Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Hydrogels composites“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Hydrogels composites" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Hydrogels composites"
Murshid, Nimer, Omar Mouhtady, Mahmoud Abu-samha, Emil Obeid, Yahya Kharboutly, Hamdi Chaouk, Jalal Halwani und Khaled Younes. „Metal Oxide Hydrogel Composites for Remediation of Dye-Contaminated Wastewater: Principal Component Analysis“. Gels 8, Nr. 11 (30.10.2022): 702. http://dx.doi.org/10.3390/gels8110702.
Der volle Inhalt der QuelleMelek Tezcan, Melek Tezcan, Huseyin Cicek Huseyin Cicek und Meryem Cicek and Said Nadeem Meryem Cicek and Said Nadeem. „Tuning Photocatalytic Activity and Decomposition Properties of Poly(Polyethylene Glycol Diacrylate-co-Hydroxyethyl Methacrylate)/TiO2 Composite Hydrogel“. Journal of the chemical society of pakistan 41, Nr. 4 (2019): 598. http://dx.doi.org/10.52568/000778/jcsp/41.04.2019.
Der volle Inhalt der QuelleSokolova, Marina, Janis Locs und Dagnija Loca. „Hyaluronan Hydrogel/Calcium Phosphates Composites for Medical Application“. Key Engineering Materials 721 (Dezember 2016): 219–23. http://dx.doi.org/10.4028/www.scientific.net/kem.721.219.
Der volle Inhalt der QuelleEraković, Zorica. „Graphene composites with hydrogel“. Advanced Technologies 11, Nr. 1 (2022): 53–62. http://dx.doi.org/10.5937/savteh2201053e.
Der volle Inhalt der QuelleNadtoka, O., N. Kutsevol, T. Bezugla, P. Virych und A. Naumenko. „Hydrogel-Silver Nanoparticle Composites for Biomedical Applications“. Ukrainian Journal of Physics 65, Nr. 5 (11.05.2020): 446. http://dx.doi.org/10.15407/ujpe65.5.446.
Der volle Inhalt der QuelleLiu, Shih-Ming, Wen-Cheng Chen, Chia-Ling Ko, Hsu-Ting Chang, Ya-Shun Chen, Ssu-Meng Haung, Kai-Chi Chang und Jian-Chih Chen. „In Vitro Evaluation of Calcium Phosphate Bone Cement Composite Hydrogel Beads of Cross-Linked Gelatin-Alginate with Gentamicin-Impregnated Porous Scaffold“. Pharmaceuticals 14, Nr. 10 (29.09.2021): 1000. http://dx.doi.org/10.3390/ph14101000.
Der volle Inhalt der QuelleKocak, Fatma Z., Muhammad Yar und Ihtesham U. Rehman. „Hydroxyapatite-Integrated, Heparin- and Glycerol-Functionalized Chitosan-Based Injectable Hydrogels with Improved Mechanical and Proangiogenic Performance“. International Journal of Molecular Sciences 23, Nr. 10 (11.05.2022): 5370. http://dx.doi.org/10.3390/ijms23105370.
Der volle Inhalt der QuelleChuah, Clarence, Jing Wang, Javad Tavakoli und Youhong Tang. „Novel Bacterial Cellulose-Poly (Acrylic Acid) Hybrid Hydrogels with Controllable Antimicrobial Ability as Dressings for Chronic Wounds“. Polymers 10, Nr. 12 (29.11.2018): 1323. http://dx.doi.org/10.3390/polym10121323.
Der volle Inhalt der QuelleXiang, Yu, Li Bin Liu, Zhao Dang und Ting Li. „Progress of Graphene-Based Hydrogel“. Materials Science Forum 852 (April 2016): 714–19. http://dx.doi.org/10.4028/www.scientific.net/msf.852.714.
Der volle Inhalt der QuelleAhmad, Faheem, Bushra Mushtaq, Faaz Ahmed Butt, Muhammad Sohail Zafar, Sheraz Ahmad, Ali Afzal, Yasir Nawab, Abher Rasheed und Zeynep Ulker. „Synthesis and Characterization of Nonwoven Cotton-Reinforced Cellulose Hydrogel for Wound Dressings“. Polymers 13, Nr. 23 (25.11.2021): 4098. http://dx.doi.org/10.3390/polym13234098.
