Auswahl der wissenschaftlichen Literatur zum Thema „Hydroponic greenhouse“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Hydroponic greenhouse" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Hydroponic greenhouse"

1

Arif Supriyanto und Fathurrahmani Fathurrahmani. „The prototype of the Greenhouse Smart Control and Monitoring System in Hydroponic Plants“. Digital Zone: Jurnal Teknologi Informasi dan Komunikasi 10, Nr. 2 (01.11.2019): 131–43. http://dx.doi.org/10.31849/digitalzone.v10i2.3265.

Der volle Inhalt der Quelle
Annotation:
This research helps the farmers to do the humidification control and monitor the condition of hydroponic plants in greenhouses in real-time. When it comes to watching the hydroponic plants in greenhouses, the farmers usually experience difficulties because they still do it manually. Activities such as checking the temperature, air humidity, and also water quality in hydroponic plants by coming directly to the greenhouse are still ineffective. Therefore this research aims to make a smart greenhouse prototype for hydroponic plants. Smart greenhouse hardware was built based on the Arduino microcontroller, DHT11 sensor, pH sensor, TDS, DS18b20 temperature, ultrasonic, and esp8266 wifi module. The monitoring system features information on water quality from hydroponic plants and the ability to record farming activities from planting preparation to web-based harvesting. The test results of smart greenhouse monitoring system can display the hydroponic plant conditions and able to do the humidification control with an upper limit of 35 degrees celsius because plant can survive with disease under 35 degrees celsius, with small average offset for the sensor, and an average offset of 1.49 from TDS sensors, with temperature of 0.50 and pH of 0.34. Keywords: Greenhouse, NFT hydroponics, Humidification, Monitoring System, Arduino
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Tatas, Konstantinos, Ahmad Al-Zoubi, Nicholas Christofides, Chrysostomos Zannettis, Michael Chrysostomou, Stavros Panteli und Anthony Antoniou. „Reliable IoT-Based Monitoring and Control of Hydroponic Systems“. Technologies 10, Nr. 1 (02.02.2022): 26. http://dx.doi.org/10.3390/technologies10010026.

Der volle Inhalt der Quelle
Annotation:
This paper presents the design and implementation of iPONICS: an intelligent, low-cost IoT-based control and monitoring system for hydroponics greenhouses. The system is based on three types of sensor nodes. The main (master) node is responsible for controlling the pump, monitoring the quality of the water in the greenhouse and aggregating and transmitting the data from the slave nodes. Environment sensing slave nodes monitor the ambient conditions in the greenhouse and transmit the data to the main node. Security nodes monitor activity (movement in the area). The system monitors water quality and greenhouse temperature and humidity, ensuring that crops grow under optimal conditions according to hydroponics guidelines. Remote monitoring for the greenhouse keepers is facilitated by monitoring these parameters via connecting to a website. An innovative fuzzy inference engine determines the plant irrigation duration. The system is optimized for low power consumption in order to facilitate off-grid operation. Preliminary reliability analysis indicates that the system can tolerate various transient faults without requiring intervention.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Zhuravleva, L. A. „GREENHOUSES WITH NARROW-RACK HYDROPONICS TECHNOLOGY BASED ON DIGITAL CONTROL SYSTEMS“. Scientific Life 15, Nr. 9 (30.09.2020): 1195–203. http://dx.doi.org/10.35679/1991-9476-2020-15-7-1195-1203.

Der volle Inhalt der Quelle
Annotation:
Currently, many foreign greenhouse manufacturers use elements of digital technologies and hydroponics systems. Almost all manufacturers of systems and equipment in this class are foreign companies. Work on creating modern domestic digital controlled systems for growing agricultural crops is relevant and in demand in Russia. The Moscow Polytechnic University conducts studies and development research aimed at creating software and intelligent technologies for controlling and regulating the microclimate in greenhouses and hydroponic installations. Based on mathematical models of the microclimate systems for complete automation of plants growing process and automatic maintenance of optimal microclimate parameters, remotely using a phone or tablet PC, have been designed and implemented. The article presents a mathematical model of the greenhouse microclimate. One of the most promising directions is considered; it is a technology of multi-level shelving and narrow-shelving hydroponics. A functional diagram of the greenhouse microclimate control is given. This method allows to increase the used volume of greenhouses up to 25-30 pcs. plants per 1 sq. m of greenhouse area, the number of crop rotations up to 4-5 per year. Reducing water and nutrient solution consumption per unit of production by 2.0-2.5 times compared to drip irrigation greenhouses is provided. The amount of soil in comparison with low-volume substrate technology with drip irrigation is reduction by 4-6 times. The amount of nitrates in products is reduced by 8-10 times compared to the standard. The method of growing agricultural crops does not require much physical effort, unlike traditional crop production. Greenhouses with narrow-rack hydroponics technology based on digital control systems provide an increase in the efficiency of crop production; they are an environmentally friendly technology for growing seedlings, vegetables, berries, flowers and green crops. The technology can be used both in high-tech large-scale industries, agricultural holdings, city farms, and in family businesses on personal plots.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Walters, Kellie J., und Christopher J. Currey. „Hydroponic Greenhouse Basil Production: Comparing Systems and Cultivars“. HortTechnology 25, Nr. 5 (Oktober 2015): 645–50. http://dx.doi.org/10.21273/horttech.25.5.645.

Der volle Inhalt der Quelle
Annotation:
Basil (Ocimum sp.) is the most popular fresh culinary herb. However, there is a lack of data characterizing the effect of hydroponic production systems and cultivars on the yield of hydroponically produced basil. Our objectives were to quantify productivity and characterize growth of basil cultivars grown in two hydroponic production systems. Thirty-five basil cultivars, including selections of sweet basil (O. basilicum), holy basil (O. tenuiflorum), and lemon basil (O. ×citriodorum and O. basilicum) were chosen. Seedlings were transplanted into nutrient film technique (NFT) or deep flow technique (DFT) systems and grown for 3 weeks. There was no interaction between basil cultivars and hydroponic production system. Fresh weight of plants grown in DFT systems was 2.6 g greater compared with plants grown in NFT systems. Basil cultivars differed greatly in fresh weight. In general, holy, lemon, and sweet basil cultivars produce moderate to high fresh weight, but vary greatly. Dissimilarly, bush (O. basilicum var. minimum), cinnamon (O. basilicum), large-leaf (O. basilicum), and thai basils (O. basilicum var. thyrisiflorum) produce moderate fresh weight and purple basil (O. basilicum) cultivars produce the least fresh weight. The yield of basil seems to be affected more by cultivar selection than hydroponic production system. Therefore, hydroponic basil producers should select basil cultivars based on flavor and yield, while hydroponic systems should be selected based on operational preferences.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Pinchuk, E. V., L. V. Bespalko, E. G. Kozar, I. T. Balashova, S. M. Sirota und T. E. Shevchenko. „VALUABLE VEGETABLE GREEN ON HYDROPONICS FOR SEASONAL USE“. Vegetable crops of Russia, Nr. 3 (14.06.2019): 45–53. http://dx.doi.org/10.18619/2072-9146-2019-3-45-53.

