Dissertationen zum Thema „Hydrology Mathematical models“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Hydrology Mathematical models" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Bailey, Mark A(Mark Alexander) 1970. „Improved techniques for the treatment of uncertainty in physically-based models of catchment water balance“. Monash University, Dept. of Civil Engineering, 2001. http://arrow.monash.edu.au/hdl/1959.1/8271.
Der volle Inhalt der QuelleMahanama, Sarith Prasad Panditha. „Distributed approach of coupling basin scale hydrology with atmospheric processes“. Thesis, Hong Kong : University of Hong Kong, 2000. http://sunzi.lib.hku.hk/hkuto/record.jsp?B22088817.
Der volle Inhalt der QuelleWashburne, James Clarke. „A distributed surface temperature and energy balance model of a semi-arid watershed“. Diss., The University of Arizona, 1994. http://hdl.handle.net/10150/186800.
Der volle Inhalt der QuelleOliver, Marcel 1963. „Mathematical investigation of models of shallow water with a varying bottom“. Diss., The University of Arizona, 1996. http://hdl.handle.net/10150/191198.
Der volle Inhalt der QuelleGoodrich, David Charles. „Basin Scale and Runoff Model Complexity“. Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1990. http://hdl.handle.net/10150/614028.
Der volle Inhalt der QuelleEl, Didy Sherif Mohamed Ahmed 1951. „Two-dimensional finite element programs for water flow and water quality in multi-aquifer systems“. Diss., The University of Arizona, 1986. http://hdl.handle.net/10150/191110.
Der volle Inhalt der QuelleTang, Philip Kwok Fan. „Stochastic Hydrologic Modeling in Real Time Using a Deterministic Model (Streamflow Synthesis and Reservoir Regulation Model), Time Series Model, and Kalman Filter“. PDXScholar, 1991. https://pdxscholar.library.pdx.edu/open_access_etds/4580.
Der volle Inhalt der QuelleFonley, Morgan Rae. „Effects of oscillatory forcing on hydrologic systems under extreme conditions: a mathematical modeling approach“. Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/2075.
Der volle Inhalt der QuelleNamde, Noubassem Nanas 1955. „Simulation of micro catchment water harvesting systems“. Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/191121.
Der volle Inhalt der QuelleHenry, Eric James. „Contaminant induced flow effects in variably-saturated porous media“. Diss., The University of Arizona, 2001. http://hdl.handle.net/10150/191256.
Der volle Inhalt der QuelleRopp, David L. „Numerical study of shallow water models with variable topography“. Diss., The University of Arizona, 2000. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_2000_165_sip1_w.pdf&type=application/pdf.
Der volle Inhalt der QuelleLee, Haksu. „Development and performance analysis of a physically based hydrological model incorporating the effects of subgrid heterogeneity“. University of Western Australia. School of Environmental Systems Engineering, 2007. http://theses.library.uwa.edu.au/adt-WU2007.0129.
Der volle Inhalt der QuelleSawunyama, Tendai. „Evaluating uncertainty in water resources estimation in Southern Africa : a case study of South Africa“. Thesis, Rhodes University, 2009. http://hdl.handle.net/10962/d1006176.
Der volle Inhalt der QuelleTecle, Aregai 1948. „Choice of multicriterion decision making techniques for watershed management“. Diss., The University of Arizona, 1988. http://hdl.handle.net/10150/191145.
Der volle Inhalt der QuelleDu, Jun 1962. „Short-range ensemble forecasting of an explosive cyclogenesis with a limited area model“. Diss., The University of Arizona, 1996. http://hdl.handle.net/10150/191197.
Der volle Inhalt der QuelleFahy, Benjamin. „Evaluating the Impact and Distribution of Stormwater Green Infrastructure on Watershed Outflow“. PDXScholar, 2019. https://pdxscholar.library.pdx.edu/open_access_etds/4732.
Der volle Inhalt der QuelleThyer, Mark Andrew. „Modelling long-term persistence in hydrological time series“. Diss., 2000, 2000. http://www.newcastle.edu.au/services/library/adt/public/adt-NNCU20020531.035349/index.html.
