Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Hydrophobicity and hydrophilicity“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Hydrophobicity and hydrophilicity" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Hydrophobicity and hydrophilicity"
Reifsteck, F., S. Wee und B. J. Wilkinson. „Hydrophobicity--hydrophilicity of staphylococci“. Journal of Medical Microbiology 24, Nr. 1 (01.08.1987): 65–73. http://dx.doi.org/10.1099/00222615-24-1-65.
Der volle Inhalt der Quellevan Oss, Carel Jan. „Hydrophobicity and hydrophilicity of biosurfaces“. Current Opinion in Colloid & Interface Science 2, Nr. 5 (Oktober 1997): 503–12. http://dx.doi.org/10.1016/s1359-0294(97)80099-4.
Der volle Inhalt der QuelleChmelík, Josef. „Characterization of the Hydrophobic Properties of Amino Acids. II. How Hydrophobic, Hydrophilic and Lipophilic Is Tryptophan?“ Collection of Czechoslovak Chemical Communications 58, Nr. 5 (1993): 996–1000. http://dx.doi.org/10.1135/cccc19930996.
Der volle Inhalt der Quellevan Oss, C. J. „The Hydrophilicity and Hydrophobicity of Clay Minerals“. Clays and Clay Minerals 43, Nr. 4 (1995): 474–77. http://dx.doi.org/10.1346/ccmn.1995.0430411.
Der volle Inhalt der QuelleZhu, Zhi, HongKai Guo, XianKai Jiang, YongCong Chen, Bo Song, YiMing Zhu und SongLin Zhuang. „Reversible Hydrophobicity–Hydrophilicity Transition Modulated by Surface Curvature“. Journal of Physical Chemistry Letters 9, Nr. 9 (19.04.2018): 2346–52. http://dx.doi.org/10.1021/acs.jpclett.8b00749.
Der volle Inhalt der QuelleOhto, Tatsuhiko, Johannes Hunger, Ellen H. G. Backus, Wataru Mizukami, Mischa Bonn und Yuki Nagata. „Trimethylamine-N-oxide: its hydration structure, surface activity, and biological function, viewed by vibrational spectroscopy and molecular dynamics simulations“. Physical Chemistry Chemical Physics 19, Nr. 10 (2017): 6909–20. http://dx.doi.org/10.1039/c6cp07284d.
Der volle Inhalt der QuelleRattanakam, Ramida, Pinitpon Pituya, Mantana Suwan und Sitthisuntorn Supothina. „Assessment of Hydrophilic Biochar Effect on Sandy Soil Water Retention“. Key Engineering Materials 751 (August 2017): 790–95. http://dx.doi.org/10.4028/www.scientific.net/kem.751.790.
Der volle Inhalt der QuelleRossi, B., V. Venuti, F. D'Amico, A. Gessini, F. Castiglione, A. Mele, C. Punta et al. „Water and polymer dynamics in a model polysaccharide hydrogel: the role of hydrophobic/hydrophilic balance“. Physical Chemistry Chemical Physics 17, Nr. 2 (2015): 963–71. http://dx.doi.org/10.1039/c4cp04045g.
Der volle Inhalt der QuelleWang, Weipeng, Zheng Xie, Zhengcao Li und Zhengjun Zhang. „X-ray irradiation-induced reversible wettability modification of titanium NRAs“. RSC Advances 5, Nr. 6 (2015): 4524–28. http://dx.doi.org/10.1039/c4ra13093f.
Der volle Inhalt der QuelleFileti, Eudes, und Vitaly V. Chaban. „Solubility origin at the nanoscale: enthalpic and entropic contributions in polar and nonpolar environments“. Physical Chemistry Chemical Physics 19, Nr. 5 (2017): 3903–10. http://dx.doi.org/10.1039/c6cp07667j.
Der volle Inhalt der QuelleDissertationen zum Thema "Hydrophobicity and hydrophilicity"
Jeffcoat, Stuart Blakely. „The importance of hydrophobicity/hydrophilicity on particle removal in deep bed filtration and macroscopic filtration modeling“. Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/20149.
Der volle Inhalt der QuelleKIM, BONGSU. „LONG-TERM STABILITY OF PLASMA OXIDIZED POLYDIMETHYLSILOXANE SURFACES“. University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1100893247.
Der volle Inhalt der QuelleCai, Shaobiao. „3D numerical modeling of dry/wet contact mechanics for rough, multilayered elastic-plastic solid surfaces and effects of hydrophilicity/hydrophobicity during separation with applications“. Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1205118488.
Der volle Inhalt der QuelleČernohorský, Petr. „Elektrospřádaná vlákna na bázi PVDF a nylonu“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442506.
