Auswahl der wissenschaftlichen Literatur zum Thema „Hydrogen bonding“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Hydrogen bonding" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Hydrogen bonding"

1

Breugst, Martin, Daniel von der Heiden und Julie Schmauck. „Novel Noncovalent Interactions in Catalysis: A Focus on Halogen, Chalcogen, and Anion-π Bonding“. Synthesis 49, Nr. 15 (23.05.2017): 3224–36. http://dx.doi.org/10.1055/s-0036-1588838.

Der volle Inhalt der Quelle
Annotation:
Noncovalent interactions play an important role in many biological and chemical processes. Among these, hydrogen bonding is very well studied and is already routinely used in organocatalysis. This Short Review focuses on three other types of promising noncovalent interactions. Halogen bonding, chalcogen bonding, and anion-π bonding have been introduced into organocatalysis in the last few years and could become important alternate modes of activation to hydrogen bonding in the future.1 Introduction2 Halogen Bonding3 Chalcogen Bonding4 Anion-π Bonding5 Conclusions
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wang, Xinyu, Huiyuan Wang, Hongmin Zhang, Tianxi Yang, Bin Zhao und Juan Yan. „Investigation of the Impact of Hydrogen Bonding Degree in Long Single-Stranded DNA (ssDNA) Generated with Dual Rolling Circle Amplification (RCA) on the Preparation and Performance of DNA Hydrogels“. Biosensors 13, Nr. 7 (23.07.2023): 755. http://dx.doi.org/10.3390/bios13070755.

Der volle Inhalt der Quelle
Annotation:
DNA hydrogels have gained significant attention in recent years as one of the most promising functional polymer materials. To broaden their applications, it is critical to develop efficient methods for the preparation of bulk-scale DNA hydrogels with adjustable mechanical properties. Herein, we introduce a straightforward and efficient molecular design approach to producing physically pure DNA hydrogel and controlling its mechanical properties by adjusting the degree of hydrogen bonding in ultralong single-stranded DNA (ssDNA) precursors, which were generated using a dual rolling circle amplification (RCA)-based strategy. The effect of hydrogen bonding degree on the performance of DNA hydrogels was thoroughly investigated by analyzing the preparation process, morphology, rheology, microstructure, and entrapment efficiency of the hydrogels for Au nanoparticles (AuNPs)–BSA. Our results demonstrate that DNA hydrogels can be formed at 25 °C with simple vortex mixing in less than 10 s. The experimental results also indicate that a higher degree of hydrogen bonding in the precursor DNA resulted in stronger internal interaction forces, a more complex internal network of the hydrogel, a denser hydrogel, improved mechanical properties, and enhanced entrapment efficiency. This study intuitively demonstrates the effect of hydrogen bonding on the preparation and properties of DNA hydrogels. The method and results presented in this study are of great significance for improving the synthesis efficiency and economy of DNA hydrogels, enhancing and adjusting the overall quality and performance of the hydrogel, and expanding the application field of DNA hydrogels.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Li, Zhangkang, Cheng Yu, Hitendra Kumar, Xiao He, Qingye Lu, Huiyu Bai, Keekyoung Kim und Jinguang Hu. „The Effect of Crosslinking Degree of Hydrogels on Hydrogel Adhesion“. Gels 8, Nr. 10 (21.10.2022): 682. http://dx.doi.org/10.3390/gels8100682.

Der volle Inhalt der Quelle
Annotation:
The development of adhesive hydrogel materials has brought numerous advances to biomedical engineering. Hydrogel adhesion has drawn much attention in research and applications. In this paper, the study of hydrogel adhesion is no longer limited to the surface of hydrogels. Here, the effect of the internal crosslinking degree of hydrogels prepared by different methods on hydrogel adhesion was explored to find the generality. The results show that with the increase in crosslinking degree, the hydrogel adhesion decreased significantly due to the limitation of segment mobility. Moreover, two simple strategies to improve hydrogel adhesion generated by hydrogen bonding were proposed. One was to keep the functional groups used for hydrogel adhesion and the other was to enhance the flexibility of polymer chains that make up hydrogels. We hope this study can provide another approach for improving the hydrogel adhesion generated by hydrogen bonding.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Dai, Bailin, Ting Cui, Yue Xu, Shaoji Wu, Youwei Li, Wu Wang, Sihua Liu, Jianxin Tang und Li Tang. „Smart Antifreeze Hydrogels with Abundant Hydrogen Bonding for Conductive Flexible Sensors“. Gels 8, Nr. 6 (13.06.2022): 374. http://dx.doi.org/10.3390/gels8060374.