Der volle Inhalt der Quelle
Annotation:
The regular inclusion of green vegetables in the diet is beneficial to human. In Russia the main time manufacture and consumption of fresh vegetable production falls in the June-October. Seasonality of consumption of vegetables may lower the conveyor production using secure ground, as well as the introduction of a larger number of species in the production of vegetable crops. One of the priority directions of the development of greenhouse vegetable production is the introduction of hydroponic technologies, including longline. In Federal Scientific Vegetable Center has passed the test of cultivars of lettuce, rocket salad, mustard leaf and watercress breeding laboratory of green and spicy taste cultures on multi-level narrow column hydroponics (MUG). It is shown that when grown on the installation of MUG, it is possible to obtain ecologically safe and valuable spicyflavoring and salad green products. The studied varieties are looking not only for growing hydroponic salad lines, but for multi-level narrow column hydroponics (vertical vegetable growing) during the off-season. The studied varieties are promising not only for growing on hydroponic salad lines, but for multi-level narrow column hydroponics (vertical vegetable growing) during the off-season.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ngosong, Christopher, Moshe T. Halpern, Joann K. Whalen und Donald L. Smith. „Purslane (Portulaca oleracea L.) has potential for desalinizing greenhouse recirculation water“. Canadian Journal of Plant Science 93, Nr. 5 (September 2013): 961–64. http://dx.doi.org/10.4141/cjps2012-271.

Der volle Inhalt der Quelle
Annotation:
Ngosong, C., Halpern, M. T., Whalen, J. K. and Smith, D. L. 2013. Purslane ( Portulaca oleracea L.) has potential for desalinizing greenhouse recirculation water. Can. J. Plant Sci. 93: 961–964. Recirculating fertigation solutions improves the environmental sustainability of hydroponics-based vegetable production in Canada. Purslane is an edible halophyte with proported medicinal benefits that could absorb excess salts from recirculation water. It grew well in hydroponic solutions with up to 1000 mg NaCl L−1. Greatest Na absorption occurred during earlier vegetative growth.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Sumarni, Eni, Loekas Soesanto, Noor Farid und Hanif Nasiatul Baroroh. „POTENSI PERTUMBUHAN PURWOCENG DENGAN TEKNIK IRIGASI TETES, NUTRIENT FILM TECHNIQUE (NFT) DAN PENANAMAN DI LAHAN TERBUKA“. Jurnal Litbang Provinsi Jawa Tengah 16, Nr. 2 (01.12.2018): 175–81. http://dx.doi.org/10.36762/litbangjateng.v16i2.763.

Der volle Inhalt der Quelle
Annotation:
The low yield and quality of purwoceng on conventional planting in open land can be overcome by the application of hydroponic technology in the greenhouse. Hydroponic technology in greenhouses allows controlled control of plants, more planned harvests and reduces pests and diseases. The results of a hydroponic purwoceng production study using drip and NFT irrigation techniques have been carried out separately. The results of the purwoceng production study using the hydroponic nutrient film technique (NFT) show that purwoceng is sensitive to circulating water. Withered purwoceng plants in the NFT system reach 40%. further studies are needed on the hydroponic technique of drip irrigation, NFT and in open land on the growth and development of purwoceng plants. The purpose of the research was to get the effect of drip irrigation, NFT and open land on the growth of plant height and the number of branches of purwoceng plants in the dry season. Experiment using a completely randomized design (CRD) with 3 replications. The micro-climate inside and outside the greenhouse observed includes air temperature and air humidity. Growth data were analyzed by F test and continued with DMRT test at 5% level. The growth variables observed included plant height and number of branches. Purwoceng production using drip irrigation systems, NFT systems and open land has different effects on purwoceng growth. Drip irrigation in the greenhouse produces the highest plant height and number of branches compared to the NFT technique and in open land. Purwoceng planting with drip irrigation shows the highest yield, which is 14 branches. The number of branches of purwoceng plants in open land reaches an average of 6.9. The NFT technique produces the lowest (3,9 branches).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Girma, F., und B. Gebremariam. „Review on Hydroponic Feed Value to Livestock Production“. Journal of Scientific and Innovative Research 7, Nr. 4 (30.12.2018): 106–9. http://dx.doi.org/10.31254/jsir.2018.7405.

Der volle Inhalt der Quelle
Annotation:
In agriculture hydroponics is an advanced technology. Hydroponic production is used to guarantee a constant production of high quantity of green forage throughout the year for livestock feed with suitable prices. Therefore, this review aims to review hydroponic feed value on livestock production. Hydroponics is a technique of growing of plants without soil but in water or nutrient rich solution in a greenhouse. This fodder increases up to 20-30cm height consisting of roots, seeds and plants. About 1.50-3.0 liters of water is required to produce one kg of fresh hydroponics fodder in seven days since water can be reused. However, DM content of 11-14% is common for hydroponics maize and yields of 5-6 folds on fresh basis. Since the hydroponics, fodder is more palatable, digestible and nutritious while imparting other health benefits to the animals and improve production performance of livestock. The cost of seed contributes about 90% of the total cost of production of hydroponics maize fodder as compared to conventional which is much lower. Supplementing is 5-10 kg fresh hydroponics maize fodder per cow per day. Digestibility of the nutrients of the ration could increase in milk production (8- 13%) by feeding hydroponics fodder. Hydroponics fodder can be produced by farmers to feed their dairy animals using low cost diet in situations, where conventional green fodder cannot be grown successfully. Therefore, there is a need for more research and development endeavor for better utilization in the future.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Egilla, Jonathan N., und Isabelle Nyirakabibi. „(212) Influence of Mineral Nutrient Source in NFT System and Temperature on the Yield of Cos Lettuce `Cimmaron'“. HortScience 41, Nr. 4 (Juli 2006): 1083D—1084. http://dx.doi.org/10.21273/hortsci.41.4.1083d.

Der volle Inhalt der Quelle
Annotation:
Two-week-old seedlings of cos lettuce (Lactuca sativa L. var. longifolia) `Cimmaron' were transferred into NFT hydroponic troughs in July and Sept. 2005. The crop was grown either in a polyethylene or polycarbonate greenhouse. Mean July temperature and maximum relative humidity (RH) in the two greenhouses were 30.5 and 27.7 °C ± 0.32 °C; 81.3% and 84.7%, respectively. In September, the mean temperature and RH in the same greenhouses were 22.6 °C and 21.9 °C ± 0.30 °C; 95.6% and 99.2%, respectively. Lettuce crop grown with Peters Excel® [15N–5P2O5–15K2O; (Excel)], had higher fresh mass (FM) and dry mass (DM) compared with either Peat-lite®; [15N-16P2O5-17K2O; (Peat-lite)] or All-Purpose Hydroponic Fertilizer® [9N-4P2O5-15 K2O; (All-Purpose)], but lower DM/FM. At harvest, the crop had good market quality, regardless of mineral nutrient source (MNS). MNS significantly (P ≤ 0.05) influenced yield (FM and DM) in September, regardless of greenhouse type. However, in July only Peat-lite caused significant (P < 0.0252) increase in DM, under the higher temperature condition of greenhouse I. This trend suggests that good quality lettuce and sustained yield can be obtained with the soluble fertilizers Excel and Peat-lite, which are not formulated for hydroponic crop production. Furthermore, `Cimmaron' can produce satisfactory yield under relatively high temperature conditions. However, taste panel evaluation and nutrient content analysis of lettuce produced with these various fertilizers are necessary to determine consumer satisfaction.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Cunha, Samuel Henrique, Amador Eduardo Lima, Alex Mendonça Carvalho, Rubens José Guimarães, Elisa Melo Castro, Mauro Magalhães Faria und Erico Tadao Teramoto. „Modified hydroponics and phenolic foam as technological innovations in the production of coffee seedlings from cuttings“. Semina: Ciências Agrárias 43, Nr. 1 (10.01.2022): 351–66. http://dx.doi.org/10.5433/1679-0359.2022v43n1p351.