Der volle Inhalt der QuelleAsmatulu, Ramazan. „Advanced Chemical-Mechanical Dewatering of Fine Particles“. Diss., Virginia Tech, 2001. http://hdl.handle.net/10919/26604.
Der volle Inhalt der QuellePh. D.
Chen, Bing-Shian, und 陳秉賢. „Antireflection, Hydrophilicity and Hydrophobicity of Well-aligned Silicon Nanograss“. Thesis, 2007. http://ndltd.ncl.edu.tw/handle/4y8eqk.
Der volle Inhalt der Quelle中華大學
電機工程學系(所)
95
Antireflective moth eye and superhydrophobic lotus leaves have inspired many synthetic surfaces to mimic nature, but it is hard to generate both properties on one surface. Reflection can be reduced by introducing a rough layer with graded refractive index between air and surface, and hydrophobic properties can be enhanced by a rough surface coupled with low energy. Recently we have demonstrated a process to fabricate well-aligned silicon nanograss with uniformly aspect ratio and distribution on silicon wafer by hydrogen plasma dry etching in a high density plasma chemical vapor deposition system. With this nanograss structure, the reflection of silicon wafer can be reduced apparently in the range of DUV to near-IR (200 ~ 900 nm). Due to silicon nanograss surface is superhydrophilic, we use CHF3 plasma to lower the surface energy. The reflectance measured by an n&k analyzer shows that after CHF3 plasma treatment the reflection of nanograss surface can be reduced. After exposure to CHF3 plasma, the surface changed to hydrophobic state with a greatest static angle of 145.49degrees. These results indicate this nanograss structure with antireflection, hydrophilicity and hydrophobicity.
Huei, Jhuang Chao, und 莊朝輝. „Controlling hydrophilicity and hydrophobicity of the roller material for contact printing“. Thesis, 2013. http://ndltd.ncl.edu.tw/handle/68070816249713243737.
Der volle Inhalt der Quelle國立中正大學
化學工程研究所
101
In this thesis, the PDMS (Poly(dimethylsiloxane)) is my reactant. The PDMS reacts with a crosslinking agent to synthesize the crosslinked PDMS. Then, crosslinked PDMS reacts with PEG (poly (ethylene glycol)) to synthesize the desired polymer. Because the PDMS and PEG have OH functional groups, the reaction can not achieve the effect of modified. I need to do PEG acidification and use crosslinked PDMS to react with acid-terminated PEG. The reaction is the Steglich esterification to synthesize the hydrophilic materials. Finally, I do some analysis to discuss the thermal properties, the hydrophilicity and its subsequent application of the polymer. The study uses quantitative PDMS, two different degree of crosslinking polymer, to react with different proportions acid-terminated PEG. The process is Steglich esterification reaction. By 1H-NMR and FTIR spectra can prove that the acid-terminated PEG synthesis is successful. By the XPS spectrum, the crosslinked PDMS reacts with acid-terminated PEG is successful. By TGA analysis, temperature (Td) of light and heavy crosslinking PDMS are 355.93 and 351.18 ° C. Modified polymers have higher Td, indicating good thermal stability. The glass transition temperature (Tg) of light and heavy crosslinking PDMS are -52 and -56 ° C. The modified polymers have a steady increase in Tg. In addition, in the graph and crystal melting temperature (Tm) was not observed by DSC chart to display the synthesized polymer not having a crystalline, and noncrystalline polymer. By contact angle analysis, the contact angle of modified polymers are decrease than crosslinking PDMS. It proves that the hydrophilic modification is successful.
Yang, Shun Po, und 楊舜博. „Antireflection, Hydrophilicity and Hydrophobicity of Well-aligned Silicon Nanograss and Nanopillar“. Thesis, 2008. http://ndltd.ncl.edu.tw/handle/36353389352613183205.
Der volle Inhalt der Quelle中華大學
電機工程學系(所)
96
A lot of living beings in nature have self-protection functions such as antireflective moth eyes and superhydrophobic lotus leaf, which inspires us to apply them to nanomaterial technologies. We can generate a graded rough layer between air and surface to reduce reflection, and coating low-energy materials on the rough layer to increase the hydrophobicity. In general, it is very difficult to create them on one material surface. We have developed a technology to create uniform nanograss on silicon wafer by HDPCVD hydrogen plasma etching process recently. The reflection can be reduced with the increase of nanograss length. In this thesis we fabricate nanopost array first by e-beam lithography, and then create nanograss on top of it. Examined by n&k analyzer shows a downward trends in the reflection. After treated with CHF3 plasma for few seconds, the surface transferred from superhydrophilic to robust superhydrophobic state, which shows that both antireflection and superhydrophobic can be obtained simultaneously by this approach.
