Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Hydrogel thin films“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Hydrogel thin films" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Hydrogel thin films"
Tamirisa, Prabhakar A., Jere Koskinen und Dennis W. Hess. „Plasma polymerized hydrogel thin films“. Thin Solid Films 515, Nr. 4 (Dezember 2006): 2618–24. http://dx.doi.org/10.1016/j.tsf.2006.03.021.
Der volle Inhalt der QuelleTokarev, Ihor, und Sergiy Minko. „Stimuli-responsive hydrogel thin films“. Soft Matter 5, Nr. 3 (2009): 511–24. http://dx.doi.org/10.1039/b813827c.
Der volle Inhalt der QuelleMateescu, Anca, Yi Wang, Jakub Dostalek und Ulrich Jonas. „Thin Hydrogel Films for Optical Biosensor Applications“. Membranes 2, Nr. 1 (08.02.2012): 40–69. http://dx.doi.org/10.3390/membranes2010040.
Der volle Inhalt der QuelleSuchaneck, Gunnar, Margarita Guenther, Joerg Sorber, Gerald Gerlach, Karl-Friedrich Arndt, Alexander Deyneka und Lubomir Jastrabik. „Plasma surface modification of hydrogel thin films“. Surface and Coatings Technology 174-175 (September 2003): 816–20. http://dx.doi.org/10.1016/s0257-8972(03)00584-x.
Der volle Inhalt der QuelleTsuji, Sakiko, und Haruma Kawaguchi. „Colored Thin Films Prepared from Hydrogel Microspheres“. Langmuir 21, Nr. 18 (August 2005): 8439–42. http://dx.doi.org/10.1021/la050271t.
Der volle Inhalt der QuelleSouth, Antoinette B, und L. Andrew Lyon. „Autonomic Self-Healing of Hydrogel Thin Films“. Angewandte Chemie International Edition 49, Nr. 4 (22.12.2009): 767–71. http://dx.doi.org/10.1002/anie.200906040.
Der volle Inhalt der QuelleSouth, Antoinette B, und L. Andrew Lyon. „Autonomic Self-Healing of Hydrogel Thin Films“. Angewandte Chemie 122, Nr. 4 (22.12.2009): 779–83. http://dx.doi.org/10.1002/ange.200906040.
Der volle Inhalt der QuelleLee, Jeong Hyun, Aline T. Santoso, Emily S. Park, Kerryn Matthews, Simon P. Duffy und Hongshen Ma. „Lossless immunocytochemistry using photo-polymerized hydrogel thin-films“. Analyst 145, Nr. 8 (2020): 2897–903. http://dx.doi.org/10.1039/c9an02503k.
Der volle Inhalt der QuelleUnger, Katrin, Marlene Anzengruber und Anna Maria Coclite. „Measurements of Temperature and Humidity Responsive Swelling of Thin Hydrogel Films by Interferometry in an Environmental Chamber“. Polymers 14, Nr. 19 (23.09.2022): 3987. http://dx.doi.org/10.3390/polym14193987.
Der volle Inhalt der QuelleDe Giglio, E., D. Cafagna, MM Giangregorio, M. Domingos, M. Mattioli-Belmonte und S. Cometa. „PHEMA-based thin hydrogel films for biomedical applications“. Journal of Bioactive and Compatible Polymers 26, Nr. 4 (17.06.2011): 420–34. http://dx.doi.org/10.1177/0883911511410460.
Der volle Inhalt der QuelleDissertationen zum Thema "Hydrogel thin films"
Tamirisa, Prabhakar A. „Plasma polymerized hydrogel thin films for applications in sensors and actuators“. Diss., Atlanta, Ga. : Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/19827.
Der volle Inhalt der QuelleCommittee Chair: Hess, Dennis W.; Committee Member: Henderson, Cliff L.; Committee Member: Hunt, William D.; Committee Member: Meredith, J. Carson; Committee Member: Prausnitz, Mark R.
Pareek, Pradeep. „Photo-crosslinked Surface Attached Thin Hydrogel Layers“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2005. http://nbn-resolving.de/urn:nbn:de:swb:14-1115623310082-44480.