Der volle Inhalt der Quelle
Annotation:
Brazilian coffee production represents an important activity in the country’s agricultural sector and, for this reason, it requires innovative technologies for the production of seedlings, which is one of the most important inputs in crop implantation. Thus, plant cloning by cutting, mineral nutrition via modified hydroponics and the use of alternative substrates appear as technological innovations for seedling production. This study evaluated the production of clonal coffee seedlings in a modified hydroponic system in comparison to the conventional climate-controlled greenhouse system, using vermiculite and phenolic foam as alternative substrates. At the end of the experiment, the seedlings were analyzed for growth (height, stem diameter, number of total leaves, leaf area, root area, shoot and root dry matter) and physiological (chlorophyll content and stomatal conductance) characteristics. For the statistical analysis, a completely randomized design was used in a factorial scheme 2 (types of substrate) x 2 (cultivation systems) with six replications and ten plants per plot. The innovative modified hydroponic system leads to a greater growth of coffee seedlings produced by cuttings in tubes with vermiculite compared to those produced in conventional systems. The substrate phenolic foam can be used alternatively in the air-conditioned greenhouse system. However, in the modified hydroponic system, it is not indicated, as it causes total seedling mortality.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Hydroponic greenhouse"

1

Håkansson, David, und Anna Lund. „Hydroponic Greenhouse: Autonomous identification of a plant s growth cycle“. Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264458.

Der volle Inhalt der Quelle
Annotation:
In a world with an ever growing population, the ability to grow food eciently is essential. One way to improve the eciency is by automation. The purpose of this project is therefore to investigate how the identification of a plant’s stage in its growth cycle that can be made autonomous. This was done with the method of measuring the amount of green pixels in an image of the plant. To be able to answer our research questions a demonstrator was built. The demonstrator is a greenhouse with a non regulated aeroponic system, a regulation system for humidity and an identification system for determining the plant growth stage. The plant chosen to test the identification system was basil. The identification system successfully identified the stage of plants well into the adult stage, in the seed stage and in the middle of the sprout stage. It was however not always successful in the identification of plants transitioning from the sprout stage into the adult stage.
I en värld med en ständigt växande befolkning är förmågan att odla mat effektivt nödvändig. En metod för att öka denna effektivitet är genom automatisering. Syftet för detta projekt är därför att undersöka hur identifieringen av en plantans stadie i dess växtcykel kan automatiseras. Detta gjordes genom att mäta antalet gröna pixlar i en bild av plantan. För att kunna svara våra forskningsfrågor byggdes en testmiljö. Testmiljön bestod av ett växthus med ett oreglerat aeroponiskt system, ett regulationssystem för luftfuktighet och ett identifikationsssystem för att avgöra en plantas stadie i dess växtcykel. Plantan som valdes för att testa identifikationssystemet var basilika. Identifikationssystemet som togs fram kunde med framgång identifiera stadiet av en planta som är långt in i dess vuxna stadie, i förstadiet eller i mitten av dess groddstadie. Plantor som precis övergått från grodd till vuxet stadie blev däremot inte alltid identifierade korrekt.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Nelkin, Jennifer B. „Development of Cultural Practices and Environmental Control Strategies for the Production of Basil (Ocimum basilicum L.) in a Semi-Arid Climate“. Thesis, Tucson, Arizona : University of Arizona, 2005. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu%5Fetd%5F1056%5F1%5Fm.pdf&type=application/pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Johnsson, Emma, und Virginia Cheung. „Vertikalt växthus i Kiruna : Med spillvärme från LKABs gruvindustri“. Thesis, KTH, Byggteknik och design, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-126096.

Der volle Inhalt der Quelle
Annotation:
Städerna växer och samtidigt ökar efterfrågan på närodlade och ekologiska grödor. För att klara av att producera närodlat och mer hållbart skulle ett alternativ vara att odla i så kallade vertikala växthus. I Kiruna finns Sveriges största malmgruva som drivs av företaget LKAB vars olika processer leder till spillvärme. I Kiruna är klimatet kallt jämfört med större delen av Sverige och därför erfordras uppvärmning om odling ska kunna ske året runt i ett växthus. Examensarbetets uppgift är därför att undersöka hur man kan utnyttja spillvärme till ett vertikalt växthus i samband med en ny kontorsbyggnad på LKABs gruvområde. LKABs nya kontorsbyggnad har ett kvadratiskt avtryck på marken med ett hörn i sydlig riktning. Fördelningen mellan växthus och kontor kan förenklas genom att kvadraten delas på diagonalen där den södra halvan är växthus och den norra halvan kontor. Eftersom solförhållandena för odling är speciella i Kiruna har växthusets väggar en lutning som är anpassad efter solens låga infallsvinkel vilket gör att växthusets area minskar med varje våningsplan. Som yttermaterial till växthuset används glas och som stommaterial används stål. Ett hydroponiskt odlingssystem används där plantorna sätts direkt i en cirkulerande näringslösning och på så sätt kan systemet utformas med horisontella odlingsrör i flera vertikala odlingsplan. För uppvärmning av växthuset kommer spillvärme från LKABs verksamhet att utnyttjas, i examensarbetet undersöks två olika alternativ av spillvärmekällor och resultatet är att båda de alternativ som undersökts kan utnyttjas för uppvärmning av hela växthusdelens volym.
While the cities are expanding the demand for locally grown and organic crops is increasing. To be able to produce locally and more sustainable crops, one option could be to grow in a so-called vertical greenhouse. In Kiruna the largest ore mine in Sweden is operated by the company LKAB. Various processes in the mining industry lead to waste heat. In Kiruna, the climate is cold compared to most parts of Sweden, and therefore requires heating for the cultivation to be able to take place all year round in a greenhouse. The project’s task is to explore how to utilize waste heat from the mine to a vertical greenhouse in the context of a new office building at LKAB's mining area. LKAB's new office building has a square footprint on the ground with one of the corners in the south direction. The division between the greenhouse and the office can be simplified by the square divided diagonally where the southern half is the greenhouse and the northern half the office. Since the sunlight is limited in Kiruna the greenhouse walls has been design to adjust to the sun’s low position. The sun’s low position requires a sloped facade in the south direction. The greenhouse’s floor area decreases with each floor. As the external material for the greenhouse glass is used and as framing material steel is used. A hydroponically system is used where the seedlings are put directly in a circulating nutrient solution and in this way the system can be designed with horizontal pipes in several vertical cultivated floors. The greenhouse will be heated with waste heat from LKAB's industry, the project examines two alternatives of waste heat sources, and the result is that both of the alternatives studied can be used to heat the entire volume of the greenhouse.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Zhang, Xuemei. „Ecology and Management of Pythium species in Float Greenhouse Tobacco Transplant Production“. Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/101779.

