Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Hybridní hydrogely“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Hybridní hydrogely" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Hybridní hydrogely"
Jobin, Philippe, Jean Caron, Pierre-Yves Bernier und Blanche Dansereau. „Impact of Two Hydrophilic Acrylic-Based Polymers on the Physical Properties of Three Substrates and the Growth of Petunia ×hybrida `Brilliant Pink'“. Journal of the American Society for Horticultural Science 129, Nr. 3 (Mai 2004): 449–57. http://dx.doi.org/10.21273/jashs.129.3.0449.
Der volle Inhalt der QuelleJobin, P., J. Caron, C. Menard und B. Dansereau. „125 Substrates and Hydrophylic Polymers Influence Growth of Surfinia“. HortScience 34, Nr. 3 (Juni 1999): 463B—463. http://dx.doi.org/10.21273/hortsci.34.3.463b.
Der volle Inhalt der QuelleMu, Shansong, Yuanyuan Liang, Shuaijun Chen, Liming Zhang und Tao Liu. „MWNT-hybrided supramolecular hydrogel for hydrophobic camptothecin delivery“. Materials Science and Engineering: C 50 (Mai 2015): 294–99. http://dx.doi.org/10.1016/j.msec.2015.02.016.
Der volle Inhalt der QuelleMota, Ronaldo. „Metal–nonmetal transition in lanthanum hydrides“. Canadian Journal of Physics 63, Nr. 12 (01.12.1985): 1576–80. http://dx.doi.org/10.1139/p85-261.
Der volle Inhalt der QuelleSun, Lingyu, Feika Bian, Yu Wang, Yuetong Wang, Xiaoxuan Zhang und Yuanjin Zhao. „Bioinspired programmable wettability arrays for droplets manipulation“. Proceedings of the National Academy of Sciences 117, Nr. 9 (18.02.2020): 4527–32. http://dx.doi.org/10.1073/pnas.1921281117.
Der volle Inhalt der QuelleBergmann, Ben A., und John M. Dole. „Influence of Essential Oils on Post-infection Botrytis Damage in Cut Roses1“. Journal of Environmental Horticulture 36, Nr. 2 (01.06.2018): 45–57. http://dx.doi.org/10.24266/jeh-d-17-0012.1.
Der volle Inhalt der QuelleRafik, Abdellatif, Hafid Zouihri und Taoufiq Guedira. „One-Dimensional Hydrogen-Bonded N–H…O in the Hybrid Phosphate: Hirshfeld Surface Analysis and DFT Quantum Chemical Calculations“. Chemistry & Chemical Technology 15, Nr. 3 (15.08.2021): 359–68. http://dx.doi.org/10.23939/chcht15.03.359.
Der volle Inhalt der QuelleGarcía, Maria J., Candelario Palma-Bautista, Antonia M. Rojano-Delgado, Enzo Bracamonte, João Portugal, Ricardo Alcántara-de la Cruz und Rafael De Prado. „The Triple Amino Acid Substitution TAP-IVS in the EPSPS Gene Confers High Glyphosate Resistance to the Superweed Amaranthus hybridus“. International Journal of Molecular Sciences 20, Nr. 10 (15.05.2019): 2396. http://dx.doi.org/10.3390/ijms20102396.
Der volle Inhalt der QuelleMACOVEI, Anca, Matteo CASER, Mattia DONÀ, Alberto VALASSI, Annalisa GIOVANNINI, Daniela CARBONERA, Valentina SCARIOT und Alma BALESTRAZZI. „Prolonged Cold Storage Affects Pollen Viability and Germination along with Hydrogen Peroxide and Nitric Oxide Content in Rosa hybrida“. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 44, Nr. 1 (14.06.2016): 6–10. http://dx.doi.org/10.15835/nbha44110357.
Der volle Inhalt der QuelleZhang, Yi, Zhicheng Wu, Ming Feng, Jiwei Chen, Meizhu Qin, Wenran Wang, Ying Bao et al. „The circadian-controlled PIF8–BBX28 module regulates petal senescence in rose flowers by governing mitochondrial ROS homeostasis at night“. Plant Cell 33, Nr. 8 (27.05.2021): 2716–35. http://dx.doi.org/10.1093/plcell/koab152.