Der volle Inhalt der QuelleMartwong, Ekkachai. „Design of surface-attached hydrogel thin films with LCST/UCST temperature-responsive properties“. Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS120/document.
Der volle Inhalt der QuelleTemperature-responsive surface-attached hydrogel thin films with various LCST/UCST (Lower/Upper Critical Solution Temperature) were designed for specific applications. The chemical polymer networks covalently attached on plane solid substrates were synthesized by a versatile and straightforward approach using thiol-ene click chemistry. It consists in coating ene-reactive polymers and dithiol crosslinkers on thiol-modified substrates, the thiol-ene click reaction allowing simultaneous cross-linking between chains and grafting on the surface. The CLAG (Cross-Linking And Grafting) strategy provides chemically stable and reproducible hydrogel films with a wide range of thickness and with the desired temperature-responsive properties. Ene-functionalized hydrophilic polymers can be synthesized using free radical copolymerization of the desired monomer with allyl methacrylate in organic solvent or co-solvent with water. Another way is the synthesis in water in two steps: the desired monomer is copolymerized with acrylic acid and then the copolymer is post-modified by amidification. Three polymer families were investigated: poly(PEGMA), poly(acrylamide) derivatives and poly(zwitterions). The transition temperature of the hydrogel films is determined by measuring the thickness in aqueous solutions at different temperatures with ellipsometry. Poly(PEGMA) hydrogel films show LCST properties with the transition temperature increasing with the number of PEG units. The LCST ranges from 15 °C to 60 °C with two to five PEG units in the pendant chains. The LCST can also be adjusted using mixed copolymers hydrogel. Poly(acrylamide) derivatives hydrogel films have both LCST and UCST properties. Poly(sulfobetaine) hydrogel films show very interesting UCST behavior in addition to be anti-fouling, which is very promising for biology applications
Martwong, Ekkachai. „Design of surface-attached hydrogel thin films with LCST/UCST temperature-responsive properties“. Electronic Thesis or Diss., Sorbonne université, 2018. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2018SORUS120.pdf.
Der volle Inhalt der QuelleTemperature-responsive surface-attached hydrogel thin films with various LCST/UCST (Lower/Upper Critical Solution Temperature) were designed for specific applications. The chemical polymer networks covalently attached on plane solid substrates were synthesized by a versatile and straightforward approach using thiol-ene click chemistry. It consists in coating ene-reactive polymers and dithiol crosslinkers on thiol-modified substrates, the thiol-ene click reaction allowing simultaneous cross-linking between chains and grafting on the surface. The CLAG (Cross-Linking And Grafting) strategy provides chemically stable and reproducible hydrogel films with a wide range of thickness and with the desired temperature-responsive properties. Ene-functionalized hydrophilic polymers can be synthesized using free radical copolymerization of the desired monomer with allyl methacrylate in organic solvent or co-solvent with water. Another way is the synthesis in water in two steps: the desired monomer is copolymerized with acrylic acid and then the copolymer is post-modified by amidification. Three polymer families were investigated: poly(PEGMA), poly(acrylamide) derivatives and poly(zwitterions). The transition temperature of the hydrogel films is determined by measuring the thickness in aqueous solutions at different temperatures with ellipsometry. Poly(PEGMA) hydrogel films show LCST properties with the transition temperature increasing with the number of PEG units. The LCST ranges from 15 °C to 60 °C with two to five PEG units in the pendant chains. The LCST can also be adjusted using mixed copolymers hydrogel. Poly(acrylamide) derivatives hydrogel films have both LCST and UCST properties. Poly(sulfobetaine) hydrogel films show very interesting UCST behavior in addition to be anti-fouling, which is very promising for biology applications
Pillai, Karthikeyan Chyan Oliver Ming-Ren. „FTIR-ATR characterization of hydrogel, polymer films, protein immobilization and benzotriazole adsorption on copper surface“. [Denton, Tex.] : University of North Texas, 2007. http://digital.library.unt.edu/permalink/meta-dc-5132.
Der volle Inhalt der QuelleXu, Zuxiang. „Underwater Adhesion between Biopolymer Model Surfaces and Hydrogels“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2022. http://www.theses.fr/2022UPSLS020.