Der volle Inhalt der Quelle
Annotation:
Pythium diseases are common in the greenhouse production of tobacco transplants and can cause up to 70% seedling loss in hydroponic (float-bed) greenhouses. However, the symptoms and consequences of Pythium diseases are often variable among these greenhouses. A tobacco transplant greenhouse survey was conducted in 2017 in order to investigate the sources of this variability, especially the composition and distribution of Pythium communities within greenhouses. The survey revealed twelve Pythium species. Approximately 80% of the surveyed greenhouses harbored Pythium in at least one of four sites within the greenhouse, including the center walkway, weeds, but especially bay water and tobacco seedlings. Pythium dissotocum, followed by P. myriotylum, were the most common species. Pythium myriotylum, P. coloratum, and P. dissotocum were aggressive pathogens that suppressed seed germination and caused root rot, stunting, foliar chlorosis, and death of tobacco seedlings. Pythium aristosporum, P. porphyrae, P. torulosum, P. inflatum, P. irregulare, P. catenulatum, and a different isolate of P. dissotocum, were weak pathogens, causing root symptoms without affecting the upper part of tobacco seedlings. Pythium adhaerens, P. attrantheridium, and P. pectinolyticum did not affect tobacco seeds or seedlings. The consequences of Pythium infection were more likely to be severe when they occurred during seed germination than at seedling emergence, or after plant stem elongation when seedling roots had started to grow into underlying nutrient solutions, depending on the species of Pythium. High and low variation was observed among isolates of P. dissotocum and P. myriotylum, respectively. Pythium myriotylum co-existed with multiple other Pythium or oomycete species in the same environments within tobacco greenhouses, and significant in vitro and/or in vivo interactions between P. myriotylum and some naturally co-existing species were revealed. Pythium porphyrae may have the potential to protect tobacco seeds and seedlings from P. myriotylum infection. Greenhouse Pythium control trials identified ethaboxam, mefenoxam, and copper ionization as potentially promising alternatives to etridiazole for Pythium disease management in tobacco transplant production. The outcomes of this project provide useful new information to better understand the composition, distribution, and diversity of Pythium communities in tobacco transplant greenhouses and to improve Pythium disease management for tobacco transplant production.
Doctor of Philosophy
Pythium diseases are common in tobacco transplant production and can cause up to 70% seedling losses in hydroponic (float-bed) tobacco transplant greenhouses. However, little is known about the composition and distribution of Pythium communities in tobacco transplant greenhouses. This project began with a tobacco transplant greenhouse survey, in which 12 Pythium species were recovered from center walkways, weeds, greenhouse bay water, and tobacco seedlings. Pythium dissotocum and P. myriotylum were the two types (species) of Pythium most commonly found in the survey. Pythium myriotylum, P. coloratum, and P. dissotocum were aggressive pathogens that suppressed seed germination and caused root rot, stunting, foliar chlorosis, and death of tobacco seedlings. Pythium aristosporum, P. porphyrae, P. torulosum, P. inflatum, P. irregulare, P. catenulatum, and an isolate of P. dissotocum, were weak pathogens causing root symptoms without affecting the upper part of tobacco seedlings. Pythium adhaerens, P. attrantheridium, and P. pectinolyticum did not affect tobacco seeds or seedlings. The symptoms caused by infection by Pythium species differed among host (tobacco) growth stages, except for the most aggressive species, P. myriotylum. High levels of variation were observed among isolates of P. dissotocum, in terms of vegetative growth rate (on V8 agar media) and aggressiveness on tobacco seed and seedlings. Pythium myriotylum was found to co-exist with multiple other Pythium or oomycete species (neighbor isolates) in the same environments within tobacco greenhouses. Significant interactions between P. myriotylum and some neighbor isolates were revealed, and these interactions significantly affect the consequences of P. myriotylum infection of tobacco seeds. Greenhouse Pythium control trials identified two chemical water treatments (ethaboxam and mefenoxam), and a non-chemical water treatment (copper ionization) as potentially promising alternatives to the current standard Pythium control (etridiazole) for Pythium disease management in tobacco transplant production. The outcomes of this project provide useful new information to both better understand the composition, distribution, and diversity of Pythium communities in tobacco transplant greenhouses and to improve Pythium disease management for tobacco transplant production.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Korssell, Caroline, und Emelie Rudert. „Implementering av hydroponisk odling i en livsmedelsbutik : En fallstudie av en aktör inom Stockholmsområdet“. Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297542.

Der volle Inhalt der Quelle
Annotation:
Denna rapport behandlar en fallstudie i ett kandidatexamensarbete som utförts tillsammans med en livsmedelsbutik i Stockholmsområdet och som grundar sig i intervjuer, platsbesök och vetenskapliga artiklar. Där livsmedelsbutiken har ett intresse av att implementera en odling i form av ett hydroponiskt system direkt i sin butik.  I fallstudien har det undersökts hur implementering av odling i butik genom ett samarbete med ett odlingsföretag skulle fungera och se ut för butiken. Studien har begränsats till två olika odlingsföretag i Sverige, som har varsitt koncept på hur odlingen kan implementeras, gemensamt för dem är att de använder vertikal odling i form av hydroponiska system. Där det ena företaget erbjuder vertikal odling i en odlingscontainer och det andra vertikal odling inne i ett växthus. Båda företagens olika odlingskoncept har redan implementerats i två andra livsmedelsbutiker inom samma koncern som livsmedelsbutiken i Stockholm befinner sig i.  Fallstudien har genomförts genom att först skapa en bred bakgrund genom litteratursökningar i olika databaser kring relevanta nyckelord för att sedan genomföra intervjuer med båda odlingsföretagen och livsmedelsbutikerna. Därefter har kunskap och svar från respondenterna i intervjuerna sammanställts och ett förslag har tagits fram om vilket odlingsföretag som lämpar sig bäst för livsmedelsbutikens ändamål.  Resultatet visar att möjligheterna och fördelarna vid en implementering av hydroponisk odling för livsmedelsbutiken i Stockholmsområdet att implementera hydroponisk odling är flera och överväger till största del de möjliga utmaningarna. Dessutom gynnas flera av hållbarhetsmålen till livsmedelsbutikens koncern genom implementering av en hydroponisk odling i butiken. Vidare gynnas även några av de Förenta Nationernas Globala mål och även livsmedelsbutikens egna hållbarhetsmål.
This report is the result and outcome of a bachelor's thesis project conducted during the spring of 2021. The report presents the performed case study of a grocery store, in the area of Stockholm, where the company is aiming to implement a hydroponic self-cultivation inside their grocery store. The work is based on conducting interviews and reviewing established scientific articles in the field.  In the case study, it has been investigated how a potential collaboration between the grocery store and a cultivation company can be established. The study was limited to investigating two cultivation companies active on the Swedish market. These two cultivation companies have different solutions of how the cultivation can be implemented on the store area, but both offer vertical hydroponic solutions. Further, both systems of the individual cultivation companies’ have been implemented in other grocery stores that can be used as reference for validation of data.  The literature review of existing publications were conducted by searching in different databases by using the keywords of this work, for the researcher to increase knowledge to create guides for the interviews and for creating the theoretical frame of reference. Thereafter, literature findings and answers from the interviewees were compiled, analyzed and discussed to make a proposition of which cultivation company is best suited for a potential collaboration, with regard to the grocery stores’ wishes of implementing a hydroponic solution.  The results show that several of the grocery stores’ sustainability goals would benefit from a potential implementation of a self-cultivation. Also, implementing a hydroponic farm on the store area would increase the grocery store’s contribution towards achieving the Sustainable Development Goals.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Flôres, Migacir Trindade Duarte. „Efeito da densidade de semeadura e da idade de colheita na produtividade e na composição bromatológica de milho (Zea mays L.)“. Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/11/11136/tde-10112009-103027/.

