Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Hybridizable DG“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Hybridizable DG" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Hybridizable DG"
Chung, Eric, Bernardo Cockburn und Guosheng Fu. „The Staggered DG Method is the Limit of a Hybridizable DG Method“. SIAM Journal on Numerical Analysis 52, Nr. 2 (Januar 2014): 915–32. http://dx.doi.org/10.1137/13091573x.
Der volle Inhalt der QuelleChung, Eric, Bernardo Cockburn und Guosheng Fu. „The Staggered DG Method is the Limit of a Hybridizable DG Method. Part II: The Stokes Flow“. Journal of Scientific Computing 66, Nr. 2 (02.06.2015): 870–87. http://dx.doi.org/10.1007/s10915-015-0047-y.
Der volle Inhalt der QuelleQiu, Weifeng, und Ke Shi. „A mixed DG method and an HDG method for incompressible magnetohydrodynamics“. IMA Journal of Numerical Analysis 40, Nr. 2 (15.01.2019): 1356–89. http://dx.doi.org/10.1093/imanum/dry095.
Der volle Inhalt der QuelleChen, Gang, und Jintao Cui. „On the error estimates of a hybridizable discontinuous Galerkin method for second-order elliptic problem with discontinuous coefficients“. IMA Journal of Numerical Analysis 40, Nr. 2 (06.02.2019): 1577–600. http://dx.doi.org/10.1093/imanum/drz003.
Der volle Inhalt der QuelleMarche, Fabien. „Combined Hybridizable Discontinuous Galerkin (HDG) and Runge-Kutta Discontinuous Galerkin (RK-DG) formulations for Green-Naghdi equations on unstructured meshes“. Journal of Computational Physics 418 (Oktober 2020): 109637. http://dx.doi.org/10.1016/j.jcp.2020.109637.
Der volle Inhalt der QuelleDissertationen zum Thema "Hybridizable DG"
Elzaabalawy, Hashim ibrahim mohamed. „Towards High-Order Compact Discretization of Unsteady Navier-Stokes Equations for Incompressible Flows on Unstructured Grids“. Thesis, Ecole centrale de Nantes, 2020. https://tel.archives-ouvertes.fr/tel-03274249.
Der volle Inhalt der QuelleA high-order energy-stable method for solving the incompressible Navier-Stokes equations based on hybrid discontinuous Galerkin method is presented for which the mass and momentum are conserved. The formulation computes exactly pointwise divergence-free velocity fields for standard element types without post-processing operators nor using \textit{H}(div)-conforming spaces. This is achieved by proposing a simple and novel definition to the functional space of the pressure, such that it contains the divergence of the approximate velocity. Specific focus is given on applying this method on different element shapes by introducing the concept of reduced-order elements for all standard shapes in 2D and 3D. Further, the incompressibility constraint is handled via the static condensation to solve the saddle point problem. Furthermore, with the aim to simulate high Reynolds numbers flows, the significance of the diffusion stabilization in the hybridizable discontinuous Galerkin framework is analyzed. Referring to literature, the diffusion stabilization term is directly proportional to the diffusivity or the viscosity for the Navier-Stokes equations. In this work, a new expression for the diffusion stabilization term is mathematically derived, where the term is inversely proportional to the diffusivity or viscosity. Its importance for convection dominated flows is emphasized and supported by numerical examples.Moreover, the proposed formulation for the incompressible Navier-Stokes is extended to solve the RANSE for the TNT, BSL, and SST $k-\omega$ models for Reynolds numbers up to $10^9$.Solving RANSE is a resilient task for high-order methods, due to the non-smooth profiles of the turbulence quantities. In the discontinuous Galerkin framework, the polynomial approximation for these quantities leads to large oscillations that obstruct the non-linear solver. Taking into account the complexity with high-order methods and the fairly large modeling errors of the RANS modeling, low-order methods are believed to be more pragmatic. However, it is illustrated that solving RANSE with high-order methods leads to significantly smaller error magnitudes compared with second-order finite volume based solvers. Additionally, there is a remarkable improvement regarding the number of iterations to obtain a converged solution. Attention is given to the treatment of the specific rate of turbulence dissipation $\omega$ in the high-order framework. The possibilities and limitations of simulating industrial incompressible flows using discontinuous Galerkin based methods are assessed in order to draw some general conclusions for industrial applications