Der volle Inhalt der QuelleWhile the adhesion between synthetic materials has been rather well-studied experimentally and theoretically, there is still a lack of knowledge on bioadhesion, which could be tackled with biopolymer systems which could mimic biosurfaces, biotissues and bioadhesives. However, this idea is limited by the difficulty in designing a model structure and controlling the physical chemistry properties of biopolymer-made materials. Bioadhesion mechanisms can be tackled by studying the underwater adhesion between hydrogel adhesives and solid substrates modified by hydrogel thin films. This allows to separate interfacial contribution with molecular specific interactions and bulk contribution with viscoelastic properties to adhesion. First, a model system based on gelatins has been designed and underwater adhesion promoted by electrostatic interactions was investigated. On one side, stable surface-attached gelatin films with finely adjustable thickness and swelling were achieved using Cross-Linking and Grafting (CLAG) strategy. On the other side, dual-crosslinked gelatin hydrogel adhesives were synthesized by adding chemical crosslinks to physical gelatin networks. The microscopic structure of both physical and chemical crosslinks was well-controlled, with the determination of the chain length between crosslinks from shear modulus and phantom network model. Underwater adhesion measured by probe tack tests showed that dual-crosslinked gelatin hydrogels have the same adhesive properties at all temperatures even if their strength decreases with heating. We were also able to separate the effects of physical and chemical networks on adhesion. Second, the underwater adhesion between double-networks containing carrageenan and solid substrates modified by micro-patterned hydrogels was investigated. It was shown that the smaller the micro-patterns the higher the adhesion energy. This work has provided an insight of the physico-chemical and physical parameters that control underwater adhesion of biopolymers systems such as the bulk viscoelastic properties, the charge and the topography of the surface. It would help for better understanding bioadhesion and designing underwater adhesives
Serpe, Michael Joseph. „Self-Assembly of Poly(N-isopropylacrylamide) Microgel Thin Films“. Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/4806.
Der volle Inhalt der QuelleAugustine, Anusree. „Swelling induced debonding of thin hydrogel films grafted on silicon substrate : the role of interface physical-chemistry“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2022. http://www.theses.fr/2022UPSLS040.
Der volle Inhalt der QuelleHydrogel coatings are transparent and hydrophilic polymer networks that absorb a lot of water and can be suitable candidates for anti-mist coatings. However, swelling-induced stresses within the film can result in detrimental debonding of hydrogel and may fail. In this study, these debonding processes are investigated in the relation to the grafting density at the film/substrate interface, so as to control and predict the failure of the coatings during swelling or under contact stresses. For that purpose, we have developed a methodology consisting in monitoring the initiation and the propagation of swelling-induced delamination from well-controlled preexisting interface defects.Surface-attached poly(dimethylacrylamide) (PDMA) hydrogel thin films are prepared on silicon wafers from the simultaneous Cross-Linking And Grafting (CLAG) of functionalized polymer chains by thiol-ene click chemistry. This strategy allows to tune the film thickness (0.1-2 µm) while ensuring a homogeneous crosslinking density. In order to vary the strength of the film/substrate interface, the silicon wafer is grafted by mixing reactive mercaptosilane and unreactive propylsilane in various proportions prior to the formation of the hydrogel film. We characterize the mercaptosilane surface fraction thus obtained by XPS and TOF-SIMS analyses. Well-controlled line defects (width between 2 and 100 µm) are also created to nucleate delamination of the hydrogel from the substrate.Swelling-induced debonding of the film is achieved under a constant vapor flow ensuring water saturation. Optical observations show the progressive debonding of the film from the pre-existing line defects under the action of localized swelling stresses. We obtain a delamination pattern of typical so-called telephone cord instability. We measure the debonding propagation velocity where the hydrogel is grafted to the substrate. The debonding rate is found to decrease over two orders of magnitude when the amount of mercaptosilane in the reactive silane mixture is increased from 10% to 100% while increasing the covalent bonds between hydrogel and substrate. A threshold thickness for debonding is also observed. This threshold thickness increases with the amount of mercaptosilane used to graft the substrate. We derived quantitative values of the interface fracture energy from the measured thickness threshold with a simple fracture mechanics model
Pillai, Karthikeyan. „FTIR-ATR Characterization of Hydrogel, Polymer Films, Protein Immobilization and Benzotriazole Adsorption on Copper Surface“. Thesis, University of North Texas, 2007. https://digital.library.unt.edu/ark:/67531/metadc5132/.