Der volle Inhalt der Quelle
Annotation:
O presente trabalho é um estudo da utilização da forragem hidropônica como opção para alimentação de ruminantes em épocas do ano em que há escassez de alimentos volumosos. O experimento foi realizado em ambiente protegido, no Instituto Federal do Rio Grande do Sul, em Sertão, Brasil, no ano de 2009, com o objetivo de avaliar o efeito da densidade de semeadura e da idade de colheita na produtividade e na composição bromatológica de milho produzido em substrato de feno de aveia. Adotou-se o delineamento experimental inteiramente casualizado, com quatro repetições, utilizando parcelas de 1,0 m2 (1,0 x 1,0 m). As densidades foram distribuídas em esquema fatorial (3 x 2), constituído de 3 densidades de semeadura (1,0; 2,0 e 3,0 kg.m-2). A fertirrigação foi usada do 3º ao 17º dia. Foram realizadas duas colheitas, aos 10 e 17 dias, onde foram determinadas a massa de matéria verde e seca (kg.m-2), a altura das plantas e os teores de PB, FDA, FDN e NDT. Os resultados foram submetidos à análise estatística pelo teste de Tukey ao nível de significância de 5%. Não houve diferença estatística para os valores obtidos pela análise bromatológica em relação às densidades de semeadura utilizadas. A massa de matéria seca aos 17 dias para a densidade de 3,0 kg.m-2 sofreu redução e diferenciou estatisticamente das demais. Para a utilização da forragem verde, a colheita pode ser realizada aos 17 dias (não houve diferença significativa em relação às densidades de semeadura de 2,0 e 3,0 kg.m-2).
The present work is a study of the use of hydroponic forage as an option for feeding ruminant during period of the year with food scarcity. The experiment was carried out in greenhouse, at Federal Institute of Rio Grande do Sul in Sertão, Brazil, in 2009, with the objective of evaluating the effect of the sowing density and crop age in the productivity and bromatological composition of maize under hydroponic system, produced under oat hay substrate. The statistical design was completely randomized, with four replications, using plots of 1,0 m2 (1,0 x 1,0 m). The densities were distributed in outline factorial (3 x 2), constituted of 3 sowing densities (1.0, 2.0 and 3.0 kg.m-2). The fertirrigation was used from the 3rd to the 17th day. There were two harvests, at 10 and 17 days, which were determined the green and dry mass (kg.m-2), the plant height and the PB, FDA, FDN and NDT content. The results were submitted to the statistical analysis by the Tukey test (P > 0.05). There was no statistical difference between values obtained by the bromatological analysis related to the sowing densities. The dry matter at 17 days using the seeding rate of 3.0 kg.m-2 was statistical lower than others treatments. For the use of the green forage, the harvesting can be performed at 17 days (there was no significant difference in relation to seeding rates of 2.0 and 3.0 kg.m-2).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Шевченко, І. М. „Оздоровлення сортів картоплі за використання біотехнологічних методів“. Thesis, Чернігів, 2021. http://ir.stu.cn.ua/123456789/25194.

Der volle Inhalt der Quelle
Annotation:
Шевченко, І. М. Оздоровлення сортів картоплі за використання біотехнологічних методів : випускна кваліфікаційна робота : 201 «Агрономія» / І. М. Шевченко ; керівник роботи О. Ю. Локоть ; НУ "Чернігівська політехніка", кафедра аграрних технологій та лісового господарства . – Чернігів, 2021. – 70 с.
Об’єктом досліджень є процеси оздоровлення картоплі від вірусної інфекції та прискореного розмноження безвірусного матеріалу в умовах гідропонної теплиці. Предметом дослідження є використання біотехнологічних методів в технології оздоровлення картоплі від вірусних хвороб. На сьогодні відомо про новітні технології отримання першого покоління міні бульб картоплі за використання гідропоніки. Гідропонне вирощування, є альтернативою більш традиційному процесу вирощування рослин у ґрунті. Використовуючи системи, засновані на вирощуванні рослин шляхом подачі води наповненої поживними речовинами, значно прискорює виробництво продукції. В господарстві ПрАТ НВО «Чернігівеліткартопля» успішно працює „Промислова гідропонна технологiя виробництва міні бульбоздоровленої картоплi”, яка закоефiцiєнтом розмноження перевищує iснуючi технологiї прискоренного розмноження в 5 – 10 разiв і забезпечує одержання від однієї оздоровленої пробіркової рослини, висадженої у гідропонну установку, за вегетаційний період 50 – 100 мінібульб масою 3 – 5 грамів. Це дозволяє відтворювати еліту за скороченою трьохрічною схемою, до того ж без добору клонів.
The object of research is the processes of recovery of potatoes from viral infection and accelerated reproduction of virus-free material in a hydroponic greenhouse. The subject of research is the use of biotechnological methods in the technology of recovery of potatoes from viral diseases. Today we know about the latest technologies for obtaining the first generation of mini potato tubers using hydroponics. Hydroponic cultivation is an alternative to the more traditional process of growing plants in the soil. Using systems based on growing plants by supplying water filled with nutrients, significantly accelerates production. In the economy of PJSC NPO "Chernigivelitkartoplya" successfully works "Industrial hydroponic technology for the production of mini-bulb potatoes", which by the coefficient of reproduction exceeds the existing technologies of accelerated reproduction in 5 - 10 times and provides from one healthy, - 100 minibulbs weighing 3 - 5 grams. This allows you to reproduce the elite on a shortened three-year scheme, in addition, without the selection of clones.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Lundin, Karl, und Oscar Olli. „Automated hydroponics greenhouse : Regulation of pH and nutrients“. Thesis, KTH, Maskinkonstruktion (Inst.), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-226662.