Der volle Inhalt der Quelle
Annotation:
Recently, flexible sensors based on conductive hydrogels have been widely used in human health monitoring, human movement detection and soft robotics due to their excellent flexibility, high water content, good biocompatibility. However, traditional conductive hydrogels tend to freeze and lose their flexibility at low temperature, which greatly limits their application in a low temperature environment. Herein, according to the mechanism that multi−hydrogen bonds can inhibit ice crystal formation by forming hydrogen bonds with water molecules, we used butanediol (BD) and N−hydroxyethyl acrylamide (HEAA) monomer with a multi−hydrogen bond structure to construct LiCl/p(HEAA−co−BD) conductive hydrogel with antifreeze property. The results indicated that the prepared LiCl/p(HEAA−co−BD) conductive hydrogel showed excellent antifreeze property with a low freeze point of −85.6 °C. Therefore, even at −40 °C, the hydrogel can still stretch up to 400% with a tensile stress of ~450 KPa. Moreover, the hydrogel exhibited repeatable adhesion property (~30 KPa), which was attributed to the existence of multiple hydrogen bonds. Furthermore, a simple flexible sensor was fabricated by using LiCl/p(HEAA−co−BD) conductive hydrogel to detect compression and stretching responses. The sensor had excellent sensitivity and could monitor human body movement.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ghafouri, Reza, Fatemeh Ektefa und Mansour Zahedi. „Characterization of Hydrogen Bonds in the End-Functionalized Single-Wall Carbon Nanotubes: A DFT Study“. Nano 10, Nr. 03 (April 2015): 1550036. http://dx.doi.org/10.1142/s1793292015500368.

Der volle Inhalt der Quelle
Annotation:
A systematic computational study is carried out to shed some light on the structure of semiconducting armchair single-wall carbon nanotubes (n, n) SWCNTs, n = 4, 5 and 6, functionalized at the end with carboxyl (– COOH ) and amide (– CONH 2) from the viewpoint of characterizing the intramolecular hydrogen bondings at the B3LYP/6-31++G(d, p) level. Geometry parameters display different types of intramolecular hydrogen bonding possibilities in the considered functionalized SWCNTs. All of the hydrogen bondings are confirmed by natural bonding orbitals (NBO) analysis as well as nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) parameters. Based on NBO analysis, the calculated [Formula: see text] delocalization energies E(2), 1.15 kcal/mol to 7.04 kcal/mol, are in direct relation with the hydrogen bonding strengths. Differences in the chemical shielding principal components of 13 C and 17 O nuclei correlate well with the strengths of the hydrogen bondings. Participating in stronger hydrogen bondings, a larger SWCNT has a decreasing effect on 13 C (= O ) and 17 O isotropic chemical shieldings, σiso, consistent with the NBO analysis. The considerable changes of 13 C /17 O σiso can be interpreted as a result of shielding tensor component orientation. The 13 C (= O ) and 17 O quadrupole coupling constants C Q decrease under the effect of hydrogen bonding while asymmetry parameters ηQ significantly increase, indicating that 17 O ηQ is more sensitive to hydrogen bondings.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Faust, Bruce C. „Hydrogen Bonding“. Science 258, Nr. 5081 (16.10.1992): 381. http://dx.doi.org/10.1126/science.258.5081.381.c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kollman, Peter A. „Hydrogen bonding“. Current Biology 9, Nr. 14 (Juli 1999): R501. http://dx.doi.org/10.1016/s0960-9822(99)80319-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Abraham, Michael H., Gary S. Whiting, Jenik Andonian-Haftvan, Jonathan W. Steed und Jay W. Grate. „Hydrogen bonding“. Journal of Chromatography A 588, Nr. 1-2 (Dezember 1991): 361–0364. http://dx.doi.org/10.1016/0021-9673(91)85048-k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Abraham, Michael H., Gary S. Whiting, Ruth M. Doherty und Wendel J. Shuely. „Hydrogen bonding“. Journal of Chromatography A 587, Nr. 2 (Dezember 1991): 213–28. http://dx.doi.org/10.1016/0021-9673(91)85158-c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Abraham, Michael H., Gary S. Whiting, Ruth M. Doherty und Wendel J. Shuely. „Hydrogen bonding“. Journal of Chromatography A 587, Nr. 2 (Dezember 1991): 229–36. http://dx.doi.org/10.1016/0021-9673(91)85159-d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Hydrogen bonding"