Der volle Inhalt der QuelleNogueira, Grinia Michelle. „Hidrogeis e filmes de fibroina de seda para fabricação ou recobrimento de biomateriais“. [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/267124.
Der volle Inhalt der QuelleTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica
Made available in DSpace on 2018-08-12T12:02:05Z (GMT). No. of bitstreams: 1 Nogueira_GriniaMichelle_D.pdf: 10640071 bytes, checksum: 8b97ea00f684c6df573ea7e1ab6cc530 (MD5) Previous issue date: 2009
Resumo: Hidrogéis e filmes de fibroína de seda foram preparados e caracterizados com o objetivo de avaliar sua potencial aplicação no campo de biomateriais. Hidrogéis foram obtidos durante a etapa de diálise da solução de fibroína de seda e suas propriedades físicas, químicas, citotoxicidade e potencial de calcificação in vitro foram determinados. Esses materiais apresentaram estrutura tridimensional porosa com resistência mecânica à compressão relativamente alta e grande potencial de calcificar in vitro, sendo possíveis candidatos à aplicação na área de regeneração óssea. Filmes de fibroína de seda com quitosana foram preparados utilizando-se a técnica "Layer-by-Layer". Com esta técnica, foi possível depositar filmes anisotrópicos, com fibras alinhadas na superfície de substratos de silício. Como os biopolímeros em estudo são conhecidamente biocompatíveis, o alinhamento de fibras na superfície do substrato poderia ser explorado como um meio de guiar a adesão e proliferação celular ou ainda agregar resistência mecânica a outros filmes poliméricos. Filmes de fibroína de seda foram também empregados para recobrir pericárdio bovino utilizado na fabricação de válvulas cardíacas. Amostras recobertas com fibroína de seda foram avaliadas quanto à sua propensão à calcificação in vitro e os filmes foram testados quanto a sua citotoxicidade e potencial de adesão e crescimento de células endoteliais. Os resultados indicaram que filmes de fibroína de seda não apresentam citotoxicidade, são compatíveis com células endoteliais e não induzem a calcificação do pericárdio bovino recoberto durante os testes in vitro. Assim, o recobrimento com fibroína de seda pode ser uma alternativa de tratamento do pericárdio bovino para funcionalização da sua superfície. Dos resultados apresentados, concluiu-se que tanto hidrogéis como filmes derivados de fibroína de seda podem ser aplicados no campo de biomateriais, sejam como matrizes para reconstituição óssea, ou filmes para recobrimento e funcionalização da superfície de materiais.
Abstract: Silk fibroin hydrogels and films were prepared and characterized in order to investigate their potential application in the biomaterials field. The hydrogels were obtained during the dialysis step and their physical and chemical characteristics, cell toxicity and compatibility and potential to calcify in vitro were investigated. Those materials presented a porous tridimensional structure, mechanical strength and ability to deposit calcium phosphate crystals during in vitro calcification tests; therefore, silk fibroin hydrogels can probably be used in the bone regeneration field. Silk fibroin films were obtained by using the Layer-by-Layer technique. Bidirectional alignment of silk fibroin fibers was designed by adjusting the substrate position during the dipping process. A potential application to films with alignment of fibers is to guide cell adhesion and proliferation, since the biopolymers used to build the films are known as biocompatible materials. Silk fibroin films were also used to coat bovine pericardium used to fabricate cardiac valves. The coated samples were characterized by in vitro calcification tests and biocompatibility of silk fibroin films was evaluated by citotoxicity tests and their ability to adhere and grow of endothelial cells. The results showed that silk fibroin films are biocompatible and do not induce calcification during in vitro calcification tests, being suitable to coatand functionalize bovine pericardium surface. From the presented results, it can be concluded that silk fibroin hydrogels and films are suitable materials to be explored in the biomaterials field, for bone regeneration or biomaterials surface coating.
Doutorado
Engenharia de Processos
Doutor em Engenharia Química
Bücher zum Thema "Hydrogel thin films"
Rao, Myneni Ganapati, und Hjörvarsson Björgvin, Hrsg. Hydrogen in matter: A collection from the papers presented at the Second International Symposium on Hydrogen in Matter (ISOHIM), Uppsala, Sweden, 13-17 June 2005. Melville, N.Y: American Institute of Physics, 2006.
Den vollen Inhalt der Quelle findenDuenow, Joel N. ZnO:Al doping level and hydrogen growth ambient effects on CIGS solar cell performance: Preprint. Golden, Colo: National Renewable Energy Laboratory, 2008.
Den vollen Inhalt der Quelle findenXin, Gongbiao. Gaseous and Electrochemical Hydrogen Storage Properties of Mg-Based Thin Films. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49404-2.
Der volle Inhalt der QuelleCanada, Atomic Energy of. Laser plasma generation of hydrogen-free diamond-like carbon thin films on ZR-2.5Nb CANDU pressure tube materials and silicon wafers with a pulsed high-power CO 2 laser. Chalk River, Ont: Chalk River Nuclear Laboratories, 1995.
Den vollen Inhalt der Quelle findenA, Ebrahim N., Atomic Energy of Canada Limited. und Chalk River Laboratories. Accelerator Physics Branch., Hrsg. Laser plasma generation of hydrogen-free diamond-like carbon thin films on Zr-2.5Nb CANDU pressure tube materials and silicon wafers with a pulsed high-power CO 2 laser. Chalk River, Ont: Accelerator Physics Branch, Chalk River Laboratories, 1995.
Den vollen Inhalt der Quelle findenBientinesi, M. Preparation of thin film Pd membranes for H2 separation from synthesis gas and detailed design of a permeability testing unit. Hauppauge, N.Y: Nova Science Publishers, 2009.
Den vollen Inhalt der Quelle findenXin, Gongbiao. Gaseous and Electrochemical Hydrogen Storage Properties of Mg-Based Thin Films. Springer, 2018.
Den vollen Inhalt der Quelle findenXin, Gongbiao. Gaseous and Electrochemical Hydrogen Storage Properties of Mg-Based Thin Films. Springer, 2016.
Den vollen Inhalt der Quelle finden(Editor), Ganapati Rao Myneni, und Björgvin Hjörvarsson (Editor), Hrsg. Hydrogen in Matter: A Collection from the Papers Presented at the 2nd International Symposium on Hydrogen in Matter; ISOHIM (AIP Conference Proceedings / Materials Physics and Applications). American Institute of Physics, 2006.
Den vollen Inhalt der Quelle findenMiklitsch, Robert. Pickup on South Street. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252040689.003.0004.
Der volle Inhalt der QuelleBuchteile zum Thema "Hydrogel thin films"
Ionov, Leonid. „Actuating Hydrogel Thin Films“. In Responsive Polymer Surfaces, 137–57. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527690534.ch6.
Der volle Inhalt der QuelleToomey, Ryan, Ajay Vidyasagar und Ophir Ortiz. „Swelling Behavior of Thin Hydrogel Coatings“. In Functional Polymer Films, 649–67. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527638482.ch19.
Der volle Inhalt der QuelleLaschewsky, André, Peter Müller-Buschbaum und Christine M. Papadakis. „Thermo-responsive Amphiphilic Di- and Triblock Copolymers Based on Poly(N-isopropylacrylamide) and Poly(methoxy diethylene glycol acrylate): Aggregation and Hydrogel Formation in Bulk Solution and in Thin Films“. In Intelligent Hydrogels, 15–34. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01683-2_2.
Der volle Inhalt der QuelleGuglya, Aleksey, und Elena Lyubchenko. „Thin Film Hydrogen Storages“. In Handbook of Ecomaterials, 1–27. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48281-1_144-1.
Der volle Inhalt der QuelleGuglya, Aleksey, und Elena Lyubchenko. „Thin Film Hydrogen Storages“. In Handbook of Ecomaterials, 913–39. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-68255-6_144.
Der volle Inhalt der QuelleJain, I. P., und Y. K. Vijay. „Thin Film Hydrogen Storage System“. In Progress in Hydrogen Energy, 111–22. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3809-0_8.
Der volle Inhalt der QuelleKusoglu, Ahmet. „Ionomer Thin Films in PEM Fuel Cells“. In Fuel Cells and Hydrogen Production, 417–38. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7789-5_1021.
Der volle Inhalt der QuelleBeyer, Wolfhard, und Florian Einsele. „Hydrogen Effusion Experiments“. In Advanced Characterization Techniques for Thin Film Solar Cells, 449–75. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527636280.ch17.
Der volle Inhalt der QuelleBeyer, Wolfhard, und Florian Einsele. „Hydrogen Effusion Experiments“. In Advanced Characterization Techniques for Thin Film Solar Cells, 569–95. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527699025.ch20.
Der volle Inhalt der QuelleObayi, Camillus Sunday, und Paul Sunday Nnamchi. „Mixed Transition Metal Oxides for Photoelectrochemical Hydrogen Production“. In Chemically Deposited Nanocrystalline Metal Oxide Thin Films, 279–92. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68462-4_11.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Hydrogel thin films"
Stevens, Andrew P., Bryon E. Wright und Vladimir Hlady. „Measuring tear protein mobility in thin hydrogel films with fluorescence correlation spectroscopy“. In Biomedical Optics 2004, herausgegeben von Ammasi Periasamy und Peter T. C. So. SPIE, 2004. http://dx.doi.org/10.1117/12.529758.
Der volle Inhalt der QuelleZhao, Weiwei, Tommaso Santaniello, Patrick Webb, Cristina Lenardi und Changqing Liu. „A new approach towards an optimum design and manufacture of microfluidic devices based on ex situ fabricated hydrogel based thin films' integration“. In 2012 IEEE 62nd Electronic Components and Technology Conference (ECTC). IEEE, 2012. http://dx.doi.org/10.1109/ectc.2012.6249114.
Der volle Inhalt der QuelleCesnik, Stefan, Anna Maria Coclite, Alberto Perrotta, Alessandro Cian, Massimo Tormen und Alexander Bergmann. „Fast optical humidity sensor based on nanostructured hydrogels“. In Nanoengineering: Fabrication, Properties, Optics, Thin Films, and Devices XVII, herausgegeben von Wounjhang Park, André-Jean Attias und Balaji Panchapakesan. SPIE, 2020. http://dx.doi.org/10.1117/12.2568475.
Der volle Inhalt der QuelleKaur, Manmeet, S. Kailasa Ganapathi, Varsha Chaware, Vivek Rane, Niranjan Ramgir, Niyanta Datta, Vijaya Giramkar, Girish Phatak, D. K. Aswal und S. K. Gupta. „SnO2: CuO based hydrogen sulphide sensor on LTCC substrates“. In INDIAN VACUUM SOCIETY SYMPOSIUM ON THIN FILMS: SCIENCE AND TECHNOLOGY. AIP, 2012. http://dx.doi.org/10.1063/1.4732450.
Der volle Inhalt der QuellePatel, N. „Thermal Stability of Hydrogenated Mg/Al Thin Films“. In HYDROGEN IN MATTER: A Collection from the Papers Presented at the Second International Symposium on Hydrogen in Matter (ISOHIM). AIP, 2006. http://dx.doi.org/10.1063/1.2213057.
Der volle Inhalt der QuelleAllen, Thomas H. „Nonconventional materials in optical thin films“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.mj2.
Der volle Inhalt der QuelleLayek, Animesh, Somnath Middya und Partha Pratim Ray. „Optimization of device quality silicon hydrogen alloy materials from plasma emission diagnostics and its application to solar cell“. In INDIAN VACUUM SOCIETY SYMPOSIUM ON THIN FILMS: SCIENCE AND TECHNOLOGY. AIP, 2012. http://dx.doi.org/10.1063/1.4732384.