Der volle Inhalt der Quelle
Annotation:
The purpose of this project is to create a fully automatedgreenhouse that can produce year-round crops, using sensorsand actuators. Temperature in both water and air,relative humidity, water level, nutrient level and pH are allmeasured with different sensors. Though only water level,pH and nutrients will be regulated. The greenhouse will berelying on a hydroponic growing technique, meaning thatthe growing is soil-less and will be done in water. Thismakes measuring and controlling said levels easier and alsominimizes water waste and makes for a more environmentalsystem. The main focus of this project is on regulating pHand nutrient levels of the water. The system has shown tobe stable and self regulating within the desired intervals fornutrient concentration and pH for growing basil.
Syftet med det här projektet är att skapa ett automatiserat växthus som kan producera grödor året runt med hjälp av sensorer och aktuatorer. Med olika sensorer mäts temperaturen i både vattnet och luften, relativa luftfuktigheten, vattennivå, pH- och näringsvärden. Dock kommer endast vattennivå, pH- och näringsvärden regleras. Växthuset använder sig av så kallad hydroponisk odling, vilket innebär att odlingen inte sker i jord utan i vatten. Detta underlättar bland annat mätningar och kontrollering av systemet men minimerar även vattenkonsumptionen och bidrar till ett mera miljövänligt system. Projektet kommer i huvudsak inrikta sig på reglering av pH och näringsnivåer av vattnet. Systemet har visats stabilt och har förmågan att reglera sig självt inom önskat intervall för näringskoncentration och pH för att odla basilika.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Littlefield, Joanne. „Controlled Environment Agriculture: Greenhouses Feature High-Tech Hydroponics“. College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 2001. http://hdl.handle.net/10150/622255.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Licamele, Jason David. „Biomass Production and Nutrient Dynamics in an Aquaponics System“. Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/193835.

Der volle Inhalt der Quelle
Annotation:
The goal of this study was to prove that aquaponic systems can produce lettuce of equal growth and quality compared to hydroponic lettuce production and to determine the stocking density of fish required for plant growth. Aquaponics is the integration of recirculating aquaculture and hydroponic plant production. The project had four objectives. The first objective was to determine the biomass of fish required for plant growth to develop a fish to plant density ratio. The second objective was to compare lettuce grown with aquaponic water and a hydroponic solution under the same environmental conditions. The third objective was to compare the quality of lettuce grown with aquaponics water plus nutrient supplementation with a hydroponic solution. The fourth objective was to determine the nitrogen dynamics in the aquaponic system and to compare the nutrient composition of lettuce grown with aquaponics water with nutrient supplementation and hydroponic solution. It was determined that under the specified environmental conditions 5 kg m⁻³ of Nile tilapia (O. niloticus) fed 2% of their body weight daily yields on average 4.7 kg m⁻² of lettuce (L. sativa cv. Rex) in 35 days. There was no significant difference (p ≤ 0.05) in biomass or chlorophyll concentration index in lettuce (L. sativa cv. Rex) grown with aquaponics water and nutrient supplements versus a hydroponic solution. The aquaponics solution generated equal biomass and chlorophyll concentration indexes compared to the hydroponic solution. Aquaponics water plus supplementation can yield L. sativa cv. Rex with equal biomass accumulation and chlorophyll concentration indexes compared to hydroponics lettuce. Nutrients added to the aquaponics system consisted of iron, manganese, and zinc. These nutrient concentrations became depleted in the aquaponics water over time and were not replenished via the fish feed. Dolomite was added to the aquaponics system every two weeks to increase the buffering capacity of the water and maintain optimal pH levels. Aquaponics lettuce had similar nutrient composition to hydroponic lettuce. One head of L. sativa cv. Rex (176.75 ± 31.03) will assimilate approximately 5.96 grams of nitrogen (3.38% per dry gram lettuce). One kilogram of fish will yield 6.4 lettuce heads (1,128 grams) and fixate 38.13 grams of nitrogen.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Hydroponic greenhouse"

1

Planning a profitable hydroponic greenhouse business. Sark, Channel Islands, U.K: Sovereign University Pub. House, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

1936-, DeKorne James B., Hrsg. The hydroponic hot house: Low-cost, high-yield greenhouse gardening. Port Townsend, Wash: Loompanics Unlimited, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

M, Taylor T. Secrets to a successful greenhouse and business: A complete guide to starting & operating a high-profit organic or hydroponic business that benefits the environment. 7. Aufl. Melbourne, FL: GreenEarth Pub. Co., 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Papadopoulos, Athanasios P. Growing greenhouse tomatoes in soil and in soilless media. Ottawa, Ont: Available from Communications Branch, Agriculture Canada, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Papadopoulos, Athanasios P. Growing greenhouse seedless cucumbers in soil and in soilless media. Ottawa, Ont: Agriculture and Agri-Food Canada, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Jung, M. C. Victoria. The role of selected plant and microbial metabolites in the nutrient solution of closed growing systems in greenhouses. Alnarp: Swedish University of Agricultural Sciences, 2003.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hydroponics and protected cultivation: a practical guide. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0000.

Der volle Inhalt der Quelle
Annotation:
Abstract This book contains 14 chapters. It is a practical guide about hydroponics and protected cultivation. Topics covered include: background and history of hydroponics and protected cultivation; greenhouses and protected cropping structures; greenhouse operation and management; hydroponic systems - solution culture; substrate-based hydroponic systems; organic soilless greenhouse systems; propagation and transplant production; plant nutrition and nutrient formulation; plant Health, plant protection and abiotic factors; hydroponic production of selected crops; plant factories - closed plant production systems; greenhouse produce quality and assessment; and harvest and postharvest factors.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Hydroponic Hot House: Low-Cost, High-Yield Greenhouse Gardening. Breakout Productions, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Dekorne, James B. The Hydroponic Hothouse: Low-Cost, High-Yield Greenhouse Gardening. Loompanics Unlimited, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Savage, Adam J. Master Guide to Planning Profitable Hydroponic-Greenhouse and S-Cea Operations. International Center for Special Studies, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Hydroponic greenhouse"

1

Morgan, Lynette. „Organic soilless greenhouse systems.“ In Hydroponics and protected cultivation: a practical guide, 100–117. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0100.

Der volle Inhalt der Quelle
Annotation:
Abstract This chapter discusses the organic soilless greenhouse systems. It includes topics on organic greenhouse production, organic hydroponic systems, organic hydroponic nutrients, microbial mineralization of organic nutrients for hydroponics, anaerobic and aerobic processing of organic materials, vermicast and vermicomposting, use of vermiculture liquids in hydroponics, composting for organic nutrient processing and substrate preparation, organic materials for vermicast, composting and biodigester systems, auqaponics, organic hydroponic production systems, biofilms in hydroponic systems, nutrient amendmentsorganic certification in the USA, organic pest and disease control, hybrid systems, and issues commonly encountered with organic hydroponic systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Morgan, Lynette. „Organic soilless greenhouse systems.“ In Hydroponics and protected cultivation: a practical guide, 100–117. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0007.