Der volle Inhalt der QuelleDissertationen zum Thema "Hydrogels composites"
Lizardo, Daniel (Daniel H. ). „Architectural scale biomimetic composites based on chitosan and alginate hydrogels“. Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98654.
Der volle Inhalt der QuelleCataloged from PDF version of thesis. "May 2015."
Includes bibliographical references (pages 44-46).
Developmental research and characterization was conducted on novel biomaterials for a larger project of product and architectural scale digital fabrication using natural bioplastics and hierarchical computational design carried out by the Mediated Matter team, led by Laia Mogas-Soldevila and Jorge Duro-Royo. Chitosan and alginate (among other natural polymers) are processed from shellfish waste and algae, respectively, and highly viscous solutions are extruded as a layer-by-layer printing material which dries into a solid, single material product with spatially variable functionality. Additional solid materials are added including cellulose microfibers and kaolinite platelets as volumetric aggregates, strengthening or stiffening aggregates, and as modes for directional properties. All materials used for aggregates, like that of the hydrogel matrices, were naturally sourced and recyclable. These composite materials were analyzed through microscopy and mechanical testing to begin to determine their agency in the aforementioned purposes. The most promising materials were selected and then discussed at length in an attempt to understand the factors behind ease of production, scalability, and potential for optimization, and as the research continues, they will be tested in the digital fabrication platform at the installation scale.
by Daniel Lizardo.
S.B.
Roellinger, Bettina. „De nouveaux hydrogels composites pour la production et le stockage énergétique“. Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLET053.
Der volle Inhalt der QuelleHydrogels are highly water-absorbent three dimensional viscoelastic networks, mainly based on polymers used in numerous fields such as biotechnology, food and pharmaceutical industry. However, the potential use of these materials in the energy domain has not yet been fully investigated. To bring new insights and perspectives, we have developed during this PhD thesis a spherical macroporous electrode made of a conductive hydrogel. It is composed of sodium alginate, a polyelectrolyte that can form a biocompatible hydrogel when mixed with water in presence of divalent cations. The addition of carbon nanotubes in the solution before gelation leads to the formation of an electronically conductive network. The formulation and the physicochemical characterization are first discussed. Then two direct applications will be detailed. The first one consists in encapsulating electroactive bacteria inside the composite hydrogel. The peculiar metabolism of Geobacter sulfurreducens allows electron transfer with the external medium through oxydo-reduction reactions. Current monitoring allows us to show proliferation and viability of the cells until depletion of nutrients in the medium. The second one is the incorporation of intercalation lithium particles in the same matrix for semi-solid redox flow battery domain. Characterization of the redox couple MnO2/LiMn2O4 and FePO4/LiFePO4 inside the hydrogel, will enable us to develop a Li-ion battery with a 0.65 V nominal tension
Samchenko, Yu M., S. O. Kryklia, T. P. Poltoratska, Леонід Федорович Суходуб, Леонид Федорович Суходуб, Leonid Fedorovych Sukhodub, Yu O. Isheikina, V. I. Makarenko und V. V. Konovalova. „Hybrid Hydrogel Materials with Incorporated Nanoparticles“. Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35464.
Der volle Inhalt der QuelleMarcasuzaa, Pierre. „Composites conducteurs à base de PANI : vers une architecture contrôlée de 2D à 3D“. Pau, 2009. http://www.theses.fr/2009PAUU3047.
Der volle Inhalt der QuelleIntrinsically conducting polymers (ICPs) are a recent category of materials which currently make strong great strides. However, their main inconvenience is their insolubility in the usual solvents. That’s why lots of studies associate them with polymer matrices to make composites. During this study, conductive blocks copolymers with controlled architecture were obtained. These copolymers consist of a "matrix" block and a second conductive block. The first part, polystyrene or polyacrylate, is synthesized by controlled radical polymerization (ATRP) to control the molecular weight (between 5 000 and 15 000 g / mol) and the polydispersity (Ip). The conductive part is an oligomer of aniline. Then, both blocks are coupled to obtain a diblock copolymer. This synthesis is realized by conventional heating (bath of oil) and under microwave irradiation. Other architecture of copolymer is realized, it consists on the graft of polyaniline onto a natural polymer, the chitosane which brings coating properties, and the possibility of realizing hydrogels by crosslinking of grafting copolymer. So a network in which the PANI is distributed in a homogeneously is obtained
Frayssinet, Antoine. „Hydrogels composites collagène/acide hyaluronique cellularisés et biomimétiques pour la régénération du Nucleus Pulposus“. Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS312.
Der volle Inhalt der QuelleHalf of chronic back pain is associated with intervertebral disc (IVD) degeneration. We hypothesized that a biomimetic hydrogel would promote the regeneration of the Nucleus Pulposus, the central part of IVD. Hydrogels will provide cues to incorporated mesenchymal stem cells (MSC) to in situ differentiate into nucleopulpocytes. With different contents of functionalized hyaluronan (HA-Tyr), Collagen/HA-Tyr hydrogels were produced and characterized using scanning and transmission electron microscopy, rheology, DSC, accelerated in vitro enzymatic degradation and tested for their ability to absorb water. MSC were then incorporated within Col/HA-Tyr composites and cultured over 28 days. Cell viability was assessed and cell differentiation was analysed by quantitative PCR and indirect immunohistochemistry. The presence of several nucleopulpocytes differentiation markers, such as type II Collagen, Aggrecan and KRT 18 was monitored. The manufacturing process allowed the generation of highly hydrated hydrogels (> 90%), mechanically biomimetic, resistant against enzymatic degradation, in which collagen fibrillogenesis was preserved. Without any differentiation factor, both elasticity and structure of the Col/HA-Tyr composite hydrogels seems to be sufficient to induce the differentiation of the incorporated MSCs into nucleopulpocytes. In addition, the presence of collagen was necessary for an adequate cell adhesion. Developed according to a biomimetic approach, this platform of Col-HA-Tyr hydrogels appears promising for the intervertebral disc repair
Mushi, Ngesa Ezekiel. „Chitin nanofibers, networks and composites : Preparation, structure and mechanical properties“. Doctoral thesis, KTH, Biokompositer, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-155528.
Der volle Inhalt der QuelleQC 20141110
Kryklia, S. O., Yu M. Samchenko, N. O. Pasmurtseva, V. V. Konovalova und S. M. Scherbakov. „Nano-Sized Hydrogel Composites Based on N-Isopropylacrylamide and Magnetite for Controlled Drug Delivery“. Thesis, Sumy State University, 2015. http://essuir.sumdu.edu.ua/handle/123456789/42510.
Der volle Inhalt der QuelleKnudsen, Bernard. „A Rheological Examination of Polymer Composites: Including Functionalized Carbon Nanotubes, Viable Polyurethane Alternates, and Contact Lens Hydrogels“. Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4522.
Der volle Inhalt der QuelleHawkins, Ashley Marie. „BIODEGRADABLE HYDROGELS AND NANOCOMPOSITE POLYMERS: SYNTHESIS AND CHARACTERIZATION FOR BIOMEDICAL APPLICATIONS“. UKnowledge, 2012. http://uknowledge.uky.edu/cme_etds/10.
Der volle Inhalt der QuelleButcher, Annabel Louise. „Deformation and fracture of soft materials for cartilage tissue engineering“. Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/277890.
Der volle Inhalt der QuelleBücher zum Thema "Hydrogels composites"
H, Jones Russell, Ricker Richard E, Minerals, Metals and Materials Society., ASM International. Materials Science Division. und Conference on Environmental Effects on Advanced Materials., Hrsg. Environmental effects on advanced materials. Warrendale, Pa: Minerals, Metals & Materials Society, 1991.