Der volle Inhalt der QuelleCheu, Darrell, Thomas Adams und Shripad Revankar. „Hydrogen Loading System for Thin Films for Betavoltaics“. In 2022 29th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/icone29-93910.
Der volle Inhalt der QuelleXia, Yiben, Takashi Sekiguchi, Weimin Shi, Linjun Wang, Jianhua Ju und Takafumi Yao. „Defects eliminated by hydrogen and boron ion bombardment in polycrystalline diamond films“. In 4th International Conference on Thin Film Physics and Applications, herausgegeben von Junhao Chu, Pulin Liu und Yong Chang. SPIE, 2000. http://dx.doi.org/10.1117/12.408322.
Der volle Inhalt der QuelleKarapatnitski, Igor A., Konstantin A. Mit', Daniya M. Mukhamedshina und Grigory G. Baikov. „Influence of hydrogen plasma processing on gas-sensitive tin dioxied thin film properties“. In 4th International Conference on Thin Film Physics and Applications, herausgegeben von Junhao Chu, Pulin Liu und Yong Chang. SPIE, 2000. http://dx.doi.org/10.1117/12.408464.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Hydrogel thin films"
Pital, Aaron, Keri Campbell und Daniel Kelly. Hydrogen Diffusion Coefficient Measures on Thin Film Uranium Oxide. Office of Scientific and Technical Information (OSTI), Oktober 2023. http://dx.doi.org/10.2172/2202591.
Der volle Inhalt der QuelleIlias, S., F. G. King, N. Su und U. I. Udo-Aka. Separation of hydrogen using thin film palladium-ceramic composite membrane. Office of Scientific and Technical Information (OSTI), November 1995. http://dx.doi.org/10.2172/128538.
Der volle Inhalt der QuelleIlias, S., F. G. King, Ting-Fang Fan und S. Roy. Separation of Hydrogen Using an Electroless Deposited Thin-Film Palladium-Ceramic Composite Membrane. Office of Scientific and Technical Information (OSTI), Dezember 1996. http://dx.doi.org/10.2172/419403.
Der volle Inhalt der QuelleMi, Zetian, Yanfa Yan, Dunwei Wang, Thomas Hamann, Frecesca Toma, Todd Deutsch und Tadashi Ogitsu. HydroGEN Seedling: Monolithically Integrated Thin Film/Silicon Tandem Photoelectrodes for High-Efficiency and Stable Photoelectrochemical Water Splitting. Office of Scientific and Technical Information (OSTI), Mai 2023. http://dx.doi.org/10.2172/1974610.
Der volle Inhalt der QuelleHoagland, William, Julie Bannantine und Rodney Smith. Thin Film Hydrogen Sensor Development, Testing and Integration Into Low Cost Wireless Sensing Systems (SBIR Phase 1 Final Report). Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1614795.
Der volle Inhalt der QuellePan, Yi. Formation of Superhexagonal Chromium Hydride by Exposure of Chromium Thin Film to High Temperature, High Pressure Hydrogen in a Ballistic Compressor. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.1242.
Der volle Inhalt der QuelleParkins. L51806 Effects of Hydrogen on Low-pH Stress Corrosion Crack Growth. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Juli 1998. http://dx.doi.org/10.55274/r0010142.
Der volle Inhalt der QuelleRavillard, Pauline, J. Enrique Chueca, Mariana Weiss und Michelle Carvalho Metanias Hallack. Implications of the Energy Transition on Employment: Today’s Results, Tomorrow’s Needs. Inter-American Development Bank, November 2021. http://dx.doi.org/10.18235/0003765.
Der volle Inhalt der QuelleWilmont, Martyn, Greg Van Boven und Tom Jack. GRI-96-0452_1 Stress Corrosion Cracking Under Field Simulated Conditions I. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), November 1997. http://dx.doi.org/10.55274/r0011963.
Der volle Inhalt der QuelleLi, Francis G. N., Christopher Bataille und Adrien Vogt-Schilb. Net-Zero Industry: Options for Plastics, Textiles, Automobiles, and Fisheries in Colombia, Ecuador, and Peru. Inter-American Development Bank, September 2023. http://dx.doi.org/10.18235/0005167.
Der volle Inhalt der Quelle