Der volle Inhalt der Quelle
Annotation:
Abstract This chapter discusses the organic soilless greenhouse systems. It includes topics on organic greenhouse production, organic hydroponic systems, organic hydroponic nutrients, microbial mineralization of organic nutrients for hydroponics, anaerobic and aerobic processing of organic materials, vermicast and vermicomposting, use of vermiculture liquids in hydroponics, composting for organic nutrient processing and substrate preparation, organic materials for vermicast, composting and biodigester systems, auqaponics, organic hydroponic production systems, biofilms in hydroponic systems, nutrient amendmentsorganic certification in the USA, organic pest and disease control, hybrid systems, and issues commonly encountered with organic hydroponic systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Resh, Howard M. „Greenhouse Environmental Control and Automation“. In Hydroponic Food Production, 297–357. 8. Aufl. New York: CRC Press, 2022. http://dx.doi.org/10.1201/9781003133254-12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Morgan, Lynette. „Greenhouses and protected cropping structures.“ In Hydroponics and protected cultivation: a practical guide, 11–29. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0011.

Der volle Inhalt der Quelle
Annotation:
Abstract This chapter focuses on greenhouses and protected cropping structures. Topics covered are glasshouses and plastic greenhouses, closed and semi-closed greenhouse structures, passive solar greenhouses, sustainable greenhouse design, cladding materials, screen houses, net houses, shade houses, rain covers and other structures, screen and shade nets, low tunnels and high tunnels, hot beds and cold frames greenhouses, floating mulches, row covers, cloche covers, direct covers and frost cloth, greenhouse site planning, windbreaks, outdoor hydroponic systems, and controlled-environment agriculture.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Morgan, Lynette. „Greenhouses and protected cropping structures.“ In Hydroponics and protected cultivation: a practical guide, 11–29. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0002.

Der volle Inhalt der Quelle
Annotation:
Abstract This chapter focuses on greenhouses and protected cropping structures. Topics covered are glasshouses and plastic greenhouses, closed and semi-closed greenhouse structures, passive solar greenhouses, sustainable greenhouse design, cladding materials, screen houses, net houses, shade houses, rain covers and other structures, screen and shade nets, low tunnels and high tunnels, hot beds and cold frames greenhouses, floating mulches, row covers, cloche covers, direct covers and frost cloth, greenhouse site planning, windbreaks, outdoor hydroponic systems, and controlled-environment agriculture.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Morgan, Lynette. „Hydroponic production of selected crops.“ In Hydroponics and protected cultivation: a practical guide, 196–228. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0196.

Der volle Inhalt der Quelle
Annotation:
Abstract While there is a wide range of potentially profitable crops which can be grown in hydroponics under protected cultivation, greenhouse production is dominated by fruiting crops such as tomatoes, cucumber, capsicum and strawberries, and vegetative species such as lettuce, salad and leafy greens, herbs and specialty crops like microgreens. This chapter summarizes information on a selected range of common hydroponic crops to give basic procedures for each and an outline of the systems of production. These crops include tomato, capsicum or sweet bell pepper, cucumber, lettuce and other salad greens, strawberry and rose. Information is given on their hydroponic production systems and environment, propagation, plant density, pruning, pollination, fruit growth, crop nutrition, pests, diseases, disorders, harvesting and postharvest handling.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Morgan, Lynette. „Hydroponic production of selected crops.“ In Hydroponics and protected cultivation: a practical guide, 196–228. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0011a.

Der volle Inhalt der Quelle
Annotation:
Abstract While there is a wide range of potentially profitable crops which can be grown in hydroponics under protected cultivation, greenhouse production is dominated by fruiting crops such as tomatoes, cucumber, capsicum and strawberries, and vegetative species such as lettuce, salad and leafy greens, herbs and specialty crops like microgreens. This chapter summarizes information on a selected range of common hydroponic crops to give basic procedures for each and an outline of the systems of production. These crops include tomato, capsicum or sweet bell pepper, cucumber, lettuce and other salad greens, strawberry and rose. Information is given on their hydroponic production systems and environment, propagation, plant density, pruning, pollination, fruit growth, crop nutrition, pests, diseases, disorders, harvesting and postharvest handling.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Morgan, Lynette. „Background and history of hydroponics and protected cultivation.“ In Hydroponics and protected cultivation: a practical guide, 1–10. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0001.

Der volle Inhalt der Quelle
Annotation:
Abstract Along with new types of protected cropping structures, materials and technology, the range and diversity of hydroponic crops grown are also expanding. While the greenhouse mainstays of nursery plants, tomatoes, capsicum, cucumber, salad vegetables and herbs will continue to expand in volume, newer, speciality and niche market crops are growing in popularity. These include new cut flower species, potted plants and ornamental crops, and a growing trend in the commercial production of medicinal herbs using high-technology methods such as aeroponics. Exotic culinary herbs such as wasabi, dwarf fruiting trees and spices such as ginger and vanilla are now grown commercially in protected cropping structures, while many home gardeners continue to take up hydroponics and protected cropping as both a hobby and a means of growing produce. Protected cropping and hydroponic methods will further their expansion into hostile climates which never previously allowed the production of food.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Morgan, Lynette. „Greenhouse produce quality and assessment.“ In Hydroponics and protected cultivation: a practical guide, 246–67. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0246.

Der volle Inhalt der Quelle
Annotation:
Abstract 'Quality' of greenhouse and hydroponic produce implies suitability for a particular purpose or the degree to which certain set standards are met. Aspects of produce quality may encompass sensory properties (appearance, texture, taste and aroma), nutritive values, chemical constituents, mechanical properties, functional properties and defects. Quality standards and testing methods have been developed for most commercial crops to help ensure consumers receive produce of a suitable standard. These quality standards can range from basic grading for removal of damaged produce and for size, shape, weight and overall appearance, to analytical testing for compositional factors such as acidity, volatiles, dry matter, starch and sugars, toxins, vitamins and minerals, and others. This chapter discusses the components of crop quality, quality improvement, cultural practices to improve greenhouse produce quality (nutrient solution electrical conductivity levels, salinity and deficit irrigation), environmental conditions (including light and temperature) affecting quality of greenhouse crops, role of genetics in the quality of greenhouse-grown produce, microbial quality and food safety. Different quality testing and grading methods are described such as colour analysis, total soluble solids (Brix) testing, sensory evaluation of compositional quality, volatiles testing (aroma), texture and firmness quality assessment.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Morgan, Lynette. „Greenhouse produce quality and assessment.“ In Hydroponics and protected cultivation: a practical guide, 246–67. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0013.