Der volle Inhalt der QuelleShojaei, Nasim. „Automatic Calibration of Water Quality and Hydrodynamic Model (CE-QUAL-W2)“. PDXScholar, 2014. https://pdxscholar.library.pdx.edu/open_access_etds/1942.
Der volle Inhalt der QuelleEdelstein, Christopher. „Climatic conditions and storm hydrology of a small agricultural watershed“. Virtual Press, 2005. http://liblink.bsu.edu/uhtbin/catkey/1314224.
Der volle Inhalt der QuelleDepartment of Natural Resources and Environmental Management
Zeng, Ning. „Climatic impact of Amazon deforestation: A study of underlying mechanism through simple modeling“. Diss., The University of Arizona, 1994. http://hdl.handle.net/10150/186999.
Der volle Inhalt der QuelleRitzi, Robert William. „The use of well response to natural forces in the estimation of hydraulic parameters“. Diss., The University of Arizona, 1989. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_1989_119_sip1_w.pdf&type=application/pdf.
Der volle Inhalt der QuelleHyun, Yunjung. „Multiscale anaylses of permeability in porous and fractured media“. Diss., The University of Arizona, 2002. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_2002_321_sip1_w.pdf&type=application/pdf.
Der volle Inhalt der QuelleSchmid, Wolfgang. „A farm package for MODFLOW-2000 simulation of irrigation demand and conjunctively managed surface-water and ground-water supply /“. Diss., The University of Arizona, 2004. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_2004_287_sip1_w.pdf&type=application/pdf.
Der volle Inhalt der QuelleVionnet, Leticia Beatriz, und Leticia Beatriz Vionnet. „Investigation of stream-aquifer interactions using a coupled surface water and groundwater flow model“. Diss., The University of Arizona, 1995. http://hdl.handle.net/10150/187414.
Der volle Inhalt der QuelleSamper, Calvete F. Javier(Francisco Javier) 1958. „Statistical methods of analyzing hydrochemical, isotopic, and hydrological data from regional aquifers“. Diss., The University of Arizona, 1986. http://hdl.handle.net/10150/191115.
Der volle Inhalt der QuelleChavez, Rodriguez Adolfo 1951. „Modeling mountain-front recharge to regional aquifers“. Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/191124.
Der volle Inhalt der QuelleKapangaziwiri, Evison. „Regional application of the Pitman monthly rainfall-runoff model in Southern Africa incorporating uncertainty“. Thesis, Rhodes University, 2011. http://hdl.handle.net/10962/d1006178.
Der volle Inhalt der QuelleiText 1.4.6 (by lowagie.com)
Mwelwa, Elenestina Mutekenya. „The application of the monthly time step Pitman rainfall-runoff model to the Kafue River basin of Zambia“. Thesis, Rhodes University, 2005. http://hdl.handle.net/10962/d1006171.
Der volle Inhalt der QuelleKeefer, Timothy Orrin, und Timothy Orrin Keefer. „Likelihood development for a probabilistic flash flood forecasting model“. Thesis, The University of Arizona, 1993. http://hdl.handle.net/10150/192077.
Der volle Inhalt der QuelleBosch, David Dean 1958. „Derivation and application of effective parameters for modeling moisture flow in heterogeneous unsaturated porous media“. Diss., The University of Arizona, 1990. http://hdl.handle.net/10150/191158.
Der volle Inhalt der QuelleKapangaziwiri, Evison. „Revised parameter estimation methods for the Pitman monthly rainfall-runoff model“. Thesis, Rhodes University, 2008. http://hdl.handle.net/10962/d1006172.
Der volle Inhalt der QuelleKhajehei, Sepideh. „A Multivariate Modeling Approach for Generating Ensemble Climatology Forcing for Hydrologic Applications“. PDXScholar, 2015. https://pdxscholar.library.pdx.edu/open_access_etds/2403.
Der volle Inhalt der QuelleLopes, Vicente Lucio 1952. „A numerical model of watershed erosion and sediment yield“. Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/191125.
Der volle Inhalt der QuelleAllen, Roderick Lee. „The applicability of microcomputers to local water management“. PDXScholar, 1985. https://pdxscholar.library.pdx.edu/open_access_etds/3417.
Der volle Inhalt der QuelleKoterba, Michael T. „Differential influences of storm and watershed characteristics on runoff from ephemeral streams in southeastern Arizona“. Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/191126.
Der volle Inhalt der QuelleHameed, Maysoun Ayad. „Evaluating Global Sensitivity Analysis Methods for Hydrologic Modeling over the Columbia River Basin“. PDXScholar, 2015. https://pdxscholar.library.pdx.edu/open_access_etds/2398.
Der volle Inhalt der QuelleMichaud, Jene Diane. „Distributed rainfall-runoff modeling of thunderstorm-generated floods a case study in a mid-sized, semi-arid watershed in Arizona /“. Diss., The University of Arizona, 1992. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_1992_49_sip1_w.pdf&type=application/pdf.
Der volle Inhalt der QuelleWang, Maili. „Approximate method for solving two-stage stochastic programming and its application to the groundwater management“. Diss., The University of Arizona, 1999. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_1999_068_sip1_w.pdf&type=application/pdf.
Der volle Inhalt der QuelleBlue, Julie Elena. „Predicting tracer and contaminant transport with the stratified aquifer approach“. Diss., The University of Arizona, 1999. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_1999_426_sip1_w.pdf&type=application/pdf.
Der volle Inhalt der QuelleOliveira, Greice Ximena Santos. „Relações entre medidas de evaporação de superfícies de água livre por evaporímetros e estimativas por métodos meteorológicos em duas regiões do Estado de São Paulo“. Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/11/11131/tde-04082009-111344/.
Der volle Inhalt der QuelleThis study aimed to establish relations between evaporation Class A pan and 20 m2 tank, in Piracicaba region, State of Sao Paulo, Brazil and to test the performance of meteorological methods to estimate open-water surfaces evaporation in this same region and also in Jaboticabal, SP. Computation of daily evaporation was performed by using weather data, collected in the environment of a small artificial lake in Piracicaba, and the following methods: energy balance-Bowen ratio, Penman, Priestley-Taylor and Penman simplified. The methods of Penman, Penman adapted, Dalton adapted, Linacre and of Class A pan-Snyder were evaluated by using weather station data in both regions. The results of the methods were compared with the measurements of the 20 m2 tank evaporation, in a daily basis, and also for two, three or for the mean values for all days of measurements in every month, using indexes of agreement and performance from the regression analysis and deviations from the estimated and measured values. The linear relations between evaporation measured by the two evaporimeters were significative for all months in Piracicaba. The ratio of the two measurements showed variation throughout the year, with a small overestimation (about 3%) from February to June and November, and greater (10% to 15%) in the other months, compared to results of Oliveira (1971) for the same region. Due to the statistical consistency and representativeness of the series of 9 years and 3 repetitions of Class A pan, it is indicated that the factors of monthly relations between the two evaporímeters observed in this study can advantageously replace those obtained by Oliveira (1971). All methods used in the two environments showed good agreement, in average basis, with measurements by 20 m2 tank, with large dispersion of data, which decreased with the increase of the time step. The energy balance method showed good performance when the calculations were performed in 24-h periods, but large deviations compared to the tank with data integrated over the daylight period. The Penman method showed good performance when used for periods of 24 h, with an average underestimation between - 6.0 and -10.5% when integrated over the 24-h period, but with overestimation of +7.2 and +12.4% for the daylight period. The methods of Priestley-Taylor (1972) and Penman simplified showed small deviations between +2.7 and + 5.7%, being considered as having good performance compared to the evaporimeter. Among the methods that used weather station data, the class A- Snyder was the one that showed the lowest average deviation in Piracicaba (+3.9 to + 4.6%), but the greatest overestimation (+14.0% to 14.4%) in Jaboticabal. Another discrepancy between locations was observed for the Penman method modified, with underestimation between 5.5% and 14.1% in Piracicaba, but deviation of +1.0% in Jaboticabal. The original Penman method showed similar deviations in the two regions (-8.9% to 12.3%), while Dalton adapted method showed deviations of +2.1% to 8.1%. The methods of Penman simplified and Priestley-Taylor, used in the lake environment, and the Class A pan-Snyder method, with the use of wheater station data, were those that showed most comparable results with the 20 m2 tank evaporation, but in Jaboticabal, it is necessary to take to account the observed systematic mean deviation.
Price, Myra Ann. „Seasonal Variation in Runoff Curve Number“. Thesis, The University of Arizona, 1998. http://hdl.handle.net/10150/225411.
Der volle Inhalt der QuelleFernandes, Wescley de Sousa. „AvaliaÃÃo do Impacto das MudanÃas ClimÃticas na Oferta HÃdrica da Bacia HidrogrÃfica do ReservatÃrio Ãros usando os Modelos de MudanÃas ClimÃticas do IPCC-AR4, levando em ConsideraÃÃo as Diversas Incertezas Associadas“. Universidade Federal do CearÃ, 2012. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8377.
Der volle Inhalt der QuelleNo presente trabalho as projeÃÃes de vazÃes para a bacia do Ãros (CearÃ) foram obtidas usando as precipitaÃÃes dos modelos globais do quarto relatÃrio do Intergovernmental Panel on Climate Change (IPCC-AR4) para o perÃodo de 2010 a 2099 do cenÃrio A1B. As vazÃes foram geradas pelo modelo hidrolÃgico Soil Moisture Account Procedure (SMAP). Para a obtenÃÃo destas, as precipitaÃÃes foram corrigidas estatisticamente a partir dos dados observados, considerando as sÃries distribuiÃÃes do tipo gama. Quanto à evaporaÃÃo de entrada do modelo chuva-vazÃo foram feitas duas consideraÃÃes, a primeira consideraÃÃo utiliza vazÃes obtidas pelo modelo hidrolÃgico SMAP inicializado com evaporaÃÃo fornecidas pelo INMET e a segunda considera que a inicializaÃÃo foi feita por evaporaÃÃes estimadas pelo mÃtodo de Penann Mothieth. Para a anÃlise das variaÃÃes interanuais foram observadas as caracterÃsticas de tendÃncias das sÃries (usando mÃtodo clÃssico de Mann-Kendall-Sen) nos padrÃes de variaÃÃo (anÃlise da mÃdia e do coeficiente de variaÃÃo da sÃrie) e a anÃlise de extremos (comparaÃÃo das curvas de distribuiÃÃo acumulada do sÃculo XX e XXI). Para anÃlise sazonal considerou-se a anomalia na climatologia mÃdia dos modelos do sÃculo XXI em relaÃÃo ao sÃculo XX. Para a anÃlise interanual foi observado que a inicializaÃÃo do modelo hidrolÃgico SMAP com evaporaÃÃes estimadas pelo mÃtodo de Penann Motheith modificado pode surgir como implementaÃÃo para o teste de hipÃtese de Mann Kendall Sen. O calculo do coeficiente de variaÃÃo demonstrou que apesar da pouca divergÃncia quanto a ocorrÃncia de variabilidade, tratando-se de sÃries de vazÃes obtidas pelo SMAP inicializado com evaporaÃÃes estimadas, as rodadas dos modelos MIROC3_2_MEDRES relatou aumentos de variabilidade para o sÃculo XXI em relaÃÃo ao sÃculo XX. Quando a inicializaÃÃo no SMAP ocorre por meio de evaporaÃÃes fornecidas pelo INMET ocorre uma grande diversificaÃÃo nos valores de variabilidade. Ainda na anÃlise interanual, a curva de funÃÃo de distribuiÃÃo acumulada (CDF) demonstrou que dos 8 modelos analisados (modelos inicializados com evaporaÃÃes estimadas pelo mÃtodo de Penann-Motheith modificado) 3 apresentam maior freqÃÃncia de eventos secos, 3 apresentam uma freqÃÃncia de eventos mais Ãmidos e 2 modelos nÃo apresentando anÃlises significativas aproximando-se da curva gerada pela sÃrie de vazÃo observada. Quanto à anÃlise sazonal das vazÃes à observado que quando se utiliza o mÃtodo de Penann Motheith modificado para evaporaÃÃo (na inicializaÃÃo do SMAP) os valores de vazÃes tornam-se menores do que os valores obtidos por sÃries geradas pelo modelo hidrolÃgico inicializado com evaporaÃÃes fornecidas pelo INMET, relacionando o sÃculo XXI com o sÃculo XX.