Der volle Inhalt der QuelleDissertationen zum Thema "Hybridní hydrogely"
Kulovaná, Eva. „Vliv rozpouštědla na deformační chování hydrogelů“. Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2021. http://www.nusl.cz/ntk/nusl-437980.
Der volle Inhalt der QuelleKlímová, Eliška. „Mechanické a transportní vlastnosti hybridních hydrogelových systémů“. Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2021. http://www.nusl.cz/ntk/nusl-444534.
Der volle Inhalt der QuelleEchalier, Cécile. „Conception de matériaux hybrides peptidiques biomimétiques“. Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT213.
Der volle Inhalt der QuelleWe designed and developed a method for the preparation of hydrogels through the sol-gel process. It is based on (bio)organic-inorganic hybrid blocks obtained by functionalization of synthetic polymers or bioactive molecules, such as peptides, with silyl groups (triethoxysilanes or hydroxydimethylsilanes). These hybrid blocks can be combined in desired ratio and engaged in the sol-gel process to yield multifunctional hydrogels. Gelation proceeds at 37°C at pH 7.4 in a physiological buffer. Hydrolysis and condensation of silylated precursors result in a three-dimensional covalent network in which molecules are linked through siloxane bonds. First, this method was applied to the synthesis of PEG-based hydrogels. Then, we demonstrated that hydrogels could be covalently functionalized during their formation. Thus, hydrogels exhibiting antibacterial properties or promoting cell adhesion were obtained. Secondly, a hybrid peptide whose sequence was inspired from natural collagen was synthesized and used to prepare hydrogels that provided a cell-friendly environment comparable to natural collagen substrates. Stem cells could be encapsulated in these hydrogels with high viability. Finally, hybrid hydrogels were used as bio-inks to print 3D scaffolds. This PhD work highlights the potential of the sol-gel chemistry for the design of tailor-made biomimetic scaffolds that could be particularly promising for tissue engineering applications
Cornwell, Daniel. „Hybrid and multi-component hydrogels“. Thesis, University of York, 2016. http://etheses.whiterose.ac.uk/15426/.
Der volle Inhalt der QuelleBellosta, von Colbe José M. „Hydrogen storage in light metal hybrides“. [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=97890365X.
Der volle Inhalt der QuelleZarzar, Lauren Dell. „Dynamic Hybrid Materials: Hydrogel Actuators and Catalytic Microsystems“. Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:10867.
Der volle Inhalt der QuelleChemistry and Chemical Biology
Abdallah, Ibrahim. „Event-driven hybrid bond graph : Application : hybrid renewable energy system for hydrogen production and storage“. Thesis, Lille 1, 2017. http://www.theses.fr/2017LIL10104/document.
Der volle Inhalt der QuelleThis research work constitutes a general contribution towards a simpler modelling and diagnosis of the multidisciplinary hybrid systems. Hybrid renewable energy systems where hydrogen is used to store the surplus of the power fits perfectly under this description. Such system gathers different energetic components that are needed to be connected or disconnected according to different operating conditions. These different switching configurations generate different operating modes and depend on the intermittency of the primary sources, the storage capacities and the operational availability of the different hardwares that constitute the system. The switching behaviour engenders a variable dynamic which is hard to be expressed mathematically without investigating all the operating modes. This modelling difficulty is transmitted to affect all the model-based tasks such as the diagnosis and the operating mode management. To solve this problematic, a new modelling tool, called event-driven hybrid bond graph, is developed. Entirely graphic, this formalism allows a multidisciplinary global modelling for all the operating modes at once. By separating the continuous dynamic driven by the bond graph, from the discrete states handled by an integrated automaton, this approach simplifies the management of the operating modes. The model issued using this methodology is also well-adapted to perform a robust diagnosis which is achievable without referring back to the analytical description of the model. The operating mode management, when associated with the on-line diagnosis, allows the implementation of reconfiguration strategies and protection protocols when faults are detected
Benge, Kathryn Ruth. „Hybrid Solid-State Hydrogen Storage Materials“. The University of Waikato, 2008. http://hdl.handle.net/10289/2320.
Der volle Inhalt der QuelleMontheil, Titouan. „Conception d’hydrogels hybrides pour la préparation de géloses synthétiques“. Thesis, Montpellier, 2020. http://www.theses.fr/2020MONTS012.