Der volle Inhalt der Quelle
Annotation:
Abstract 'Quality' of greenhouse and hydroponic produce implies suitability for a particular purpose or the degree to which certain set standards are met. Aspects of produce quality may encompass sensory properties (appearance, texture, taste and aroma), nutritive values, chemical constituents, mechanical properties, functional properties and defects. Quality standards and testing methods have been developed for most commercial crops to help ensure consumers receive produce of a suitable standard. These quality standards can range from basic grading for removal of damaged produce and for size, shape, weight and overall appearance, to analytical testing for compositional factors such as acidity, volatiles, dry matter, starch and sugars, toxins, vitamins and minerals, and others. This chapter discusses the components of crop quality, quality improvement, cultural practices to improve greenhouse produce quality (nutrient solution electrical conductivity levels, salinity and deficit irrigation), environmental conditions (including light and temperature) affecting quality of greenhouse crops, role of genetics in the quality of greenhouse-grown produce, microbial quality and food safety. Different quality testing and grading methods are described such as colour analysis, total soluble solids (Brix) testing, sensory evaluation of compositional quality, volatiles testing (aroma), texture and firmness quality assessment.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Hydroponic greenhouse"

1

Fernandes, Miguel B., Bertinho A. Costa und Joao M. Lemos. „Hydroponic Greenhouse Crop Optimization“. In 2018 13th APCA International Conference on Automatic Control and Soft Computing (CONTROLO). IEEE, 2018. http://dx.doi.org/10.1109/controlo.2018.8514264.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Andrianto, Heri, Suhardi und Ahmad Faizal. „Development of Smart Greenhouse System for Hydroponic Agriculture“. In 2020 International Conference on Information Technology Systems and Innovation (ICITSI). IEEE, 2020. http://dx.doi.org/10.1109/icitsi50517.2020.9264917.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Saenz, Edwin, Mario Jimenez und Andres Ramirez. „Strawberries collecting robot prototype in greenhouse hydroponic systems“. In 2013 XVIII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA). IEEE, 2013. http://dx.doi.org/10.1109/stsiva.2013.6644933.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Fenitha, Josephine Ruth, S. Mirudhula, K. Subhashini und R. Sriharidha. „Hydroponic Nutrient Solution for Optimized Greenhouse with IOT“. In 2022 International Conference on Advanced Computing Technologies and Applications (ICACTA). IEEE, 2022. http://dx.doi.org/10.1109/icacta54488.2022.9753346.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Moreno, Maria C., Oscar J. Suarez und Alda Pardo Garcia. „IoT-based Automated Greenhouse for Deep Water Culture Hydroponic System“. In 2021 2nd Sustainable Cities Latin America Conference (SCLA). IEEE, 2021. http://dx.doi.org/10.1109/scla53004.2021.9540187.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Dumitrascu, Stefan. „COMPLEX SYSTEM DEDICATED TO MONITORING AND CONTROL OF HYDROPONIC GREENHOUSE ENVIRONMENT“. In 17th International Multidisciplinary Scientific GeoConference SGEM2017. Stef92 Technology, 2017. http://dx.doi.org/10.5593/sgem2017/51/s20.032.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Пономаренко, Елена, und Татьяна Пазяева. „Оптимизация элементов технологии возделывания томатов в защищенном грунте по малообъемной технологии“. In VIIth International Scientific Conference “Genetics, Physiology and Plant Breeding”. Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2021. http://dx.doi.org/10.53040/gppb7.2021.43.

Der volle Inhalt der Quelle
Annotation:
The elements of the technology of cultivation of tomatoes by a low-volume hydroponic method using the mineral wool substrate "Grodan" have been studied. The advantages of growing crops by the method of low-volume technology in the greenhouse complex SRL "Polimer Gaz Conducte", Falesti, Moldova are shown. The trade name of the branch is "EcoAgroPrim". Greenhouse SRL "PolimerGazPrim" is a member of the Moldovan Association "Association of Farmers of Moldova", which includes 128 greenhouse facilities. The enterprise produces 130-245 tons of pink-fruited indoor (greenhouse) tomato per year. We studied and analyzed the elements of technology for growing tomatoes in greenhouses using low-volume technology and carried out phenological observations and biometric measurements of plants for several years 2015-2020. It is shown that based on the analysis of phenological observations and biometric measurements, a table of the seasonal development of the crop was compiled, and the highest yield was noted in May and June for all years of observation and, accordingly, the gross harvest was the highest during this period.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Haslavsky, Vitaly, und Helena Vitoshkin. „Numerical Model of Convective Heat Transfer in a Multi-level Hydroponic Greenhouse“. In 7th World Congress on Mechanical, Chemical, and Material Engineering. Avestia Publishing, 2021. http://dx.doi.org/10.11159/htff21.111.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

„Canadian Integrated Northern Greenhouse (CING): Designing the Outer Structure and Pivoting Hydroponic Systems“. In 2014 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, 2014. http://dx.doi.org/10.13031/aim.20141898724.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Korzhakov, Alexey V., Valery E. Korzhakov und Svetlana A. Korzhakova. „Automatization of Geotermal Water Acoustic and Magnetic Treatment Process in Hydroponic Greenhouse Heating System“. In 2018 International Russian Automation Conference (RusAutoCon). IEEE, 2018. http://dx.doi.org/10.1109/rusautocon.2018.8501810.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Hydroponic greenhouse"

1

Katan, Jaacov, und Michael E. Stanghellini. Clinical (Major) and Subclinical (Minor) Root-Infecting Pathogens in Plant Growth Substrates, and Integrated Strategies for their Control. United States Department of Agriculture, Oktober 1993. http://dx.doi.org/10.32747/1993.7568089.bard.

Der volle Inhalt der Quelle
Annotation:
In intensive agriculture, harmful soilborne biotic agents, cause severe damage. These include both typical soilborne (clinical) major pathogens which destroy plants (e.g. Fusarium and Phytophthora pathogens), and subclinical ("minor") pathogens (e.g. Olpidium and Pythium). The latter cause growth retardation and yield decline. The objectives of this study were: (1) To study the behavior of clinical (major) and subclinical (minor) pathogens in plant growth substrate, with emphasis on zoosporic fungi, such as Pythium, Olipidium and Polymyxa. (2) To study the interaction between subclinical pathogens and plants, and those aspects of Pythium biology which are relevant to these systems. (3) To adopt a holistic-integrated approach for control that includes both eradicative and protective measures, based on a knowledge of the pathogens' biology. Zoospores were demonstrated as the primary, if not the sole propagule, responsible for pathogen spread in a recirculating hydroponic cultural system, as verified with P. aphanidermatum and Phytophthora capsici. P. aphanidermatum, in contrast to Phytophthora capsici, can also spread by hyphae from plant-to-plant. Synthetic surfactants, when added to the recirculating nutrient solutions provided 100% control of root rot of peppers by these fungi without any detrimental effects on plant growth or yield. A bacterium which produced a biosurfactant was proved as efficacious as synthetic surfactants in the control of zoosporic plant pathogens in the recirculating hydroponic cultural system. The biosurfactant was identified as a rhamnolipid. Olpidium and Polymyxa are widespread and were determined as subclinical pathogens since they cause growth retardation but no plant mortality. Pythium can induce both phenomena and is an occasional subclinical pathogen. Physiological and ultrastructural studies of the interaction between Olpidium and melon plants showed that this pathogen is not destructive but affects root hairs, respiration and plant nutrition. The infected roots constitute an amplified sink competing with the shoots and eventually leading to growth retardation. Space solarization, by solar heating of the greenhouse, is effective in the sanitation of the greenhouse from residual inoculum and should be used as a component in disease management, along with other strategies.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie