Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Hydraulic fluids contamination“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Hydraulic fluids contamination" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Hydraulic fluids contamination"
Paul, Sumit, Wolfgang Legner, Angelika Krenkow, Gerhard Müller, Thierry Lemettais, Francois Pradat und Delphine Hertens. „Chemical Contamination Sensor for Phosphate Ester Hydraulic Fluids“. International Journal of Aerospace Engineering 2010 (2010): 1–9. http://dx.doi.org/10.1155/2010/156281.
Der volle Inhalt der QuelleAliboyev, B. A. „Reliability of tractor hydraulic systems in the context of purity of power fluid“. Traktory i sel hozmashiny 82, Nr. 6 (15.06.2015): 26–29. http://dx.doi.org/10.17816/0321-4443-65416.
Der volle Inhalt der QuelleMajdan, R., Z. Tkáč, B. Stančík, R. Abrahám, I. Štulajter, P. Ševčík und M. Rášo. „Elimination of ecological fluids contamination in agricultural tractors“. Research in Agricultural Engineering 60, Special Issue (30.12.2014): S9—S15. http://dx.doi.org/10.17221/27/2013-rae.
Der volle Inhalt der QuelleMain, B. G. „Explosion Hazards in Offshore Motion Compensators“. Proceedings of the Institution of Mechanical Engineers, Part A: Power and Process Engineering 199, Nr. 4 (November 1985): 229–35. http://dx.doi.org/10.1243/pime_proc_1985_199_029_02.
Der volle Inhalt der QuelleSCHOLZ, Dieter. „Routes of Aircraft Cabin Air Contamination from Engine Oil, Hydraulic and Deicing Fluid“. INCAS BULLETIN 14, Nr. 1 (07.03.2022): 153–70. http://dx.doi.org/10.13111/2066-8201.2022.14.1.13.
Der volle Inhalt der QuelleKučera, Marián, Zdeněk Aleš, Jan Mareček und Pavel Máchal. „Effect of Contamination on the Lifetime of Hydraulic Oils and Systems“. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 65, Nr. 4 (2017): 1205–12. http://dx.doi.org/10.11118/actaun201765041205.
Der volle Inhalt der QuelleOwens, E. H., G. H. Smith und I. A. Reading. „An instrument for measurement of water contamination in hydraulic fluids“. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 221, Nr. 2 (Februar 2007): 167–70. http://dx.doi.org/10.1243/09544070jauto457.
Der volle Inhalt der QuelleTheissen, Heinrich W., David G. Holt, David K. Wills und S. W. Dean. „Effects of Contamination of Biobased Hydraulic Fluids with Mineral Oil“. Journal of ASTM International 6, Nr. 1 (2009): 101598. http://dx.doi.org/10.1520/jai101598.
Der volle Inhalt der QuelleHunt, T. M. „Particle contamination and filtration of hydraulic fluids, lubricants and fuels“. Tribology International 21, Nr. 5 (Oktober 1988): 297–98. http://dx.doi.org/10.1016/0301-679x(88)90012-6.
Der volle Inhalt der QuelleJanoško, I., T. Polonec und S. Lindák. „Performance parameters monitoring of the hydraulic system with bio-oil“. Research in Agricultural Engineering 60, Special Issue (30.12.2014): S37—S43. http://dx.doi.org/10.17221/32/2013-rae.
Der volle Inhalt der QuelleDissertationen zum Thema "Hydraulic fluids contamination"
Agars, Robert C., University of Western Sydney, of Science Technology and Environment College und of Science Food and Horticulture School. „Assessment of the potential environmental effects of soluble hydraulic oil on natural waters“. THESIS_CSTE_SFH_Agars_R.xml, 2001. http://handle.uws.edu.au:8081/1959.7/249.
Der volle Inhalt der QuelleMaster of Science (Hons)
Agars, Robert C. „Assessment of the potential environmental effects of soluble hydraulic oil on natural waters“. Thesis, [Richmond, N.S.W.] : Centre for Electrochemical Research and Analytical Technology, School of Science, Food and Horticulture, University of Western Sydney, 2001. http://handle.uws.edu.au:8081/1959.7/249.
Der volle Inhalt der QuelleFletcher, Sarah Marie. „Risk assessment of groundwater contamination from hydraulic fracturing fluid spills in Pennsylvania“. Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/72885.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 109-115).