In the present work flow projections for the basin Ãros (CearÃ) were obtained using the precipitation of global models of the fourth report of the Intergovernmental Panel on Climate Change (IPCC-AR4) for the period 2010 to 2099 the A1B scenario. The flows were generated by the hydrologic model Soil Moisture Account Procedure (SMAP). To obtain these, the precipitations were statistically corrected from the observed data, considering the distributions of the type series range. The evaporation model input rainfall-runoff were two considerations, the first consideration obtained by using flow hydrologic model initialized with SMAP evaporation provided by INMET and considers that the second boot occur by evaporation estimated by the method of Penann Mothieth. For the analysis of interannual variations were observed the characteristics of trends of the series (using the classical method of Mann-Kendall-Sen), the changing patterns of variation (analysis of the mean and coefficient of variation of the series) and the analysis of extremes (compared cumulative distribution curves of the twentieth century and XXI). For seasonal analysis considered the climate anomaly in the middle of the XXI century models over the twentieth century. For analysis it was observed that interannual hydrologic model initialization SMAP with evaporation estimated by the modified Penann Motheith can arise as an implementation for the hypothesis test of Mann Kendall Sen. The calculation of the coefficient of variation showed that despite the short confrontation over the occurrence of variability, in the case of streamflow series obtained by SMAP initialized with estimated evaporation, the rounds of the models MIROC3_2_MEDRES reported increases in variability for the XXI century in relation to the twentieth century. When booting into SMAP occurs through evaporation provided by INMET is a great diversification in the values of variability. Although the interannual analysis, the curve of cumulative distribution function (CDF) showed that eight of the analyzed models (models initialized with evaporation estimated by the method of Penann Motheith-modified) 3 have a higher frequency of dry events, have a third event frequency wet and two models showing no meaningful analyzes approaching the curve generated by the series of observed flows. As for seasonal analysis of the flow is observed that when using the method of Penann Motheith modified to evaporation (initialization SMAP) values of flow rates become smaller than the values obtained by series generated by the hydrologic model initialized with evaporation provided by INMET , relating the new century, the twentieth century.
Mousavizadeh, Mohammad Hassan. „Integration of a geographic information system and a continuous nonpoint source pollution model to evaluate the hydrologic response of an agricultural watershed“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0015/NQ44524.pdf.
Der volle Inhalt der QuelleDressler, Kevin Andrew. „Estimating the Spatial Distribution of Snow Water Equivalent and Simulated Snowmelt Runoff Modeling in Headwater Basins of the Semi-arid Southwest“. Diss., Tucson, Arizona : University of Arizona, 2005. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu%5Fetd%5F1063%5F1%5Fm.pdf&type=application/pdf.
Der volle Inhalt der QuelleHarter, Thomas. „Unconditional and conditional simulation of flow and transport in heterogeneous, variably saturated porous media“. Diss., The University of Arizona, 1994. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_1994_36_sip1_w.pdf&type=application/pdf.
Der volle Inhalt der QuelleOrr, Shlomo. „Stochastic approach to steady state flow in nonuniform geologic media“. Diss., The University of Arizona, 1993. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_1993_409_sip1_w.pdf&type=application/pdf.
Der volle Inhalt der QuelleHiester, Justin. „Investigations into the Regional and Local Timescale Variations of Subglacial Drainage Networks“. PDXScholar, 2013. https://pdxscholar.library.pdx.edu/open_access_etds/1022.
Der volle Inhalt der QuelleHuth, Anne M. Kramer. „Geochemical and isotopic mixing models : two case studies in a snow-dominated and semi-arid environment“. Diss., The University of Arizona, 2003. http://hdl.handle.net/10150/191260.
Der volle Inhalt der QuelleKhajehei, Sepideh. „From Probabilistic Socio-Economic Vulnerability to an Integrated Framework for Flash Flood Prediction“. PDXScholar, 2018. https://pdxscholar.library.pdx.edu/open_access_etds/4666.
Der volle Inhalt der QuelleTartakovsky, Daniel. „Prediction of transient flow in random porous media by conditional moments“. Diss., The University of Arizona, 1996. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_1996_263_sip1_w.pdf&type=application/pdf.
Der volle Inhalt der Quelle