Den vollen Inhalt der Quelle findenTakahira, Kamigaki, Kubota Etsuo und United States. National Aeronautics and Space Administration., Hrsg. Electrically conducting polymer-copper sulphide composite films, preparation by treatment of polymer-copper (II) acetate composites with hydrogen sulphide. Washington, DC: National Aeronautics and Space Administration, 1988.
Den vollen Inhalt der Quelle findenFukassei ketsugō, fukassei bunshi no kasseika: Kakushinteki na bunshi henkan hannō no kaitaku = Bond activation and molecular activation. Kyōto-shi: Kagaku Dōjin, 2011.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Trade study plan for reusable hydrogen composite tank system (RHCTS). [Downey, Calif.]: Rockwell Aerospace, Space Systems Division, 1994.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Structural arrangement trade study: Reusable hydrogen composite tank system and graphite composite primary structures (GCPS) : executive summary. [Washington, DC: National Aeronautics and Space Administration, 1995.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Selection process for trade study: Reusable hydrogen composite tank system (RHCTS). [Downey, Calif.]: Rockwell Aerospace, Space Systems Division, 1994.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Addendum to structural arrangement trade study: Reusable hydrogen composite tank system (RHCTS) and graphite composite primary structures (GCPS). [Washington, DC: National Aeronautics and Space Administration, 1995.
Den vollen Inhalt der Quelle findenE, Lake R., Wilkerson C und George C. Marshall Space Flight Center., Hrsg. Unlined reusable filament wound composite cryogenic tank testing. [Marshall Space Flight Center, Ala.]: National Aeronautics and Space Administration, Marshall Space Flight Center, 1999.
Den vollen Inhalt der Quelle findenE, Lake R., Wilkerson C und George C. Marshall Space Flight Center., Hrsg. Unlined reusable filament wound composite cryogenic tank testing. [Marshall Space Flight Center, Ala.]: National Aeronautics and Space Administration, Marshall Space Flight Center, 1999.
Den vollen Inhalt der Quelle findenGeorge C. Marshall Space Flight Center., Hrsg. Acoustic emission monitoring of the DC-XA composite liquid hydrogen tank during structural testing. MSFC, Ala: National Aeronautics and Space Administration, Marshall Space Flight Center, 1996.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Hydrogels composites"
Allamraju, K. Viswanath. „Green Hydrogels“. In Green Composites, 225–49. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9643-8_8.
Der volle Inhalt der QuelleSamal, Sangram K., Federica Chiellini, Cristina Bartoli, Elizabeth G. Fernandes und Emo Chiellini. „Hybrid Hydrogels Based on Poly(vinylalcohol)-Chitosan Blends and Relevant CNT Composites“. In Hydrogels, 67–78. Milano: Springer Milan, 2009. http://dx.doi.org/10.1007/978-88-470-1104-5_7.
Der volle Inhalt der QuelleXu, Min, und Hailong Huang. „Multifunctional Hydrogels“. In Polymers and Polymeric Composites: A Reference Series, 1–29. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76573-0_15-1.
Der volle Inhalt der QuelleXu, Min, und Hailong Huang. „Multifunctional Hydrogels“. In Polymers and Polymeric Composites: A Reference Series, 375–403. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-77830-3_15.
Der volle Inhalt der QuellePanahi, Reza, und Mahsa Baghban-Salehi. „Protein-Based Hydrogels“. In Polymers and Polymeric Composites: A Reference Series, 1–40. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76573-0_52-1.
Der volle Inhalt der QuelleRashid, Taslim Ur, Sadia Sharmeen, Shanta Biswas, Tanvir Ahmed, Abul K. Mallik, Md Shahruzzaman, Md Nurus Sakib, Papia Haque und Mohammed Mizanur Rahman. „Gelatin-Based Hydrogels“. In Polymers and Polymeric Composites: A Reference Series, 1–41. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76573-0_53-1.
Der volle Inhalt der QuelleReduwan Billah, Shah M., Md Ibrahim H. Mondal, Sazzad H. Somoal, M. Nahid Pervez und Md Obidul Haque. „Enzyme-Responsive Hydrogels“. In Polymers and Polymeric Composites: A Reference Series, 1–23. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76573-0_62-1.