1

Mitchell, John Blayney Owen. „Theoretical studies of hydrogen bonding“. Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358697.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Mondal, Raju. „Systematic studies of hydrogen bonding“. Thesis, Durham University, 2004. http://etheses.dur.ac.uk/2986/.

Der volle Inhalt der Quelle
Annotation:
This thesis deals with wider application and implications of the hydrogen bond in crystal engineering studies and beyond; in addition, it also highlights the Cambridge Structural Database (CSD) as the potential knowledge-mine for inorganic chemists. The content of this thesis covers mainly three areas, viz, the role of hydrogen bonding in crystal engineering studies, the bridging between mainstream crystal engineering studies and solvates via hydrogen bond, and CSD studies on metal coordination spheres. Chapter 2 deals with crystal structure prediction through understanding the driving forces for forming supramolecular synthons and some rare supramolecular networks (Carbomndum III). With the help of a series of supraminols we attempt to identify the underlying reason for forming P-As networks. Chapter 3 covers the much debated topic of acceptor capabilities of organic halogens and consequently, how the so-called illusory hydrogen bond involving an organic halogen as an acceptor can explain a complex topic like synthon change-over, in a perfectly comprehensible manner. The aim of the Chapters 4 to 6 is to bring two separate fields, "crystal engineering" and "solvates" closer via a common root, like hydrogen bonding. The serendipitous host molecules are part of our crystal engineering studies, yet they form solvates due to less than optimum hydrogen bonding in their respective crystal structures. Alongside some usual solvates, in an unconventional way, different amines with varying steric, strain and donor hydrogen atoms were used. Different geometrical as well as crystallographical aspects and their explicit role in synthon selection has also been discussed. In Chapter 7, geometrical distortions of three-coordinate metal complexes in the crystal structures in the CSD have been analysed using symmetry modified Principal Component Analysis (PCA). Results shows that 90% of three coordinate species are accounted for by the five elements Cu, Ag, Hg, Au and Zn. Among the three major types of geometries, trigonal planar dominates the data sets, with smaller contribution for Y- and T-shaped structure. For Hg complexes, a possible reaction pathway for ligand addition reaction to two-coordinate linear complexes via T-shaped geometries leading to trigonal planar is discussed in detail. The background information and an overview of the experiments are discussed in the Introductory Chapter.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Sagar, Rajeeve. „Self-assembly via hydrogen bonding“. Thesis, University of Warwick, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.247352.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Scott, Tianeka S. „Understanding Hydrogen Bonding in Photoenolization“. University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1378196534.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Howard, Daryl L., und n/a. „Hydrogen bonding in the near infrared“. University of Otago. Department of Chemistry, 2006. http://adt.otago.ac.nz./public/adt-NZDU20060823.150321.