Der volle Inhalt der QuelleHybrid hydrogels have been developed as an alternative to agar hydrogels used in microbiology. Our strategy is based on the functionalization of polymers with triethoxysilane groups, and then their use in the sol-gel process to produce an organic-inorganic hybrid hydrogels. This process is bio-orthogonal and biocompatible. It takes place in aqueous medium, at physiological pH and ambient temperature. In a first part, we developed hydrogels based on bisilylated PEG. We have shown that the incorporation of monosilylated PEG allowed a loosening of the hydrogel network. In a second part, we developed hydrogels based on hydroxypropyl methyl cellulose (HPMC). Silylation of HPMC silylation has been optimised. The study of hydrogel composition (HPMC molecular weight, concentration, silylation rate) allowed the production of hydrogels with properties similar to the agar commercial references. We then extended our study to hybrid hydrogels made from others polysaccharides. Chitosan, dextrin, pectin and hyaluronic acid were thus silylated and hybrid hydrogels were prepared from these precursors. Silylated dextrin hydrogels proved to be highly suitable for microbiology applicationWe showed that synthetics hydrogels obtained by sol-gel process constituted a solid alternative to agar hydrogels. The control of the various parameters (e.g. silylation, shaping, composition) makes it possible to prepare hydrogels with tunable properties
Baumann, Bernhard Harry [Verfasser]. „Synthese und Charakterisierung hybrider Hydrogele für die Geweberekonstruktion / Bernhard Harry Baumann“. Ulm : Universität Ulm, 2018. http://d-nb.info/1166757315/34.
Der volle Inhalt der QuelleBücher zum Thema "Hybridní hydrogely"
Al-Hallaj, Said, und Kristofer Kiszynski. Hybrid Hydrogen Systems. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-84628-467-0.
Der volle Inhalt der QuelleHuot, Jacques. Enhancing Hydrogen Storage Properties of Metal Hybrides. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-35107-0.
Der volle Inhalt der QuellePaolo, Tartarini, Hrsg. Solar hydrogen energy systems: Science and technology for the hydrogen economy. Milan: Springer, 2011.
Den vollen Inhalt der Quelle findenHonda Giken Kōgyō Kabushiki Kaisha. Kogata sōrā suiso sutēshon to nenryō denchi denki jidōsha o kumiawaseta CO2 haishutsu zero shisutemu kaihatsu: Chikyū ondanka taisaku gijutsu kaihatsu jigyō : seika hōkokusho. [Tokyo]: Honda Giken Kōgyō Kabushiki Kaisha, 2012.
Den vollen Inhalt der Quelle findenO, Sŏng-gŭn. Kobunja ka pʻyomyŏn e kyŏrhap toen tagongsŏng mugi ipcha rŭl iyong han suso chŏjang maegaechʻe kaebal =: Development of hydrogen-storage system using a porous organic/inorganic hybrid material. [Seoul]: Sanŏp Chawŏnbu, 2008.
Den vollen Inhalt der Quelle findenO, Sŏng-gŭn. Kobunja ka pʻyomyŏn e kyŏrhap toen tagongsŏng mugi ipcha rŭl iyong han suso chŏjang maegaechʻe kaebal =: Development of hydrogen-storage system using a porous organic/inorganic hybrid material. [Seoul]: Sanŏp Chawŏnbu, 2008.
Den vollen Inhalt der Quelle findenTransitions to alternative transportation technologies: Plug-in hybrid electric vehicles. Washington , D.C: National Academies Press, 2010.
Den vollen Inhalt der Quelle findenCotrell, Jason Rust. Modeling the feasibility of using fuel cells and hydrogen internal combustion engines in remote renewable energy systems: Technical report. Golden, CO: National Renewable Energy Laboratory, 2003.
Den vollen Inhalt der Quelle findenKiszynski, Kristofer, und Said Al-Hallaj. Hybrid Hydrogen Systems: Stationary and Transportation Applications. Springer, 2013.
