Zeitschriftenartikel zum Thema „Hydrazine oxidation reaction (HHOR)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Hydrazine oxidation reaction (HHOR)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Yu, Ting, Hu Zhang, Yongzhi Ning, Hongling Li, Ziteng Gao, Bo Wang und Zhijun Cen. „Experimental and Kinetic Simulations of Technetium-Catalyzed Hydrazine Oxidation in Nitric Acid Solution“. Processes 12, Nr. 11 (23.10.2024): 2319. http://dx.doi.org/10.3390/pr12112319.
Der volle Inhalt der QuelleLiu, Weiwei, Junfeng Xie, Yanqing Guo, Shanshan Lou, Li Gao und Bo Tang. „Sulfurization-induced edge amorphization in copper–nickel–cobalt layered double hydroxide nanosheets promoting hydrazine electro-oxidation“. Journal of Materials Chemistry A 7, Nr. 42 (2019): 24437–44. http://dx.doi.org/10.1039/c9ta07857f.
Der volle Inhalt der QuelleBrockmann, Marcela, Freddy Navarro, José Ibarra, Constanza León, Francisco Armijo, María Jesús Aguirre, Galo Ramírez und Roxana Arce. „Effect of the Metal of a Metallic Ionic Liquid (-butyl-methylimidazolium tetrachloroferrate) on the Oxidation of Hydrazine“. Catalysts 14, Nr. 6 (31.05.2024): 359. http://dx.doi.org/10.3390/catal14060359.
Der volle Inhalt der QuelleMiao, Ruiyang, und Richard G. Compton. „The Electro-Oxidation of Hydrazine: A Self-Inhibiting Reaction“. Journal of Physical Chemistry Letters 12, Nr. 6 (05.02.2021): 1601–5. http://dx.doi.org/10.1021/acs.jpclett.1c00070.
Der volle Inhalt der QuelleLee, Hak Hyeon, JI Hoon CHOI, Dong Su Kim und Hyung Koun Cho. „Diffusion-Restricted Cation Exchange Derived Rhodium Nanoparticles for Hydrazine Assisted Hydrogen Production“. ECS Meeting Abstracts MA2023-02, Nr. 49 (22.12.2023): 3222. http://dx.doi.org/10.1149/ma2023-02493222mtgabs.
Der volle Inhalt der QuelleLi, Yapeng, Jihua Zhang, Yi Liu, Qizhu Qian, Ziyun Li, Yin Zhu und Genqiang Zhang. „Partially exposed RuP2 surface in hybrid structure endows its bifunctionality for hydrazine oxidation and hydrogen evolution catalysis“. Science Advances 6, Nr. 44 (Oktober 2020): eabb4197. http://dx.doi.org/10.1126/sciadv.abb4197.
Der volle Inhalt der QuelleWang, Honglei, und Shengyang Tao. „Fabrication of a porous NiFeP/Ni electrode for highly efficient hydrazine oxidation boosted H2 evolution“. Nanoscale Advances 3, Nr. 8 (2021): 2280–86. http://dx.doi.org/10.1039/d1na00043h.
Der volle Inhalt der QuelleLi, Bin, Kefeng Wang, Jingxiao Ren und Peng Qu. „NiOOH@Cobalt copper carbonate hydroxide nanorods as bifunctional electrocatalysts for highly efficient water and hydrazine oxidation“. New Journal of Chemistry 46, Nr. 16 (2022): 7615–25. http://dx.doi.org/10.1039/d2nj00518b.
Der volle Inhalt der QuelleMa, Xiao, Jianmei Wang, Danni Liu, Rongmei Kong, Shuai Hao, Gu Du, Abdullah M. Asiri und Xuping Sun. „Hydrazine-assisted electrolytic hydrogen production: CoS2nanoarray as a superior bifunctional electrocatalyst“. New Journal of Chemistry 41, Nr. 12 (2017): 4754–57. http://dx.doi.org/10.1039/c7nj00326a.
Der volle Inhalt der QuelleShukla, Madhurani, und Kishore K. Tiwari. „A Simple and Low - Cost Spectrophotometric Method for the Determination Of Hydrazine With Methyl Red-iodate System“. Journal of Ravishankar University (PART-B) 30, Nr. 1 (30.01.2021): 01–06. http://dx.doi.org/10.52228/jrub.2017-30-1-1.
Der volle Inhalt der QuelleKadam, Ravishankar G., Tao Zhang, Dagmar Zaoralová, Miroslav Medveď, Aristides Bakandritsos, Ondřej Tomanec, Martin Petr et al. „Single Co‐Atoms as Electrocatalysts for Efficient Hydrazine Oxidation Reaction“. Small 17, Nr. 16 (30.03.2021): 2006477. http://dx.doi.org/10.1002/smll.202006477.
Der volle Inhalt der QuelleZhang, Chaoxiong, Wenjuan Yuan, Qian Wang, Xianyun Peng, Xijun Liu und Jun Luo. „Single Cu Atoms as Catalysts for Efficient Hydrazine Oxidation Reaction“. ChemNanoMat 6, Nr. 10 (22.07.2020): 1474–78. http://dx.doi.org/10.1002/cnma.202000337.
Der volle Inhalt der QuelleShi, Jie, Qintao Sun, Jinxin Chen, Wenxiang Zhu, Tao Cheng, Mengjie Ma, Zhenglong Fan et al. „Nitrogen contained rhodium nanosheet catalysts for efficient hydrazine oxidation reaction“. Applied Catalysis B: Environmental 343 (April 2024): 123561. http://dx.doi.org/10.1016/j.apcatb.2023.123561.
Der volle Inhalt der QuelleLiu, Meng, Rong Zhang, Lixue Zhang, Danni Liu, Shuai Hao, Gu Du, Abdullah M. Asiri, Rongmei Kong und Xuping Sun. „Energy-efficient electrolytic hydrogen generation using a Cu3P nanoarray as a bifunctional catalyst for hydrazine oxidation and water reduction“. Inorganic Chemistry Frontiers 4, Nr. 3 (2017): 420–23. http://dx.doi.org/10.1039/c6qi00384b.
Der volle Inhalt der QuelleIonita, Petre, Marcela Rovinaru und Ovidiu Maior. „THE PREPARATION AND SOME REACTION OF 2,2-DIPHENYL-1-(3,6-DINITR0-4-COUMARINYL) HYDRAZYL FREE RADICAL“. SOUTHERN BRAZILIAN JOURNAL OF CHEMISTRY 6, Nr. 7 (20.12.1998): 59–66. http://dx.doi.org/10.48141/sbjchem.v6.n7.1998.58_1998_2.pdf.
Der volle Inhalt der QuelleJetten, M. S. M., I. Cirpus, B. Kartal, L. van Niftrik, K. T. van de Pas-Schoonen, O. Sliekers, S. Haaijer et al. „1994–2004: 10 years of research on the anaerobic oxidation of ammonium“. Biochemical Society Transactions 33, Nr. 1 (01.02.2005): 119–23. http://dx.doi.org/10.1042/bst0330119.
Der volle Inhalt der QuelleWang, Yu‐Cheng, Li‐Yang Wan, Pei‐Xin Cui, Lei Tong, Yu‐Qi Ke, Tian Sheng, Miao Zhang et al. „Hydrazine Oxidation Reaction: Porous Carbon Membrane‐Supported Atomically Dispersed Pyrrole‐Type FeN 4 as Active Sites for Electrochemical Hydrazine Oxidation Reaction (Small 31/2020)“. Small 16, Nr. 31 (August 2020): 2070171. http://dx.doi.org/10.1002/smll.202070171.
Der volle Inhalt der QuelleKumaran, R., S. Boopathi, M. Kundu, M. Sasidharan und G. Maduraiveeran. „The morphology-dependent electrocatalytic activities of spinel-cobalt oxide nanomaterials for direct hydrazine fuel cell application“. New Journal of Chemistry 42, Nr. 15 (2018): 13087–95. http://dx.doi.org/10.1039/c8nj01622d.
Der volle Inhalt der QuelleYue, Xiaoyu, Andrea Manach, Junzhe Dong und Wei Gao. „Preparation of Ag-decorated TiO2 nanotube electrode and its catalytic property“. International Journal of Modern Physics B 33, Nr. 01n03 (30.01.2019): 1940023. http://dx.doi.org/10.1142/s021797921940023x.
Der volle Inhalt der QuelleJiao, Dongxu, Yu Tian, Hongxia Wang, Qinghai Cai und Jingxiang Zhao. „Single transition metal atoms anchored on a C2N monolayer as efficient catalysts for hydrazine electrooxidation“. Physical Chemistry Chemical Physics 22, Nr. 29 (2020): 16691–700. http://dx.doi.org/10.1039/d0cp02930k.
Der volle Inhalt der QuelleTang, Piaoping, He Wen und Ping Wang. „Hierarchically nanostructured Ni2Fe2N as an efficient electrocatalyst for hydrazine oxidation reaction“. Chemical Engineering Journal 431 (März 2022): 134123. http://dx.doi.org/10.1016/j.cej.2021.134123.
Der volle Inhalt der QuelleLashkenari, Mohammad Soleimani, Behnia Shahrokhi, Mohsen Ghorbani, Jaber falah und Hussein Rostami. „Polyrhodanine/NiFe2 O4 nanocomposite: A novel electrocatalyst for hydrazine oxidation reaction“. International Journal of Hydrogen Energy 43, Nr. 24 (Juni 2018): 11244–52. http://dx.doi.org/10.1016/j.ijhydene.2018.05.019.
Der volle Inhalt der QuelleShi, Jie, Qintao Sun, Wenxiang Zhu, Tao Cheng, Fan Liao, Mengjie Ma, Junjun Yang, Hao Yang, Zhenglong Fan und Mingwang Shao. „Lattice stain dominated hydrazine oxidation reaction in single-metal-element nanosheet“. Chemical Engineering Journal 463 (Mai 2023): 142385. http://dx.doi.org/10.1016/j.cej.2023.142385.
Der volle Inhalt der QuelleKoh, Katherine, Yuying Meng, Xiaoxi Huang, Xiaoxin Zou, Manish Chhowalla und Tewodros Asefa. „N- and O-doped mesoporous carbons derived from rice grains: efficient metal-free electrocatalysts for hydrazine oxidation“. Chemical Communications 52, Nr. 93 (2016): 13588–91. http://dx.doi.org/10.1039/c6cc06140k.
Der volle Inhalt der QuelleGao, Xueqing, Yigang Ji, Shan He, Shuni Li und Jong-Min Lee. „Self-assembly synthesis of reduced graphene oxide-supported platinum nanowire composites with enhanced electrocatalytic activity towards the hydrazine oxidation reaction“. Catalysis Science & Technology 6, Nr. 9 (2016): 3143–48. http://dx.doi.org/10.1039/c5cy01764e.
Der volle Inhalt der QuelleKovaleva, Svetlana V., und Andrey V. Korshunov. „Voltammetric method for determining hydrazine at a composite polymer-carbon electrode modified with gold particles“. Bulletin of the Tomsk Polytechnic University Geo Assets Engineering 335, Nr. 11 (27.11.2024): 142–56. http://dx.doi.org/10.18799/24131830/2024/11/4858.
Der volle Inhalt der QuelleMa, Yuanyuan, Hui Wang, Weizhong Lv, Shan Ji, Bruno G. Pollet, Shunxi Li und Rongfang Wang. „Amorphous PtNiP particle networks of different particle sizes for the electro-oxidation of hydrazine“. RSC Advances 5, Nr. 84 (2015): 68655–61. http://dx.doi.org/10.1039/c5ra13774h.
Der volle Inhalt der QuelleStepanova, Elena V., und Andrei I. Stepanov. „UNUSUAL WAY OF REACTION OF 3-AMINO-4-(5-CHLOROMETHYL-1,2,4-OXADIAZOLE-3-YL)-FURAZAN WITH HYDRAZINE“. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 60, Nr. 4 (12.05.2017): 26. http://dx.doi.org/10.6060/tcct.2017604.5522.
Der volle Inhalt der QuelleBreza, Martin, und Alena Manova. „Hydrazine Oxidation in Aqueous Solutions I: N4H6 Decomposition“. Inorganics 11, Nr. 10 (18.10.2023): 413. http://dx.doi.org/10.3390/inorganics11100413.
Der volle Inhalt der QuelleNa, Jaedo, und Seong Jung Kwon. „Expanding Single-Entity Electrochemistry with Agarose Hydrogel: Enhanced Signal Stability“. ECS Meeting Abstracts MA2024-02, Nr. 70 (22.11.2024): 4904. https://doi.org/10.1149/ma2024-02704904mtgabs.