Der volle Inhalt der Quelle
Annotation:
OH-stretching spectra of various vapour phase species were recorded to investigate hydrogen bonding. The species studied include 1,2-ethanediol, 1,3-propanediol, 1,4-butanediol, acetylacetone, hexafluoroacetylacetone and the complex formed in the heterogeneous mixture of methanol and trimethylamine. The spectra range from the infrared, near infrared to visible wavelengths. The main focus of this study is in the near infrared region, in which the OH-stretching overtones are dominant. The near infrared and visible spectrum of formic acid has been recorded to investigate coupling across bonds, specifically a resonance occurring between OH- and CH-stretching vibrations. The same resonance was also observed in the spectrum of 1,2-ethanediol. The spectra of deuterated isotopomers of formic acid and 1,2-ethanediol were recorded to experimentally verify the resonance. The inherently weak nature of the vibrational overtone transitions required sensitive spectroscopic techniques to observe the spectra. The spectra were recorded with conventional long path length absorption spectroscopy and intracavity laser photoacoustic spectroscopy. Anharmonic oscillator local mode calculations of the OH-stretching transitions were performed to simulate the observed spectra. These calculations require calculation of potential energy surfaces and dipole moment functions. Simulated spectra obtained with highly correlated ab initio methods and large basis sets have yielded the best agreement with observation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Biemond, Gerard Jan Eduard. „Hydrogen bonding in segmented block copolymers“. Enschede : University of Twente, 2006. http://doc.utwente.nl/51102.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Taylor, Russell Alan. „Hydrogen bonding effects in homogeneous catalysis“. Thesis, Imperial College London, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.500138.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Thomson, Patrick. „Extremely strong contiguous hydrogen bonding arrays“. Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/7856.

Der volle Inhalt der Quelle
Annotation:
When multiple hydrogen bonds lie in-plane and parallel to each other in close proximity, they experience additional positive or negative secondary electrostatic interactions. When a pair of molecules are arranged such that every hydrogen bond acceptor is on one molecule and every hydrogen bond donor is on another, the positive secondary electrostatic interactions are maximised, and thus the association constant of the complex is enhanced. This thesis will present the development of a family of quadruple hydrogen bonded complexes containing only positive secondary interactions, which confers unprecedented stability. The complexes are sufficiently stable to maintain strong binding in polar solvents such as acetonitrile and can be switched “on” and “off” with acid and base. They will be developed into synthons for acid-base responsive supramolecular recognition, for use in stimuli-responsive supramolecular polymers and gelators.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Locke, Christopher John. „Competitive hydrogen bonding in polymeric systems“. Thesis, University of York, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259805.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Hayward, Owen David. „Hydrogen bonding in the crystalline state“. Thesis, University of Bristol, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391181.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Hydrogen bonding"

1

1941-, Schuster P., und Mikenda Werner, Hrsg. Hydrogen bond research. Wien: Springer, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

1943-, Bellissent-Funel M. C., Dore John C und NATO Advanced Research Workshop on Hydrogen Bond Networks (1993 : Cargèse, France), Hrsg. Hydrogen bond networks. Dordrecht: Kluwer Academic Publishers, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

D, Hadži, Hrsg. Theoretical treatments of hydrogen bonding. Chichester: John Wiley Sons, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kuo, Shiao-Wei. Hydrogen Bonding in Polymeric Materials. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527804276.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Jeffrey, George A., und Wolfram Saenger. Hydrogen Bonding in Biological Structures. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-85135-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Pihko, Petri M. Hydrogen Bonding in Organic Synthesis. Weinheim: WILEY-VCH, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Jeffrey, George A. Hydrogen bonding in biological structures. Berlin: Springer-Verlag, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Wolfram, Saenger, Hrsg. Hydrogen bonding in biological structures. Berlin: Springer-Verlag, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

NATO Advanced Study Institute on Hydrogen-bonded Liquids (1989 Institut scientifique de Cargèse). Hydrogen-bonded liquids. Dordrecht: Springer, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

NATO Advanced Study Institute on Hydrogen-bonded Liquids (1989 Institut scientifique de Cargèse). Hydrogen-bonded liquids. Dordrecht: Kluwer Academic Publishers, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Hydrogen bonding"