Der volle Inhalt der QuellePanahi, Reza, und Mahsa Baghban-Salehi. „Protein-Based Hydrogels“. In Polymers and Polymeric Composites: A Reference Series, 1561–600. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-77830-3_52.
Der volle Inhalt der QuelleRashid, Taslim Ur, Sadia Sharmeen, Shanta Biswas, Tanvir Ahmed, Abul K. Mallik, Md Shahruzzaman, Md Nurus Sakib, Papia Haque und Mohammed Mizanur Rahman. „Gelatin-Based Hydrogels“. In Polymers and Polymeric Composites: A Reference Series, 1601–41. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-77830-3_53.
Der volle Inhalt der QuelleReduwan Billah, Shah M., Md Ibrahim H. Mondal, Sazzad H. Somoal, M. Nahid Pervez und Md Obaidul Haque. „Enzyme-Responsive Hydrogels“. In Polymers and Polymeric Composites: A Reference Series, 309–30. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-77830-3_62.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Hydrogels composites"
Obra, Johndel, James Quin Maranan, Denise Faye Lensoco und Terence Tumolva. „Synthesis and Characterization of NaCMC/HEC/ Activated Carbon Hydrogel Composites for the Desalination of Seawater“. In 7th GoGreen Summit 2021. Technoarete, 2021. http://dx.doi.org/10.36647/978-93-92106-02-6.16.
Der volle Inhalt der QuelleMarks, William H., Sze C. Yang, George W. Dombi und Sujata K. Bhatia. „Carbon Nanobrushes Embedded Within Hydrogel Composites for Tissue Engineering“. In ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nemb2013-93122.
Der volle Inhalt der QuelleBignotti, Fabio, Luciana Sartore und Gloria Spagnoli. „A versatile method for obtaining hydrophobically modified hydrogels“. In 9TH INTERNATIONAL CONFERENCE ON “TIMES OF POLYMERS AND COMPOSITES”: From Aerospace to Nanotechnology. Author(s), 2018. http://dx.doi.org/10.1063/1.5045961.
Der volle Inhalt der QuelleBignotti, Fabio, Silvia Agnelli, Francesco Baldi, Luciana Sartore und Isabella Peroni. „Macroporous hydrogels with tailored morphology and mechanical properties“. In VIII INTERNATIONAL CONFERENCE ON “TIMES OF POLYMERS AND COMPOSITES”: From Aerospace to Nanotechnology. Author(s), 2016. http://dx.doi.org/10.1063/1.4949741.
Der volle Inhalt der QuelleDey, Kamol, Silvia Agnelli und Luciana Sartore. „High performance gelatin/polyethylene glycol macroporous hydrogels for biomedical applications“. In 9TH INTERNATIONAL CONFERENCE ON “TIMES OF POLYMERS AND COMPOSITES”: From Aerospace to Nanotechnology. Author(s), 2018. http://dx.doi.org/10.1063/1.5045869.
Der volle Inhalt der QuelleSartore, L., K. Dey, S. Agnelli, F. Bignotti, N. Lopomo, M. A. Khan, V. Barbera und M. Galimberti. „Novel nanobiocomposite hydrogels based on gelatin/chitosan and functionalized graphene“. In 9TH INTERNATIONAL CONFERENCE ON “TIMES OF POLYMERS AND COMPOSITES”: From Aerospace to Nanotechnology. Author(s), 2018. http://dx.doi.org/10.1063/1.5045978.
Der volle Inhalt der QuelleTomić, Simonida Lj, Marija M. Babić, Jovana S. Vuković, Marija D. Perišić, Vuk V. Filipović, Sladjana Z. Davidović und Jovanka M. Filipović. „2-hydroxyethyl metahcrylate/gelatin based superporous hydrogels for tissue regeneration“. In VIII INTERNATIONAL CONFERENCE ON “TIMES OF POLYMERS AND COMPOSITES”: From Aerospace to Nanotechnology. Author(s), 2016. http://dx.doi.org/10.1063/1.4949668.