Den vollen Inhalt der Quelle findenKiszynski, Kristofer, und Said Al-Hallaj. Hybrid Hydrogen Systems: Stationary and Transportation Applications. Springer, 2013.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Hybridní hydrogely"
Samal, Sangram K., Federica Chiellini, Cristina Bartoli, Elizabeth G. Fernandes und Emo Chiellini. „Hybrid Hydrogels Based on Poly(vinylalcohol)-Chitosan Blends and Relevant CNT Composites“. In Hydrogels, 67–78. Milano: Springer Milan, 2009. http://dx.doi.org/10.1007/978-88-470-1104-5_7.
Der volle Inhalt der QuelleAl-Hallaj, Said, und Kristofer Kiszynski. „The Role of Renewable Energy in a Sustainable Energy Future“. In Hybrid Hydrogen Systems, 1–8. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-84628-467-0_1.
Der volle Inhalt der QuelleAl-Hallaj, Said, und Kristofer Kiszynski. „Renewable Energy Sources and Energy Conversion Devices“. In Hybrid Hydrogen Systems, 9–29. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-84628-467-0_2.
Der volle Inhalt der QuelleAl-Hallaj, Said, und Kristofer Kiszynski. „Hydrogen Production, Storage and Fuel Cells“. In Hybrid Hydrogen Systems, 31–53. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-84628-467-0_3.
Der volle Inhalt der QuelleAl-Hallaj, Said, und Kristofer Kiszynski. „Operation and Control of Hybrid Energy Systems“. In Hybrid Hydrogen Systems, 55–79. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-84628-467-0_4.
Der volle Inhalt der QuelleAl-Hallaj, Said, und Kristofer Kiszynski. „Control of Hybrid Energy Systems“. In Hybrid Hydrogen Systems, 81–94. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-84628-467-0_5.
Der volle Inhalt der QuelleAl-Hallaj, Said, und Kristofer Kiszynski. „Case Study: Hybrid PEM Fuel Cell/Li-ion Battery System for a Non-Idling Airport Ground Support Vehicle“. In Hybrid Hydrogen Systems, 95–107. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-84628-467-0_6.
Der volle Inhalt der QuelleAl-Hallaj, Said, und Kristofer Kiszynski. „Case Study: A Hybrid Fuel Cell/Desalination System for Caye Caulker“. In Hybrid Hydrogen Systems, 109–29. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-84628-467-0_7.
Der volle Inhalt der QuelleShah, Yatish T. „Hybrid Energy Systems for Hydrogen Production“. In Hybrid Energy Systems, 493–525. First edition. | Boca Raton, FL : CRC Press, 2021. |: CRC Press, 2021. http://dx.doi.org/10.1201/9781003159421-11.
Der volle Inhalt der QuelleKarg, Matthias, und Thomas Hellweg. „Smart Microgel/Nanoparticle Hybrids with Tunable Optical Properties“. In Hydrogel Micro and Nanoparticles, 257–79. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527646425.ch11.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Hybridní hydrogely"
Xiong, Yujie. „Interface engineering in inorganic hybrid structures towards improved photocatalysis (Conference Presentation)“. In Solar Hydrogen and Nanotechnology XI, herausgegeben von Chung-Li Dong. SPIE, 2016. http://dx.doi.org/10.1117/12.2237257.
Der volle Inhalt der QuelleHabib, Ahasan, und Bashir Khoda. „Fiber Filled Hybrid Hydrogel for Bio-Manufacturing“. In ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8294.
Der volle Inhalt der QuelleLee, Seung-Jae, Byung Kim, Geunbae Lim, Jong-Won Rhie, Hyun-Wook Kang und Dong-Woo Cho. „Development of Three-Dimensional Alginate Encapsulated Chondrocyte Hybrid Scaffolds Using Microstereolithography“. In ASME 2007 International Manufacturing Science and Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/msec2007-31056.
Der volle Inhalt der QuelleRamya, D., Rani Basha und M. L. Bharathi. „HYDROGEN HYBRID MACHINE“. In Proceedings of the Fist International Conference on Advanced Scientific Innovation in Science, Engineering and Technology, ICASISET 2020, 16-17 May 2020, Chennai, India. EAI, 2021. http://dx.doi.org/10.4108/eai.16-5-2020.2304104.