Li, Shan, und 李珊. „Wetting Behavior of Water Droplet on Patterned Surface and Quantitative Definition of Hydrophilicity and Hydrophobicity“. Thesis, 2017. http://ndltd.ncl.edu.tw/handle/rga2q4.
Der volle Inhalt der Quelle國立臺灣大學
化學工程學研究所
105
Our study was focus on the quantitative definition of surface hydrophilicity and hydrophobicity. Four kinds of materials have been chosen, and the surfaces underwent surface modification to enhance their hydrophilicity. Among the surface with different wettability, advancing contact angle of the surfaces ranges from 90.8 degree to 31.6 degree, while receding contact angle of the surfaces ranges from 58.2 degree to 0 degree. Two parts included in our study: observation of wetting phenomena of water droplet deposited on flat and patterned surfaces, and contact angle measurements. Hydrophilicity and hydrophobicity are among the most important concepts in surface chemistry, and wettability phenomena has been studied for more than 200 years. Conventionally, 90 degree is considered as critical contact angle or, on the other word, quantitative definition of relative terms “hydrophilic” or “hydrophobic”. However, the critical contact angle still remain the subject of some debate in the literature. The most well-known definition is given by Vogler with which is 65 degree. In the experiment, we prepared surfaces with various wettability and modified their surface roughness by creating regular pillar-patterned structure. We observed the wetting phenomena of water droplet, and measured water advancing and receding contact angle. The data reveals that 65 degree given by Vogler does not fit the results, and there is no specific contact angle to precisely define whether the surface is either hydrophilic or hydrophobic. Upon examination of wetting transition and contact angle data between water and a variety of solid surfaces, an improved definition for hydrophilicity and hydrophobicity is proposed. A surface is hydrophobic when advancing contact angle is larger than 90 degree or receding contact angle larger than 55 degree, while a surface is hydrophilic when advancing contact angle lower than 35 degree. Beside, for surfaces with advancing contact angle ranges from 35 to 55 degree, it was difficult for us to find material that contact angle could be stably measured and with high reproducibility. Therefore, we tried to modify PDMS surface by poly (acrylic acid) photografting polymerization. Hoping that their wettability could be varied in a continuous manner by adjusting UV exposure duration. Though the goal hasn’t been achieved, some surface properties after graft polymerization were provided: (1) surface roughness (Ra) lies in 0-3.5 nm indicates that the surface after modification is almost flat and homogenous. Therefore, the dimension would not change macroscopically if we applied the reaction to pillar-patterned structure surfaces. (2) With increasing exposure duration, receding contact angle dropped to 0 degree first, followed by decrease of advancing contact angle. (3) Lower monomer concentration leads to limit modification with advancing contact angle 80 degree. Further UV exposure would not leads to higher hydrophilicity. Under high monomer concentration, advancing contact angle could drop from 100 degree to 20 degree within 10 min exposure. But the change of contact angle was not in a continuous manner within 6-9 min exposure duration. (4) Under the same reaction condition, larger spacing distance between glass and PDMS surface resulted in lower advancing contact angle.
An-ChangYang und 楊安正. „The Study of the Composition of Self-Assembled Monolayer on the Hydrophobicity or Hydrophilicity in Nanoscale“. Thesis, 2011. http://ndltd.ncl.edu.tw/handle/69207262136257598527.
Der volle Inhalt der QuelleBuchteile zum Thema "Hydrophobicity and hydrophilicity"
Lag, J., Amos Hadas, Rhodes W. Fairbridge, J. C. Nóvoa Muñoz, X. Pontevedra Pombal, A. Martínez Cortizas, Gonzalo Almendros et al. „Hydrophilicity, Hydrophobicity“. In Encyclopedia of Soil Science, 329–30. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-3995-9_279.
Der volle Inhalt der QuelleKohno, Yuki, und Hiroyuki Ohno. „CHAPTER 4. Switchable Hydrophobicity and Hydrophilicity“. In Polymerized Ionic Liquids, 117–42. Cambridge: Royal Society of Chemistry, 2017. http://dx.doi.org/10.1039/9781788010535-00117.
Der volle Inhalt der QuelleWestphal, Ulrich. „Hydrophobicity and Hydrophilicity of Steroid Binding Sites“. In Steroid-Protein Interactions II, 265–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82486-9_8.
Der volle Inhalt der QuelleTofail, S. A. M., und A. A. Gandhi. „Chapter 1. Electrical Modifications of Biomaterials' Surfaces: Beyond Hydrophobicity and Hydrophilicity“. In Nanoscience & Nanotechnology Series, 3–14. Cambridge: Royal Society of Chemistry, 2011. http://dx.doi.org/10.1039/9781849733366-00003.