1

Hirao, Hajime, und Xiaoqing Wang. „Hydrogen Bonding“. In The Chemical Bond, 501–22. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527664658.ch17.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zhang, Chaoyang, Jing Huang und Rupeng Bu. „Hydrogen Bonding, Hydrogen Transfer, and Halogen Bonding“. In Intrinsic Structures and Properties of Energetic Materials, 317–77. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2699-2_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Chen, Chang-Hwei. „Deuterium Bonding Versus Hydrogen Bonding“. In Deuterium Oxide and Deuteration in Biosciences, 29–42. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08605-2_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Dong, Kun, Qian Wang, Xingmei Lu, Qing Zhou und Suojiang Zhang. „Structure, Interaction and Hydrogen Bond“. In Structure and Bonding, 1–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38619-0_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Huyskens, P. L., und G. G. Siegel. „Hydrogen Bonding and Entropy“. In Intermolecular Forces, 397–408. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76260-4_17.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Vilar, Ramón. „Hydrogen-Bonding Templated Assemblies“. In Supramolecular Assembly via Hydrogen Bonds II, 85–137. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b14141.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Todres, Zory Vlad. „Effects of Hydrogen Bonding“. In Organic Chemistry in Confining Media, 89–102. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00158-6_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Jeffrey, George A., und Wolfram Saenger. „Hydrogen Bonding in Carbohydrates“. In Hydrogen Bonding in Biological Structures, 169–219. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-85135-3_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Jeffrey, George A., und Wolfram Saenger. „Hydrogen Bonding in Proteins“. In Hydrogen Bonding in Biological Structures, 351–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-85135-3_19.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Hawthorne, F. C., und W. H. Baur. „Hydrogen Bonding in Minerals“. In Advanced Mineralogy, 340–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78523-8_23.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Hydrogen bonding"

1

Kasai, Paul H. „Hydrogen Bonding in Disk Lubricants“. In 2006 Asia-Pacific Magnetic Recording Conference. IEEE, 2006. http://dx.doi.org/10.1109/apmrc.2006.365901.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Dilshard, Rahima, John R. Dixon, William O. George, Robert A. Lewis, Brian Minty und Roger Upton. „Molecular modeling of hydrogen bonding interactions“. In Fourier Transform Spectroscopy: Ninth International Conference, herausgegeben von John E. Bertie und Hal Wieser. SPIE, 1994. http://dx.doi.org/10.1117/12.166742.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ilgen, Anastasia, Jeffery A. Greathouse, Ward Thompson und Hasini Senanayake. „Hydrogen-bonding networks in nanoconfined water“. In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.9797.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ilgen, Anastasia, Jefferey Greathouse, Ward Thompson und Hasini Senanayake. „Hydrogen-bonding networks in nanoconfined water.“ In Proposed for presentation at the Goldschmidt Meeting 2022 held July 10-15, 2022 in Honolulu, HI. US DOE, 2022. http://dx.doi.org/10.2172/2004088.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Rusev, Rostislav. „Hydrogen bonding network as a logic gate“. In 2017 XXVI International Scientific Conference "Electronics" (ET). IEEE, 2017. http://dx.doi.org/10.1109/et.2017.8124383.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Pohl, Radek, Lenka Poštová Slavětínská und Dominik Rejman. „Pyrrolidine nucleotides conformationally constrained via hydrogen bonding“. In XVIth Symposium on Chemistry of Nucleic Acid Components. Prague: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2014. http://dx.doi.org/10.1135/css201414352.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Arrivo, S. M., T. P. Dougherty, W. T. Grubbs und E. J. Heilweil. „New Advances in Measuring Hydrogen Bonding Dynamics“. In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.tha.3.