Der volle Inhalt der QuelleSchalk, Jos, Hege Oustad, J. Gijs Kuenen und Mike S. M. Jetten. „The anaerobic oxidation of hydrazine: a novel reaction in microbial nitrogen metabolism“. FEMS Microbiology Letters 158, Nr. 1 (Januar 1998): 61–67. http://dx.doi.org/10.1111/j.1574-6968.1998.tb12801.x.
Der volle Inhalt der QuelleHu, Sheng-Nan, Na Tian, Meng-Ying Li, Chi Xiao, Yao-Yin Lou, Zhi-You Zhou und Shi-Gang Sun. „Trapezohedral platinum nanocrystals with high-index facets for high-performance hydrazine electrooxidation“. Chemical Synthesis 3, Nr. 1 (2023): 4. http://dx.doi.org/10.20517/cs.2022.32.
Der volle Inhalt der QuelleZhang, Weijie, Pingping Jiang, Ying Wang, Jian Zhang, Yongxue Gao und Pingbo Zhang. „Bottom-up approach to engineer a molybdenum-doped covalent-organic framework catalyst for selective oxidation reaction“. RSC Adv. 4, Nr. 93 (2014): 51544–47. http://dx.doi.org/10.1039/c4ra09304f.
Der volle Inhalt der QuelleMitic, Violeta, Snezana Nikolic und Vesna Stankov-Jovanovic. „Kinetic spectrophotometric determination of hydrazine“. Open Chemistry 8, Nr. 3 (01.06.2010): 559–65. http://dx.doi.org/10.2478/s11532-010-0021-3.
Der volle Inhalt der QuelleLiu, Feng, Xin Jiang, Hong-Hui Wang, Cheng Chen, Yu-Han Yang, Tian Sheng, Yong-Sheng Wei, Xin-Sheng Zhao und Lu Wei. „Boosting Electrocatalytic Hydrazine Oxidation Reaction on High-Index Faceted Au Concave Trioctahedral Nanocrystals“. ACS Sustainable Chemistry & Engineering 10, Nr. 2 (03.01.2022): 696–702. http://dx.doi.org/10.1021/acssuschemeng.1c07700.
Der volle Inhalt der QuelleWang, Yahui, Xianyi Liu, Juan Han, Yumao Kang, Yajun Mi und Wei Wang. „Phosphatized pseudo-core-shell Ni@Pt/C electrocatalysts for efficient hydrazine oxidation reaction“. International Journal of Hydrogen Energy 45, Nr. 11 (Februar 2020): 6360–68. http://dx.doi.org/10.1016/j.ijhydene.2019.12.132.
Der volle Inhalt der QuelleKahani, Seyed Abolghasem, und Massumeh Khedmati. „Mechanochemical Preparation of Cobalt Nanoparticles through a Novel Intramolecular Reaction in Cobalt(II) Complexes“. Journal of Nanomaterials 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/246254.
Der volle Inhalt der QuelleOp den Camp, H. J. M., B. Kartal, D. Guven, L. A. M. P. van Niftrik, S. C. M. Haaijer, W. R. L. van der Star, K. T. van de Pas-Schoonen et al. „Global impact and application of the anaerobic ammonium-oxidizing (anammox) bacteria“. Biochemical Society Transactions 34, Nr. 1 (20.01.2006): 174–78. http://dx.doi.org/10.1042/bst0340174.
Der volle Inhalt der QuellePang, Kanglei, und Kanglei Pang. „Redirecting Configuration of Atomically Dispersed Selenium Catalytic Sites for Efficient Hydrazine Oxidation“. ECS Meeting Abstracts MA2024-02, Nr. 60 (22.11.2024): 4065. https://doi.org/10.1149/ma2024-02604065mtgabs.
Der volle Inhalt der QuelleWang, Hui, Qing Dong, Lu Lei, Shan Ji, Palanisamy Kannan, Palaniappan Subramanian und Amar Prasad Yadav. „Co Nanoparticle-Encapsulated Nitrogen-Doped Carbon Nanotubes as an Efficient and Robust Catalyst for Electro-Oxidation of Hydrazine“. Nanomaterials 11, Nr. 11 (26.10.2021): 2857. http://dx.doi.org/10.3390/nano11112857.
Der volle Inhalt der QuelleLellek, Vit, Cheng-yi Chen, Wanggui Yang, Jie Liu, Xuebao Ji und Roger Faessler. „An Efficient Synthesis of Substituted Pyrazoles from One-Pot Reaction of Ketones, Aldehydes, and Hydrazine Monohydrochloride“. Synlett 29, Nr. 08 (15.02.2018): 1071–75. http://dx.doi.org/10.1055/s-0036-1591941.
Der volle Inhalt der QuelleMótyán, Gergő, Barnabás Molnár, János Wölfling und Éva Frank. „Microwave-Assisted Stereoselective Heterocyclization to Novel Ring d-fused Arylpyrazolines in the Estrone Series“. Molecules 24, Nr. 3 (04.02.2019): 569. http://dx.doi.org/10.3390/molecules24030569.
Der volle Inhalt der QuelleChen, Shi, Changlai Wang, Shuai Liu, Minxue Huang, Jian Lu, Pengping Xu, Huigang Tong, Lin Hu und Qianwang Chen. „Boosting Hydrazine Oxidation Reaction on CoP/Co Mott–Schottky Electrocatalyst through Engineering Active Sites“. Journal of Physical Chemistry Letters 12, Nr. 20 (17.05.2021): 4849–56. http://dx.doi.org/10.1021/acs.jpclett.1c00963.
Der volle Inhalt der QuelleKim, Yong Seok, Byeongkyu Kim, Tae Yup Jeong, Na Hyeon Kim, Eunchae Ko, Jong Wook Bae und Chan-Hwa Chung. „The development of a gas-feeding CO2 fuel cell using direct hydrazine oxidation reaction“. Journal of CO2 Utilization 73 (Juli 2023): 102527. http://dx.doi.org/10.1016/j.jcou.2023.102527.
Der volle Inhalt der QuelleMunde, Ajay, Priti Sharma, Somnath Dhawale, Ravishankar G. Kadam, Subodh Kumar, Hanumant B. Kale, Jan Filip, Radek Zboril, Bhaskar R. Sathe und Manoj B. Gawande. „Interface Engineering of SRu-mC3N4 Heterostructures for Enhanced Electrochemical Hydrazine Oxidation Reactions“. Catalysts 12, Nr. 12 (02.12.2022): 1560. http://dx.doi.org/10.3390/catal12121560.
Der volle Inhalt der QuelleYu, Hui Jiang, Zheng Guang Zou, Fei Long, Chun Yan Xie und Hao Ma. „Preparation of Graphene with Ultrasound-Assisted in the Process of Oxidation“. Applied Mechanics and Materials 34-35 (Oktober 2010): 1784–87. http://dx.doi.org/10.4028/www.scientific.net/amm.34-35.1784.
Der volle Inhalt der QuelleZhu, Libo, Jian Huang, Ge Meng, Tiantian Wu, Chang Chen, Han Tian, Yafeng Chen et al. „Active site recovery and N-N bond breakage during hydrazine oxidation boosting the electrochemical hydrogen production“. Nature Communications 14, Nr. 1 (10.04.2023). http://dx.doi.org/10.1038/s41467-023-37618-2.
Der volle Inhalt der QuelleXiao, Zehao, Jie Wang, Hongxiu Lu, Yinyin Qian, Qiang Zhang, Aidong Tang und Huaming Yang. „Hierarchical Co/MoNi Heterostructure Grown on Monocrystalline CoNiMoOx Nanorods with Robust Bifunctionality for Hydrazine-oxidation-assisted Energy-saving Hydrogen Evolution“. Journal of Materials Chemistry A, 2023. http://dx.doi.org/10.1039/d3ta02930a.
Der volle Inhalt der QuelleBurshtein, Tomer Y., Kesha Tamakuwala, Matan Sananis, Ilya Grinberg, Nagaprasad Reddy Samala und David Eisenberg. „Understanding hydrazine oxidation electrocatalysis on undoped carbon“. Physical Chemistry Chemical Physics, 2022. http://dx.doi.org/10.1039/d2cp00213b.
Der volle Inhalt der QuelleZhang, Chao, mengrui zhang, Jianping Zhu, Bin Liu, Yongkang Hou, Jingping Wang und Jingyang Niu. „Ultrafine Co6W6C as an Efficient Anode Catalyst for Direct Hydrazine Fuel Cell“. Chemical Communications, 2021. http://dx.doi.org/10.1039/d1cc03446d.
Der volle Inhalt der Quelle