Der volle Inhalt der QuelleSalerno, Aurelio, Paolo A. Netti, A. D’Amore, Domenico Acierno und Luigi Grassia. „Porous Polyelectrolyte Hydrogels With Enhanced Swelling Properties Prepared Via Thermal Reverse Casting Technique“. In V INTERNATIONAL CONFERENCE ON TIMES OF POLYMERS (TOP) AND COMPOSITES. AIP, 2010. http://dx.doi.org/10.1063/1.3455639.
Der volle Inhalt der QuelleNobile, Lucio, und Stefano Nobile. „Simple fracture testing of hydrogels for cartilage or bone tissue engineering“. In 9TH INTERNATIONAL CONFERENCE ON “TIMES OF POLYMERS AND COMPOSITES”: From Aerospace to Nanotechnology. Author(s), 2018. http://dx.doi.org/10.1063/1.5045976.
Der volle Inhalt der QuelleCidade, M. T., D. J. Ramos, J. Santos, N. Calero, J. Muñoz und J. P. Borges. „Injectable hydrogels based on pluronic/water systems filled with alginate microparticles: Rheological characterization“. In 9TH INTERNATIONAL CONFERENCE ON “TIMES OF POLYMERS AND COMPOSITES”: From Aerospace to Nanotechnology. Author(s), 2018. http://dx.doi.org/10.1063/1.5045953.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Hydrogels composites"
Li, Yuzhan, Vera Bocharova, Seung Pyo Jeong, Navin Kumar, Som Shrestha, Kyle Gluesenkamp und Diana Hun. Fabrication of New PCM Hydrogel Composites. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1779119.
Der volle Inhalt der QuelleRuckman, M. W., H. Wiesmann, M. Strongin, K. Young und M. Fetcenko. Composite Metal-hydrogen Electrodes for Metal-Hydrogen Batteries. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/770461.
Der volle Inhalt der QuelleFort, III, William C., Richard A. Kallman, Miguel Maes, Edward G. Skolnik und Steven C. Weiner. Safety Evaluation Report: Development of Improved Composite Pressure Vessels for Hydrogen Storage, Lincoln Composites, Lincoln, NE, May 25, 2010. Office of Scientific and Technical Information (OSTI), Dezember 2010. http://dx.doi.org/10.2172/1122334.
Der volle Inhalt der QuelleLivingston, R. R. Test Plan for Composite Hydrogen Getter Materials. Office of Scientific and Technical Information (OSTI), November 2000. http://dx.doi.org/10.2172/767285.
Der volle Inhalt der QuelleGiannis, S., A. S. Maxwell, F. Omoniyi und M. G. Veerabhadrappa. Hydrogen gas permeability through polymer composites - test setup development. National Physical Laboratory, November 2022. http://dx.doi.org/10.47120/npl.mat111.
Der volle Inhalt der QuelleNewhouse, Norman L. Development of Improved Composite Pressure Vessels for Hydrogen Storage. Office of Scientific and Technical Information (OSTI), April 2016. http://dx.doi.org/10.2172/1249338.
Der volle Inhalt der QuelleJ. Douglas Way und Paul M. Thoen. Palladium/Copper Alloy Composite Membranes for High Temperature Hydrogen Separation. US: Trustees Of The Colorado School Of Mines, August 2006. http://dx.doi.org/10.2172/898816.
Der volle Inhalt der QuelleIlias, S., F. G. King, N. Su und U. I. Udo-Aka. Separation of hydrogen using thin film palladium-ceramic composite membrane. Office of Scientific and Technical Information (OSTI), November 1995. http://dx.doi.org/10.2172/128538.
Der volle Inhalt der QuelleJ. Douglas Way. PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION. Office of Scientific and Technical Information (OSTI), August 2004. http://dx.doi.org/10.2172/835876.
Der volle Inhalt der QuelleJ. Douglas Way und Paul M. Thoen. Palladium/Copper Alloy Composite Membranes for High Temperature Hydrogen Separation. Office of Scientific and Technical Information (OSTI), August 2005. http://dx.doi.org/10.2172/860440.
Der volle Inhalt der Quelle