228. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0011a.
Der volle Inhalt der QuelleMorgan, Lynette. „Background and history of hydroponics and protected cultivation.“ In Hydroponics and protected cultivation: a practical guide, 1–10. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0001.
Der volle Inhalt der QuelleMorgan, Lynette. „Greenhouse produce quality and assessment.“ In Hydroponics and protected cultivation: a practical guide, 246–67. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0246.
Der volle Inhalt der QuelleMorgan, Lynette. „Greenhouse produce quality and assessment.“ In Hydroponics and protected cultivation: a practical guide, 246–67. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0013.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Hydroponic greenhouse"
Fernandes, Miguel B., Bertinho A. Costa und Joao M. Lemos. „Hydroponic Greenhouse Crop Optimization“. In 2018 13th APCA International Conference on Automatic Control and Soft Computing (CONTROLO). IEEE, 2018. http://dx.doi.org/10.1109/controlo.2018.8514264.
Der volle Inhalt der QuelleAndrianto, Heri, Suhardi und Ahmad Faizal. „Development of Smart Greenhouse System for Hydroponic Agriculture“. In 2020 International Conference on Information Technology Systems and Innovation (ICITSI). IEEE, 2020. http://dx.doi.org/10.1109/icitsi50517.2020.9264917.
Der volle Inhalt der QuelleSaenz, Edwin, Mario Jimenez und Andres Ramirez. „Strawberries collecting robot prototype in greenhouse hydroponic systems“. In 2013 XVIII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA). IEEE, 2013. http://dx.doi.org/10.1109/stsiva.2013.6644933.
Der volle Inhalt der QuelleFenitha, Josephine Ruth, S. Mirudhula, K. Subhashini und R. Sriharidha. „Hydroponic Nutrient Solution for Optimized Greenhouse with IOT“. In 2022 International Conference on Advanced Computing Technologies and Applications (ICACTA). IEEE, 2022. http://dx.doi.org/10.1109/icacta54488.2022.9753346.
Der volle Inhalt der QuelleMoreno, Maria C., Oscar J. Suarez und Alda Pardo Garcia. „IoT-based Automated Greenhouse for Deep Water Culture Hydroponic System“. In 2021 2nd Sustainable Cities Latin America Conference (SCLA). IEEE, 2021. http://dx.doi.org/10.1109/scla53004.2021.9540187.
Der volle Inhalt der QuelleDumitrascu, Stefan. „COMPLEX SYSTEM DEDICATED TO MONITORING AND CONTROL OF HYDROPONIC GREENHOUSE ENVIRONMENT“. In 17th International Multidisciplinary Scientific GeoConference SGEM2017. Stef92 Technology, 2017. http://dx.doi.org/10.5593/sgem2017/51/s20.032.
Der volle Inhalt der QuelleПономаренко, Елена, und Татьяна Пазяева. „Оптимизация элементов технологии возделывания томатов в защищенном грунте по малообъемной технологии“. In VIIth International Scientific Conference “Genetics, Physiology and Plant Breeding”. Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2021. http://dx.doi.org/10.53040/gppb7.2021.43.
Der volle Inhalt der QuelleHaslavsky, Vitaly, und Helena Vitoshkin. „Numerical Model of Convective Heat Transfer in a Multi-level Hydroponic Greenhouse“. In 7th World Congress on Mechanical, Chemical, and Material Engineering. Avestia Publishing, 2021. http://dx.doi.org/10.11159/htff21.111.
Der volle Inhalt der Quelle„Canadian Integrated Northern Greenhouse (CING): Designing the Outer Structure and Pivoting Hydroponic Systems“. In 2014 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, 2014. http://dx.doi.org/10.13031/aim.20141898724.
Der volle Inhalt der QuelleKorzhakov, Alexey V., Valery E. Korzhakov und Svetlana A. Korzhakova. „Automatization of Geotermal Water Acoustic and Magnetic Treatment Process in Hydroponic Greenhouse Heating System“. In 2018 International Russian Automation Conference (RusAutoCon). IEEE, 2018. http://dx.doi.org/10.1109/rusautocon.2018.8501810.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Hydroponic greenhouse"
Katan, Jaacov, und Michael E. Stanghellini. Clinical (Major) and Subclinical (Minor) Root-Infecting Pathogens in Plant Growth Substrates, and Integrated Strategies for their Control. United States Department of Agriculture, Oktober 1993. http://dx.doi.org/10.32747/1993.7568089.bard.
Der volle Inhalt der Quelle