Der volle Inhalt der QuelleKendall, K., B. Pollet und J. Jostins. „Hydrogen hybrid vehicles for University of Birmingham campus“. In Hybrid & Eco Friendly Vehicles Conference 2008 (HEVC 2008). IEE, 2008. http://dx.doi.org/10.1049/cp:20081067.
Der volle Inhalt der QuelleDance, Emily E., Erin E. Colebeck und Erdem Topsakal. „Hybrid hydrogels for medical applications of microwaves“. In 2014 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM). IEEE, 2014. http://dx.doi.org/10.1109/usnc-ursi-nrsm.2014.6928136.
Der volle Inhalt der QuelleGibson, Elizabeth. „Hydrogen evolution and CO2 reduction with supramolecular photocatalysts integrated into photoelectrocatalytic devices“. In 13th Conference on Hybrid and Organic Photovoltaics. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.hopv.2021.034.
Der volle Inhalt der QuelleXu, Tao, Catalin Baicu, Brian Manley, Michael Zile und Thomas Boland. „A Finite Element Model for Drop-on-Demand Printing of Designer Hybrid Cardiovascular Constructs“. In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79082.
Der volle Inhalt der QuelleHee Sun Oh und Ki Tae Nam. „Clay nanoplate-chitosan hybrid hydrogels through electrostatic interaction“. In 2011 IEEE Nanotechnology Materials and Devices Conference (NMDC 2011). IEEE, 2011. http://dx.doi.org/10.1109/nmdc.2011.6155396.
Der volle Inhalt der QuelleÇelik, Muhammet, Gamze Genç, M. Serdar Genç und Hüseyin Yapıcı. „Hydrogen Production Potential and Cost of Wind-Hydrogen Hybrid Energy System“. In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87556.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Hybridní hydrogely"
Colon-Mercado, H., M. Gorensek, A. Thompson, M. Elvington, J. Weidner, J. Weiss, B. Meekins und B. Tavakoli. Hybrid thermochemical hydrogen production. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1475276.
Der volle Inhalt der QuelleColon-Mercado, H., M. Gorensek, M. Elvington, A. Thompson, P. Ganesan, J. Weidner, J. Weiss, L. Murdock, B. Meekins und B. Tavakoli. HYBRID THERMOCHEMICAL HYDROGEN PRODUCTION. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1568795.
Der volle Inhalt der QuelleMuelaner, Jody Emlyn. Unsettled Issues in Electrical Demand for Automotive Electrification Pathways. SAE International, Januar 2021. http://dx.doi.org/10.4271/epr2021004.
Der volle Inhalt der QuelleDeCandis, Andrew. Hydrogen Fuel-Cell Electric Hybrid Truck Demonstration. Office of Scientific and Technical Information (OSTI), November 2018. http://dx.doi.org/10.2172/1496037.
Der volle Inhalt der QuelleDean, J., R. Braun, D. Munoz, M. Penev und C. Kinchin. Analysis of Hybrid Hydrogen Systems: Final Report. Office of Scientific and Technical Information (OSTI), Januar 2010. http://dx.doi.org/10.2172/972164.
Der volle Inhalt der QuelleSmith, J. R., S. M. Aceves, N. L. Johnson und A. A. Amsden. Progress toward an optimized hydrogen series hybrid engine. Office of Scientific and Technical Information (OSTI), Juni 1995. http://dx.doi.org/10.2172/95252.
Der volle Inhalt der QuelleRue, David. Hybrid Molten Bed Gasifier for High Hydrogen Syngas Production. Office of Scientific and Technical Information (OSTI), Mai 2017. http://dx.doi.org/10.2172/1358079.
Der volle Inhalt der QuelleRuth, Mark, Dylan Cutler, Francisco Flores-Espino und Greg Stark. The Economic Potential of Nuclear-Renewable Hybrid Energy Systems Producing Hydrogen. Office of Scientific and Technical Information (OSTI), April 2017. http://dx.doi.org/10.2172/1351061.
Der volle Inhalt der QuelleLiu, Hong. Novel Hybrid Microbial Electrochemical System for Efficient Hydrogen Generation from Biomass. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1813870.
Der volle Inhalt der QuelleErickson, Paul. UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence. Office of Scientific and Technical Information (OSTI), Mai 2012. http://dx.doi.org/10.2172/1055762.
Der volle Inhalt der Quelle