Der volle Inhalt der QuelleHerbette, Leo G. „A structural model for drug interactions with biological membranes: Hydrophobicity, hydrophilicity and amphiphilicity in drug structures“. In Trends in QSAR and Molecular Modelling 92, 76–85. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1472-1_10.
Der volle Inhalt der Quelle„Hydrophobicity and Hydrophilicity“. In Water at Interfaces, 155–87. CRC Press, 2014. http://dx.doi.org/10.1201/b16755-5.
Der volle Inhalt der QuelleTóth, Ajna, und Krisztina László. „Water Adsorption by Carbons. Hydrophobicity and Hydrophilicity“. In Novel Carbon Adsorbents, 147–71. Elsevier, 2012. http://dx.doi.org/10.1016/b978-0-08-097744-7.00005-3.
Der volle Inhalt der QuelleKelvii Kwok, Yeeli. „Wettability on Different Surfaces“. In 21st Century Surface Science - a Handbook. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.92885.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Hydrophobicity and hydrophilicity"
Han, Yu, Peng Li, Liangyu Zhao, Wenxin Wang, Jinsong Leng und Peng Jin. „Facile hydrophobicity/hydrophilicity modification of SMP surface based on metal constrained cracking“. In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, herausgegeben von Yoseph Bar-Cohen. SPIE, 2015. http://dx.doi.org/10.1117/12.2084494.
Der volle Inhalt der QuellePakdel, Amir, Takao Mori, Yoshio Bando und Dmitri Golberg. „Interface engineering of bio-inspired Boron nitride nano-architectures toward controllable hydrophobicity/hydrophilicity“. In 2015 IEEE 10th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). IEEE, 2015. http://dx.doi.org/10.1109/nems.2015.7147380.
Der volle Inhalt der QuelleMaghsoudy-Louyeh, S., H. S. Ju, B. R. Tittmann, Donald O. Thompson und Dale E. Chimenti. „SURFACE ROUGHNESS STUDY IN RELATION WITH HYDROPHILICITY∕HYDROPHOBICITY OF MATERIALS USING ATOMIC FORCE MICROSCOPY“. In REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION VOLUME 29. AIP, 2010. http://dx.doi.org/10.1063/1.3362244.
Der volle Inhalt der QuelleKanidi, M., A. Papagiannopoulos, A. Matei, M. Dinescu, S. Pispas und M. Kandyla. „Functional Surfaces of Laser-microstructured Silicon Coated with Polymer Blends Switching Between Hydrophilicity and Hydrophobicity“. In CLEO: Science and Innovations. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cleo_si.2020.sth4h.4.
Der volle Inhalt der QuelleWarsinger, David, Jaichander Swaminathan, Lucien L. Morales, Margaret Bertoni und John H. Lienhard V. „Visualization of droplet condensation in membrane distillation desalination with surface modification: hydrophilicity, hydrophobicity, and wicking spacers“. In Second Thermal and Fluids Engineering Conference. Connecticut: Begellhouse, 2017. http://dx.doi.org/10.1615/tfec2017.mst.017553.
Der volle Inhalt der QuelleMadadi, Hojjat, und Jasmina Casals-Terré. „Study the Effects of Different Surfactants on Hydrophilicity of Polydimethylsiloxane (PDMS)“. In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82399.
Der volle Inhalt der QuelleYang, Hao, Qin Wang, Fuying Li, Yanhong Zhu, Lu Gan und Xiangliang Yang. „Abstract 3099: pH-regulated hydrophilicity/hydrophobicity-, surface charge-reversible and redox sensitive nanogels for anticancer drug delivery“. In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-3099.
Der volle Inhalt der QuelleMeng Li und Si Wu. „Research on hydrophilicity and hydrophobicity of adsorption of NOM on metal oxide/ water interface in different pH values“. In 2011 Second International Conference on Mechanic Automation and Control Engineering (MACE). IEEE, 2011. http://dx.doi.org/10.1109/mace.2011.5987485.
Der volle Inhalt der QuelleAbdulhafez, Moataz, Angela J. McComb und Mostafa Bedewy. „Laser-Induced Nanocarbon Formation for Tuning Surface Properties of Commercial Polymers“. In ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8339.
Der volle Inhalt der QuelleNoguchi, Hiroki. „Heat Transfer Enhancement Effect of Nanostructured Surface Made of Carbon Nanotube on SiC Ceramics“. In ASME 2013 11th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icnmm2013-73170.
Der volle Inhalt der Quelle