Fast-paced growth in natural gas production in the Marcellus Shale has fueled intense debate over the risk of groundwater contamination from hydraulic fracturing and the shale gas extraction process at large. While several notable incidents of groundwater contamination near shale gas wells have been investigated, the exact causes are uncertain and widely disputed. One of the most frequently occurring and widely reported environmental incidents from shale gas development is that of surface spills. Several million gallons of fluid are managed on each well site; significant risk for spill exists at several stages in the extraction process. While surface spills have been primarily analyzed from the perspective of surface water contamination, spills also have the potential to infiltrate groundwater aquifers. This thesis develops a risk assessment framework to analyze the risk of groundwater resource contamination in Pennsylvania from surface spills of hydraulic fracturing fluid. It first identifies the major sources of spills and characterizes the expected frequency and volume distribution of spills from these sources using results from a preliminary expert elicitation. It then develops a stochastic groundwater contaminant transport model to analyze the worst-case potential for groundwater contamination in local water wells. Finally, it discusses the range of risk perception and incentives from a wide-ranging stakeholder base, including industry, communities, environmentalists, and government. This thesis concludes that while the vast majority of shale gas operations do not result in large spills, the worst-case potential for groundwater contamination is high enough to warrant further attention; it also recommends increased inclusion of community stakeholders in both industry and government risk management strategies.
by Sarah Marie Fletcher.
S.M.in Technology and Policy
Zampaulo, Amarildo José. „Uma abordagem do problema de contaminação de sistemas de transmissão por fluidos e o controle através da técnica de contagem de partículas“. Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/18/18150/tde-07022017-105608/.
Der volle Inhalt der QuelleThe technological advance has proportionated to the industry in general to develop and to manufacture more sophisticated products in all the fields of science. Not distant of this reality, the industry of mobility also comes incorporating through bold projects the new technologies in its products, thus answering to the needs and expectations of its customers, who ask for products with high productivity and availability to work. These technologies are related with the power transmission systems by fluids through the introduction of electrohydraulic valves, and also by the reduction of tolerance between smooth and rotary parts of the system. From the introduction of this new technology, the emphases of this dissertation was show the importance of the contamination control in the process phases of conception, manufacturing and assembly of the product, including brake the paradigm related with human factors, and specially the fluid contamination control of the power transmission using the particle counting technology. To show that through the determination of acceptable limits of contamination for each type of power transmission system, as a function of the type of added technology, it is possible to drastically reduce the failures in the power transmission systems by fluids during the operation of the product in the field, even being this contamination considered an invisible enemy.
Muttenthaler, Lukas, und Bernhard Manhartsgruber. „Optimizing hydraulic reservoirs using euler-eulerlagrange multiphase cfd simulation“. Technische Universität Dresden, 2020. https://tud.qucosa.de/id/qucosa%3A71100.
Der volle Inhalt der QuelleTaher, Dang Koo Reza. „Numerical modelling of single- and multi-phase flow and transport processes in porous media for assessing hydraulic fracturing impacts on groundwater resources“. Thesis, 2020. http://hdl.handle.net/21.11130/00-1735-0000-0005-13B9-5.
Der volle Inhalt der QuelleBücher zum Thema "Hydraulic fluids contamination"
Timirkeev, R. G. Promyshlennai͡a︡ chistota i tonkai͡a︡ filʹtrat͡s︡ii͡a︡ rabochikh zhidkosteĭ letatelʹnykh apparatov. Moskva: Mashinostroenie, 1986.
Den vollen Inhalt der Quelle findenQunzhang, Tu, Cheng Jianhui und Gong Liehang, Hrsg. Ye ya xi tong wu ran kong zhi. Beijing Shi: Guo fang gong ye chu ban she, 2010.
Den vollen Inhalt der Quelle findenAssociation of Hydraulic Equipment Manufacturers. Guidelines to contamination control in hydraulic fluid power systems. London: A.H.E.M., 1985.
Den vollen Inhalt der Quelle findenCanada. Defence Research Establishment Atlantic. Analysis of Mil-L-23699C Synthetic Lubricant Contamination of 3-gp-26ma Hydraulic Fluid by Gas Chromatography-Mass Spectrometry. S.l: s.n, 1987.
Den vollen Inhalt der Quelle findenHydraulic system contamination bibliography. London: Published on behalf of BHRA Fluid Engineering Centre by Elsevier Applied Science Publishers, 1988.
Den vollen Inhalt der Quelle findenKhalil, Medhat. Hydraulic Systems Volume 3: Hydraulic Fluids and Contamination Control. COMPUDRAULIC LLC, 2019.
Den vollen Inhalt der Quelle findenAssociation, British Fluid Power, Hrsg. Guidelines to contamination control in hydraulic fluid power systems. London: BFPA, 1987.
Den vollen Inhalt der Quelle findenAssociation of Hydraulic Equipment Manufacturers Limited. Technical Committee E1: Contamination Control. Guidelines to contamination control in hydraulic fluid power systems. Association of Hydraulic Equipment Manufacturers Limited, 1985.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Hydraulic fluids contamination"
Hodges, Peter Keith Brian. „Contamination“. In Hydraulic Fluids, 120–25. Elsevier, 1996. http://dx.doi.org/10.1016/b978-034067652-3/50018-x.
Der volle Inhalt der Quelle„- Control and Management of Particle Contamination in Hydraulic Fluids“. In Handbook of Hydraulic Fluid Technology, 236–73. CRC Press, 2011. http://dx.doi.org/10.1201/b11225-10.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Hydraulic fluids contamination"
Deuster, Sebastian, und Katharina Schmitz. „Bio-Based Hydraulic Fluids in Mobile Machines: Substitution Potential in Construction Projects“. In ASME/BATH 2019 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/fpmc2019-1636.
Der volle Inhalt der QuelleNovak, Nejc, Rok Jelovčan und Franc Majdič. „Development of portable filtration unit with self-diagnostics for industrial use“. In International conference Fluid Power 2021. University of Maribor Press, 2021. http://dx.doi.org/10.18690/978-961-286-513-9.21.
Der volle Inhalt der QuelleOlivares, Tulio Daniel, Walid Al-Zahrani, Chidiebere Anioke und Wafa Saeed Sultan Aldarini. „Navigate Narrow Pressure Windows with Superior Performance and Minimal Risk Using Flat Rheology Oil-Based Drilling Fluids“. In ADIPEC. SPE, 2022. http://dx.doi.org/10.2118/211746-ms.
Der volle Inhalt der QuelleLonghitano, Marco, und Hubertus Murrenhoff. „Experimental Investigation of Air Bubble Behaviour in Stagnant Mineral Oils“. In ASME/BATH 2015 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/fpmc2015-9520.
Der volle Inhalt der QuelleFerrar, Joseph, Philip Maun, Kenneth Wunch, Joseph Moore, Jana Rajan, Jon Raymond, Ethan Solomon und Matheus Paschoalino. „High Pressure, High Temperature Bioreactors as a Biocide Selection Tool for Hydraulically Fractured Reservoirs“. In SPE Hydraulic Fracturing Technology Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/204198-ms.
Der volle Inhalt der QuelleMa, Bill, Alan Zhou und Jim Steeves. „Pipeline Batch Planning to Optimize Storage Requirements“. In 2010 8th International Pipeline Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ipc2010-31142.
Der volle Inhalt der QuellePietrangeli, Gianna, Donald Hugonin und Laurie Hayden. „Comprehensive Protocol for Evaluation of Compatibility of Drill-In and/or Completion Fluids with Reservoir Fluids on Offshore Operations in the Caribbean Sea“. In Offshore Technology Conference. OTC, 2022. http://dx.doi.org/10.4043/31786-ms.
Der volle Inhalt der QuelleLiu, Songyuan, Chao-yu Sie, Fatee Malekahmadi, Bo Lu, Yifan Li, Cara Fan, Xinyue Zhang, Owen Serediak, Jelayne Fortin und Ali Abedini. „Bioremediation Study on Formation Damage Caused by Hydraulic Fracturing: A Microfluidic Approach“. In SPE Annual Technical Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/210089-ms.
Der volle Inhalt der QuelleZeng, Rui, Yong Zhang, Zhen-Rong Lin und Jin-Kun Sun. „Contamination Analysis and Monitoring Methods of Hydraulic Fluid“. In 3rd Annual International Conference on Mechanics and Mechanical Engineering (MME 2016). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/mme-16.2017.51.
Der volle Inhalt der QuelleJohansen, Per, Michael M. Bech, Sune Dupont, Uffe N. Christiansen, Jens L. Sørensen, David N. Østedgaard-Munck und Anders Bentien. „An Experimental Study on High-Flowrate Ultrasonic Particle Monitoring in Oil Hydraulics“. In BATH/ASME 2022 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/fpmc2022-89721.
Der volle Inhalt der Quelle