Der volle Inhalt der Quelle
Annotation:
We report the only known comprehensive study of conserved vibrational energy transfer during association and dissociation of biologically relevant hydrogen-bonded complexes in dilute (0.1 M acid) room temperature solution. Newly applied picosecond infrared techniques which vibrationally tag and probe interacting proton donating (-OH, -NH) and accepting (e.g., -C = O, ≡ON) constituents will be presented. From these measurements, details of steric interactions, equilibrium reaction rates and unexpected vibrational excitation transfer during hydrogen-bond formation are revealed for the first time.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

McCoy, Anne, und Rachel Huchmala. „INSIGHTS INTO HYDROGEN BONDING FROM VIBRATIONAL SPECTRA“. In 2023 International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2023. http://dx.doi.org/10.15278/isms.2023.6918.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

King, John, und Kevin Kubarych. „Solvent Dependent Spectral Diffusion in Hydrogen Bonding Environments“. In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/up.2010.the17.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Hagihara, Taizo, Tatsuya Takeuchi und Yasuhide Ohno. „Fluxless Flip-Chip Bonding Process Using Hydrogen Radical“. In 2008 10th Electronics Packaging Technology Conference (EPTC). IEEE, 2008. http://dx.doi.org/10.1109/eptc.2008.4763498.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Hydrogen bonding"

1

Maroncelli, Mark. Ion Solvation and Hydrogen Bonding in Liquid Electrolytes. Office of Scientific and Technical Information (OSTI), April 2023. http://dx.doi.org/10.2172/1970025.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zhou, Xu, Hunaid Nulwala, Hyung Kim und Shiaoguo Chen. Universal Solvent Viscosity Reduction via Hydrogen Bonding Disruptors. Office of Scientific and Technical Information (OSTI), Juni 2022. http://dx.doi.org/10.2172/1873907.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wendlandt, Johanna. Study of Hydrogen Bonding in Small Water Clusters with Density Functional Theory Calculations. Office of Scientific and Technical Information (OSTI), Dezember 2005. http://dx.doi.org/10.2172/877463.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Roberds, B. E., K. D. Choquette, K. M. Geib, S. H. Kravitz, R. D. Twesten und S. N. Farrens. Wafer bonding of GaAs, InP, and Si annealed without hydrogen for advanced device technologies. Office of Scientific and Technical Information (OSTI), Oktober 1997. http://dx.doi.org/10.2172/634098.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wei, Jing-Fong. Determination of the effect of various hydrogen bonding functionalities on the viscosity of coal liquids. Office of Scientific and Technical Information (OSTI), November 1990. http://dx.doi.org/10.2172/6203549.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Gragson, D. E., und G. L. Richmond. Investigations of the Structure and Hydrogen Bonding of Water Molecules at Liquid Surfaces by Vibrational Sum Frequency Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, Juni 1998. http://dx.doi.org/10.21236/ada347409.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Craven, S., D. Kramer und W. Moddeman. Chemistry of glass-ceramic to metal bonding for header applications: 2. Hydrogen bubble formation during glass-ceramic to metal sealing. Office of Scientific and Technical Information (OSTI), Dezember 1986. http://dx.doi.org/10.2172/6963554.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Gragson, D. E., und G. L. Richmond. Probing the Intermolecular Hydrogen Bonding of Water Molecules at the CCl sub 4 Water Interface in the Presence of Charged Soluble Surfactant. Fort Belvoir, VA: Defense Technical Information Center, Juni 1998. http://dx.doi.org/10.21236/ada347139.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Gao, Q., und J. C. Hemminger. A Vibrational Spectroscopy Study of CH3COOH, CH3COOD and (13)CD3COOH(D) Adsorption on Pt(111). 1. Surface Dimer Formation and Hydrogen Bonding. Fort Belvoir, VA: Defense Technical Information Center, Juni 1991. http://dx.doi.org/10.21236/ada237240.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Gao, Quanyin, und John C. Hemminger. A Vibrational Spectroscopy Study of Ch3COOH, CH3COOD and (13)CD3COOH(D) Adsorption on Pt (111): 1. Surface Dimer Formation and Hydrogen Bonding. Fort Belvoir, VA: Defense Technical Information Center, Juni 1991. http://dx.doi.org/10.21236/ada237284.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie