Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Hybrid renewable energy sources.

Dissertationen zum Thema „Hybrid renewable energy sources“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Hybrid renewable energy sources" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Shendryk, S. O. „Decision support in managment of hybrid renewable energy sources“. Thesis, Sumy State University, 2017. http://essuir.sumdu.edu.ua/handle/123456789/65232.

Der volle Inhalt der Quelle
Annotation:
Nowadays the distributed energy generation and renewable energy sources (RES) are the main areas of energy development all over the world. They play a significant role in improving the reliability and quality of the supplied electricity. Various forms of RESs using solar and wind energy are also proposed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kusakana, Kanzumba. „Optimal operation control of hybrid renewable energy systems“. Thesis, Bloemfontein: Central University of Technology, Free State, 2014. http://hdl.handle.net/11462/670.

Der volle Inhalt der Quelle
Annotation:
Thesis (D. Tech. (Electrical Engineering)) -- Central University of Technology, Free State, 2014
For a sustainable and clean electricity production in isolated rural areas, renewable energies appear to be the most suitable and usable supply options. Apart from all being renewable and sustainable, each of the renewable energy sources has its specific characteristics and advantages that make it well suited for specific applications and locations. Solar photovoltaic and wind turbines are well established and are currently the mostly used renewable energy sources for electricity generation in small-scale rural applications. However, for areas in which adequate water resources are available, micro-hydro is the best supply option compared to other renewable resources in terms of cost of energy produced. Apart from being capital-cost-intensive, the other main disadvantages of the renewable energy technologies are their resource-dependent output powers and their strong reliance on weather and climatic conditions. Therefore, they cannot continuously match the fluctuating load energy requirements each and every time. Standalone diesel generators, on the other hand, have low initial capital costs and can generate electricity on demand, but their operation and maintenance costs are very high, especially when they run at partial loads. In order for the renewable sources to respond reliably to the load energy requirements, they can be combined in a hybrid energy system with back-up diesel generator and energy storage systems. The most important feature of such a hybrid system is to generate energy at any time by optimally using all available energy sources. The fact that the renewable resources available at a given site are a function of the season of the year implies that the fraction of the energy provided to the load is not constant. This means that for hybrid systems comprising diesel generator, renewable sources and battery storage in their architecture, the renewable energy fraction and the energy storage capacity are projected to have a significant impact on the diesel generator fuel consumption, depending on the complex interaction between the daily variation of renewable resources and the non-linear load demand. V This was the context on which this research was based, aiming to develop a tool to minimize the daily operation costs of standalone hybrid systems. However, the complexity of this problem is of an extremely high mathematical degree due to the non-linearity of the load demand as well as the non-linearity of the renewable resources profiles. Unlike the algorithms already developed, the objective was to develop a tool that could minimize the diesel generator control variables while maximizing the hydro, wind, solar and battery control variables resulting in saving fuel and operation costs. An innovative and powerful optimization model was then developed capable of efficiently dealing with these types of problems. The hybrid system optimal operation control model has been simulated using fmincon interior-point in MATLAB. Using realistic and actual data for several case studies, the developed model has been successfully used to analyse the complex interaction between the daily non-linear load, the non-linear renewable resources as well as the battery dynamic, and their impact on the hybrid system’s daily operation cost minimization. The model developed, as well as the solver and algorithm used in this work, have low computational requirements for achieving results within a reasonable time, therefore this can be seen as a faster and more accurate optimization tool.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ahmed, Rana. „Energy management and control for hybrid renewable energy sources in rural area“. Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4353.

Der volle Inhalt der Quelle
Annotation:
Cette thèse propose principalement, un algorithme État-Flow MPPT basé P&O, amélioré avec deux degrés de liberté, dans lequel le système événementiel (MPPT) de comportement est modélisé par le décrivant en terme de transition entre les états, sous certaines conditions. Secondairement, un algorithme étendu MPPT, base d'exploitation en parallèle de l'état-débit est en outre proposé d'être une solution difficile pour le contrôle indépendant du système hybride, où la caractéristique de contrôle continu peut se présenter au cours d'un certain état de travail tout en discrète, est indiquée le long des transitions d'état. Deux configurations possibles pour le système hybride sont proposées : deux convertisseurs DC/DC séparés, et un convertisseur de sortie unique à double entrée (DISO) de configurations. Enfin, il est proposé, un comportement du système DC modélisation utilisant État-Flow, menant à l'ensemble de la conception de la stratégie de commande qui concernent RES MPPT, RES et la coordination BESS, la stabilité du système d'alimentation et de régulation de la tension du bus DC. La simulation et les résultats expérimentaux valident l'efficacité et l'applicabilité de l'algorithme proposé. Les deux résultats montrent la supériorité du MPPT basé proposé État-Flow pour réduire les oscillations de puissance RESs à l'état d'équilibre dans diverses conditions d'exploitation, en plus de son démarrage plus rapide, et l’opération de transition sans divergence de la MPP, selon des conditions météorologiques variables
This thesis primarily proposes, an improved P&O based State-Flow MPPT algorithm featuring two degree of freedom, in which the event driven system (MPPT) behaviour is modelled by describing it in terms of transitions among states under certain conditions. Secondarily, an extended parallel operating State-Flowbased MPPT algorithm is further proposed to be a challenging solution for the independent control of the hybrid system, where continuous control characteristic can present during a certain working state while discrete one is indicated along state transitions. Two possible configurations for the hybrid system are proposed; two separate DC/DC converters and dual input single output converter (DISO) configurations. Finally it is proposed, DC system behaviour modelling using State-Flow leading to the whole control strategy design which concern RESs MPPT, RESs and BESS coordination, power system stability and DC bus voltage regulation.Simulation and experimental results validate the effectiveness and applicability of the proposed algorithm, both results show the superiority of the proposed State-Flow based MPPT in reducing the RESs power oscillations at steady-state in various operating conditions in addition to its faster start-up and transition operation without divergence from the MPP during sudden varying weather conditions
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Renaudineau, Hugues. „Hybrid Renewable Energy Sourced System : Energy Management & Self-Diagnosis“. Thesis, Université de Lorraine, 2013. http://www.theses.fr/2013LORR0336/document.

Der volle Inhalt der Quelle
Annotation:
Cette thèse a pour but le développement d'une source photovoltaïque autonome ayant des capacités d'auto-diagnostic. Un structure d'hybridation spécifique est proposée consistant en une hybridation DC de sources photovoltaïques, d'une batterie au lithium et de supercondensateurs. Des modèles dynamiques des convertisseurs boost conventionnels et de leur variante avec isolation galvanique sont proposés. Un observateur d'état est ensuite présenté pour estimer en ligne les différents paramètres représentant les pertes des convertisseurs. On montre qu'il est possible d'utiliser ces paramètres estimés pour la gestion de l'énergie dans le système, avec en particulier l'optimisation du rendement de structures parallèles. L'optimisation des sources photovoltaïques est aussi étudiée avec une attention particulière accordée aux phénomènes d'ombrage partiel et le design d'un algorithme de maximisation de la puissance produite (MPPT) dans le cas d'une architecture distribuée série. De part une architecture de puissance spécifique, on propose aussi une méthode d'estimation de l'état de santé (SOH) de la batterie qui est validée sur des cellules de batterie Li - ion et LiFePO4. On montre que le convertisseur Cuk isolé avec inductances couplées est parfaitement adapté pour faire du diagnostic en ligne sur les batteries par injection de courant. Enfin, un schéma de gestion de l'énergie global est proposé, et on vérifie le bon fonctionnement de l'ensemble de la source hybride proposée
This thesis interested on developing a stand-alone photovoltaic system with self-diagnosis possibility. A specific structure has been proposed consisting in a DC hybridization of photovoltaic sources, a Lithium-based battery and supercapacitors. Dynamics models of the boost converter and the current-fed dual-bridge DC-DC converter are proposed and an efficient state observer is proposed to estimate the models equivalent losses' parameters online. It is shown that the estimated parameters can be used in the energy management scheme, with in particular optimisation of the efficiency of paralleled structures. The photovoltaic source optimization is also studied with special attention on shading phenomenon and design of MPPT technique especially on the case of distributed series architecture. Through a specific hybridization structure, State-Of-Health estimation is tested on Li-ion and LiFePO4 batteries. It is shown that the isolated coupled-inductors Cuk converter is very efficient for battery estimation through current injection. Finally, a global energy management scheme is proposed, and the developed stand-alone photovoltaic system is validated to operate as supposed
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Renaudineau, Hugues. „Hybrid Renewable Energy Sourced System : Energy Management & Self-Diagnosis“. Electronic Thesis or Diss., Université de Lorraine, 2013. http://www.theses.fr/2013LORR0336.

Der volle Inhalt der Quelle
Annotation:
Cette thèse a pour but le développement d'une source photovoltaïque autonome ayant des capacités d'auto-diagnostic. Un structure d'hybridation spécifique est proposée consistant en une hybridation DC de sources photovoltaïques, d'une batterie au lithium et de supercondensateurs. Des modèles dynamiques des convertisseurs boost conventionnels et de leur variante avec isolation galvanique sont proposés. Un observateur d'état est ensuite présenté pour estimer en ligne les différents paramètres représentant les pertes des convertisseurs. On montre qu'il est possible d'utiliser ces paramètres estimés pour la gestion de l'énergie dans le système, avec en particulier l'optimisation du rendement de structures parallèles. L'optimisation des sources photovoltaïques est aussi étudiée avec une attention particulière accordée aux phénomènes d'ombrage partiel et le design d'un algorithme de maximisation de la puissance produite (MPPT) dans le cas d'une architecture distribuée série. De part une architecture de puissance spécifique, on propose aussi une méthode d'estimation de l'état de santé (SOH) de la batterie qui est validée sur des cellules de batterie Li - ion et LiFePO4. On montre que le convertisseur Cuk isolé avec inductances couplées est parfaitement adapté pour faire du diagnostic en ligne sur les batteries par injection de courant. Enfin, un schéma de gestion de l'énergie global est proposé, et on vérifie le bon fonctionnement de l'ensemble de la source hybride proposée
This thesis interested on developing a stand-alone photovoltaic system with self-diagnosis possibility. A specific structure has been proposed consisting in a DC hybridization of photovoltaic sources, a Lithium-based battery and supercapacitors. Dynamics models of the boost converter and the current-fed dual-bridge DC-DC converter are proposed and an efficient state observer is proposed to estimate the models equivalent losses' parameters online. It is shown that the estimated parameters can be used in the energy management scheme, with in particular optimisation of the efficiency of paralleled structures. The photovoltaic source optimization is also studied with special attention on shading phenomenon and design of MPPT technique especially on the case of distributed series architecture. Through a specific hybridization structure, State-Of-Health estimation is tested on Li-ion and LiFePO4 batteries. It is shown that the isolated coupled-inductors Cuk converter is very efficient for battery estimation through current injection. Finally, a global energy management scheme is proposed, and the developed stand-alone photovoltaic system is validated to operate as supposed
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Esmaili, Gholamreza. „Application of advanced power electronics in renewable energy sources and hybrid generating systems“. Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1141850833.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Althomali, Khalid. „Energy Management System Modeling of DC Data Center with Hybrid Energy Sources Using Neural Network“. DigitalCommons@CalPoly, 2017. https://digitalcommons.calpoly.edu/theses/1701.

Der volle Inhalt der Quelle
Annotation:
As data centers continue to grow rapidly, engineers will face the greater challenge in finding ways to minimize the cost of powering data centers while improving their reliability. The continuing growth of renewable energy sources such as photovoltaics (PV) system presents an opportunity to reduce the long-term energy cost of data centers and to enhance reliability when used with utility AC power and energy storage. However, the inter-temporal and the intermittency nature of solar energy makes it necessary for the proper coordination and management of these energy sources. This thesis proposes an energy management system in DC data center using a neural network to coordinate AC power, energy storage, and PV system that constitutes a reliable electrical power distribution to the data center. Software modeling of the DC data center was first developed for the proposed system followed by the construction of a lab-scale model to simulate the proposed system. Five scenarios were tested on the hardware model and the results demonstrate the effectiveness and accuracy of the neural network approach. Results further prove the feasibility in utilizing renewable energy source and energy storage in DC data centers. Analysis and performance of the proposed system will be discussed in this thesis, and future improvement for improved energy system reliability will also be presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Gesha, Hlonela. „An analysis of the environmental impacts of biomass application in hybrid microgrids in South Africa“. Thesis, Cape Peninsula University of Technology, 2018. http://hdl.handle.net/20.500.11838/2764.

Der volle Inhalt der Quelle
Annotation:
Thesis (Master of Engineering in Electrical Engineering)--Cape Peninsula University of Technology, 2018.
In Sub-Saharan Africa (SSA), there are several challenges that hinder development. One of these challenges is access to electricity. There are numerous benefits to having access to reliable electricity. These include less time spent fetching water from rivers and dams, as water purification systems for households could be used in villages; children in villages would be able to spend more time doing their schoolwork and not fetching wood for fire; and automated irrigation systems could be used for villagers to farm and make an income. Finding alternative ways to generate electricity would enable access to electricity for regions that currently do not have the electricity. This means that large organisations need to find alternative ways of generating electricity, as they have the means to do so. With the current renewable energy technologies available, there are now more ways in which electricity could be generated. The use of biomass is no exception to this. With constant developments in the renewable energy sector, waste-to-energy (WtE) is proving to be a viable method to generate electricity. The main aim of this research was to determine if a commercial food retailing organisation could use their food waste for generating electricity for their own use to reduce their demand from the central grid. A way of determining the viability of this type of technology is using a software that simulates renewable energy projects. In this research, an organisation was contacted for waste data. Systems for two of the stores will be simulated and results will be discussed. The organisation will remain anonymous. The software used in this research is System Advisor Model (SAM), which was developed by the National Renewable Energy Laboratory (NREL) in the United States. In the results, three results were discussed. These are the monthly energy, monthly heat rate and the monthly boiler efficiency for each of the stores for Store 1, the annual energy simulated was 138,509 kWh and 131,677 kWh for Store 2. Monthly energy averages for each store were 11,542 kWh for Store 1 and 10,973 kWh for Store 2, respectively. There are several opportunities for research based on the findings. These include researching other food sectors in the study; conducting a financial analysis of small-scale WtE systems; constructing a prototype of the system; and using three different softwares to simulate a system for the same project.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Assaad, Michael. „Arduino Based Hybrid MPPT Controller for Wind and Solar“. Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1062827/.

Der volle Inhalt der Quelle
Annotation:
Renewable power systems are becoming more affordable and provide better options than fossil-fuel generation, for not only the environment, but a benefit of a reduced cost of operation. Methods to optimize charging batteries from renewable technologies is an important subject for off-grid and micro-grids, and is becoming more relevant for larger installations. Overcharging or undercharging the battery can result in failure and reduction of battery life. The Arduino hybrid MPPT controller takes the advantage of solar and wind energy sources by controlling two systems simultaneously. The ability to manage two systems with one controller is better for an overall production of energy, cost, and manageability, at a minor expense of efficiency. The hybrid MPPT uses two synchronous buck DC-DC converters to control both wind and solar. The hybrid MPPT performed at a maximum of 93.6% efficiency, while the individual controller operated at a maximum 97.1% efficiency when working on the bench test. When designing the controller to manage power production from a larger generator, the inductor size was too large due to the frequency provided by the Arduino. A larger inductor means less allowable current to flow before the inductor becomes over saturated, reducing the efficiency of the controller. Utilizing a different microcontroller like the PIC16C63A produces a much faster frequency, which will reduce the inductor size needed and allow more current before over saturation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Etxeberria, Aitor. „Microgrid hybrid energy storage and control using a three-level NPC converter“. Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14695/document.

Der volle Inhalt der Quelle
Annotation:
L’intégration croissante de la Génération Distribuée basée sur des sources d’énergies renouvelables présente de nouveaux défis pour le réseau électrique centralisé actuel. Le micro-réseau est une des alternatives envisagées afin d’augmenter le taux de pénétration d’énergie renouvelable et d’améliorer la qualité de l’énergie. La stabilité d’un micro-réseau est fortement sensible aux variations de puissance venant des sources d’énergie ou des charges. Dans ce contexte, un système de stockage d’énergie joue un rôle essentiel et doit satisfaire deux conditions : disposer d’une capacité de stockage importante pour adapter la production à la demande et être capable de fournir rapidement une puissance instantanée suffisante pour pallier les problèmes de qualité d’énergie. L’objectif principal de cette thèse est de concevoir et valider expérimentalement un système de conversion de puissance et l’algorithme de contrôle associé pour la gestion du stockage dans un micro-réseau afin de satisfaire les deux conditions. Suite à l’analyse de différentes technologies de stockage, on peut conclure qu’il n’y a pas de système de stockage capable de satisfaire les conditions d’énergie et de puissance en même temps. Par conséquent, l’association d’un supercondensateur et d’une batterie Redox au Vanadium dans un Système de Stockage Hybride est utilisée pour satisfaire les conditions mentionnées. Le travail de recherche est axé sur la gestion du flux d’énergie et de puissance du Système de Stockage Hybride proposé à l’aide d’un système de conversion de puissance innovant et son algorithme de commande. Un convertisseur multi-niveaux 3LNPC a été choisi pour commander en même temps les deux systèmes de stockage, en raison de faibles pertes de puissance et de distorsions harmoniques réduites en comparaison avec d’autres topologies existantes. Un algorithme de commande capable d’exploiter les limites de fonctionnement du convertisseur sur toute sa plage de fonctionnement a été conçu afin de satisfaire de manière optimale les critères spécifiés. Le fonctionnement du système de conversion et la stratégie de commande proposée ont été validés d’abord en simulation et ensuite expérimentalement en utilisant le micro-réseau installé à l’ESTIA
The increasing penetration of Distributed Generation systems based on Renewable Energy Sources is introducing new challenges in the current centralised electric grid. The microgrid is one of the alternatives that is being analysed in order to increase the penetration level of renewable energy sources in electrical grids and improve the power quality. The microgrid stability is highly sensitive to power variations coming from the energy sources or loads. In this context, an energy storage system is essential and it must satisfy two criteria: to have a high storage capacity to adapt the generation to the demand and to be able to supply fast power variations to overcome the power quality problems that may arise. The main objective of this thesis has been to design a power conversion system and the associated control algorithm for a storage system management in order to satisfy the defined requirements, as well as to experimentally validate the proposed solution. After an analysis of different storage system technologies, it can be concluded that there is not any storage system capable of offering the energy and power requirements at the same time. Consequently, the association of a SuperCapacitor bank and a Vanadium Redox Battery is used to satisfy the mentioned requirements. This thesis has been focused on the power and energy flow management of the proposed Hybrid Energy Storage System through an innovative power conversion system and its control method. A Three-Level Neutral Point Clamped converter has been used to control at the same time the two storage systems, due to the reduced power losses and harmonic distortion compared to other existing topologies. A control algorithm that uses the operational limits of the converter in its entire operation range has been designed in order to allow selecting the best operation point according to the specified criteria. The operation of the power conversion system and the proposed control method have been first validated in simulations and then experimentally using the microgrid installed in ESTIA
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Xu, Chen. „Hybrid cell for harvesting multiple-type energies“. Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44782.

Der volle Inhalt der Quelle
Annotation:
An abundance of energy in our environment exists in the form of light, thermal, mechanical (e.g., vibration, sonic waves, wind, and hydraulic), magnetic, chemical, and biological. Harvesting these forms of energy is of critical importance for solving long-term energy needs and the sustainable development of the planet. However, conversion cells for harvesting solar energy and mechanical energy are usually independent entities that are designed and built following distinct physical principles. The effective and complementary use of such energy resources whenever and wherever one or all of them are available demands the development of innovative approaches for the conjunctional harvesting of multiple types of energy using an integrated structure/material. By combining solar and mechanical energy-harvesting modules into a single package for higher energy conversion efficiency and a more effective energy recovery process, the research has designed and demonstrated a hybrid cell for harvesting solar and mechanical energy. The results of the research show that we can fully utilize the energy available from our living environment by developing a technology that harvests multiple forms of both solar and mechanical energy 24 hours a day. As the proposed research represents a breakthrough in the innovation of energy harvesting, it should pave the way toward building a new field called "multi-type hybrid" energy harvesting.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Brka, Adel. „Optimisation of stand-alone hydrogen-based renewable energy systems using intelligent techniques“. Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2015. https://ro.ecu.edu.au/theses/1756.

Der volle Inhalt der Quelle
Annotation:
Wind and solar irradiance are promising renewable alternatives to fossil fuels due to their availability and topological advantages for local power generation. However, their intermittent and unpredictable nature limits their integration into energy markets. Fortunately, these disadvantages can be partially overcome by using them in combination with energy storage and back-up units. However, the increased complexity of such systems relative to single energy systems makes an optimal sizing method and appropriate Power Management Strategy (PMS) research priorities. This thesis contributes to the design and integration of stand-alone hybrid renewable energy systems by proposing methodologies to optimise the sizing and operation of hydrogen-based systems. These include using intelligent techniques such as Genetic Algorithm (GA), Particle Swarm Optimisation (PSO) and Neural Networks (NNs). Three design aspects: component sizing, renewables forecasting, and operation coordination, have been investigated. The thesis includes a series of four journal articles. The first article introduced a multi-objective sizing methodology to optimise standalone, hydrogen-based systems using GA. The sizing method was developed to calculate the optimum capacities of system components that underpin appropriate compromise between investment, renewables penetration and environmental footprint. The system reliability was assessed using the Loss of Power Supply Probability (LPSP) for which a novel modification was introduced to account for load losses during transient start-up times for the back-ups. The second article investigated the factors that may influence the accuracy of NNs when applied to forecasting short-term renewable energy. That study involved two NNs: Feedforward, and Radial Basis Function in an investigation of the effect of the type, span and resolution of training data, and the length of training pattern, on shortterm wind speed prediction accuracy. The impact of forecasting error on estimating the available wind power was also evaluated for a commercially available wind turbine. The third article experimentally validated the concept of a NN-based (predictive) PMS. A lab-scale (stand-alone) hybrid energy system, which consisted of: an emulated renewable power source, battery bank, and hydrogen fuel cell coupled with metal hydride storage, satisfied the dynamic load demand. The overall power flow of the constructed system was controlled by a NN-based PMS which was implemented using MATLAB and LabVIEW software. The effects of several control parameters, which are either hardware dependent or affect the predictive algorithm, on system performance was investigated under the predictive PMS, this was benchmarked against a rulebased (non-intelligent) strategy. The fourth article investigated the potential impact of NN-based PMS on the economic and operational characteristics of such hybrid systems. That study benchmarked a rule-based PMS to its (predictive) counterpart. In addition, the effect of real-time fuel cell optimisation using PSO, when applied in the context of predictive PMS was also investigated. The comparative analysis was based on deriving the cost of energy, life cycle emissions, renewables penetration, and duty cycles of fuel cell and electrolyser units. The effects of other parameters such the LPSP level, prediction accuracy were also investigated. The developed techniques outperformed traditional approaches by drawing upon complex artificial intelligence models. The research could underpin cost-effective, reliable power supplies to remote communities as well as reducing the dependence on fossil fuels and the associated environmental footprint.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Mazloomzadeh, Ali. „Development of Hardware in the Loop Real-Time Control Techniques for Hybrid Power Systems Involving Distributed Demands and Sustainable Energy Sources“. FIU Digital Commons, 2014. http://digitalcommons.fiu.edu/etd/1666.

Der volle Inhalt der Quelle
Annotation:
The future power grid will effectively utilize renewable energy resources and distributed generation to respond to energy demand while incorporating information technology and communication infrastructure for their optimum operation. This dissertation contributes to the development of real-time techniques, for wide-area monitoring and secure real-time control and operation of hybrid power systems. To handle the increased level of real-time data exchange, this dissertation develops a supervisory control and data acquisition (SCADA) system that is equipped with a state estimation scheme from the real-time data. This system is verified on a specially developed laboratory-based test bed facility, as a hardware and software platform, to emulate the actual scenarios of a real hybrid power system with the highest level of similarities and capabilities to practical utility systems. It includes phasor measurements at hundreds of measurement points on the system. These measurements were obtained from especially developed laboratory based Phasor Measurement Unit (PMU) that is utilized in addition to existing commercially based PMU’s. The developed PMU was used in conjunction with the interconnected system along with the commercial PMU’s. The tested studies included a new technique for detecting the partially islanded micro grids in addition to several real-time techniques for synchronization and parameter identifications of hybrid systems. Moreover, due to numerous integration of renewable energy resources through DC microgrids, this dissertation performs several practical cases for improvement of interoperability of such systems. Moreover, increased number of small and dispersed generating stations and their need to connect fast and properly into the AC grids, urged this work to explore the challenges that arise in synchronization of generators to the grid and through introduction of a Dynamic Brake system to improve the process of connecting distributed generators to the power grid. Real time operation and control requires data communication security. A research effort in this dissertation was developed based on Trusted Sensing Base (TSB) process for data communication security. The innovative TSB approach improves the security aspect of the power grid as a cyber-physical system. It is based on available GPS synchronization technology and provides protection against confidentiality attacks in critical power system infrastructures.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Mesbahi, Abdessamad. „Deterministic and Stochastic Economic Modeling of Hybrid Power Supply System with Photovoltaic Generators“. Master's thesis, КПІ ім. Ігоря Сікорського, 2021. https://ela.kpi.ua/handle/123456789/42555.

Der volle Inhalt der Quelle
Annotation:
Relevance of research. Due to the rapid deployment of the non-dispatchable (intermittent) generation sources in the smart grid, such as integration of the photovoltaic power plants and wind turbines in the distribution systems; this caused a problem of the uncertainty increase of simulation results for decision-making for power supply systems, these uncertainties of power systems are getting more and more notice. At the same time, the classical power systems models cannot give accurate simulation results. Wherein; it became necessary to define new models to represent the specific parameters of power system. wherein; this research reveals to the benefits of using probabilistic mathematical approaches to define and calculate the specific economic parameters, as well as the technical parameters for power supply system with the integration renewable energy generators, which are characterising by randomness and uncertainty due to the high penetration to the renewables. Monte Carlo Method, and Point Estimation Method are used to handle the uncertainties of renewable energy resources. The standard functions to represent the stochastic parameters of the model are analyzed with the use of three-point estimation technique for the distribution functions of their probable values. A synthetic skewed probability density function was analytically constructed basing on the standard normal distribution, which is suitable for analytic representation of the predicted and/or statistical random sampling of the uncertain model parameters of energy system with renewables, and analytical expressions were obtained to compute the moments of proposed synthetic probability function. Relationship of work with scientific programs, plans, themes. is to demonstrate the possibility of describing the input parameters of the simulation Deterministic and Stochastic Modeling by probability Density Functions by the use of three-point approximation techniques and to obtain analytical expressions for the characteristics of such distributions, suitable for non-iterative (as opposed to Monte Carlo Method) probabilistic method applications, namely the Point Estimation Method. Purpose and tasks of the research. Increasing the simulation accuracy results for estimation economic and technical parameters characterising photovoltaic power plant based on based on the life cycle model; as well as development of different algorithms based on deterministic and stochastic modeling of power system with non-dispatchable sources and minimize the computation time. Object of research. Processes of determining the estimated technical and economic parameters characterising a photovoltaic power plant located in Ukraine basing on stochastic modeling. Subject of research. Use of the Monte Carlo Method and Point Estimation Method to estimate the various economic and technical information characteristic of alternative power plants in order to obtain accurate simulation results. Practical value of the results. Practical techniques of the three-point approximation are used to construct the probability density function of the model uncertain (stochastic) parameter, which dominantly influences the modeling result: an event occurrence probability, the result attainability, whatsoever. This technique is an effective tool for the practical evaluating of an uncertain value of a technological or economic factor of material and/or economic object, and widely used for overall Levelized Energy Cost (LCOE – LEC) which is directly or indirectly engaged into analytic representation of the power systel model. Usually, the model of a kind is designed to solve technical and/or economic problem by means of Deterministic and Stochastic Modeling. Scientific novelty of the obtained results is the development of algorithms and mathematical solutions using a probabilistic approach basing Point Estimation Method instead of Monte Carlo Melthod to obtain more accurate estimation simulation results, as well as to obtain computational results in less time for useful decision-making in alternative power plant projects.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Graziani, Alessandro. „Methods and tools for the optimization of renewable technologies and hybrid energy systems. Metodi e strumenti per l'ottimizzazione di tecnologie rinnovabili e sistemi energetici ibridi“. Doctoral thesis, Università degli studi di Padova, 2015. http://hdl.handle.net/11577/3423884.

Der volle Inhalt der Quelle
Annotation:
The United Nations (UN) project "Sustainable energy for all" sets three ambitious objectives to favor a sustainable development and to limit climate change: - Universal access to modern energy services. Electricity is currently not available for 1.3 billion people and the global energy demand is expected to grow of about 35% within 2040, due to the increasing world population and the expanding economies - Double the global rate of improvement in energy efficiency - Double the share of renewable energy sources (RESs) in the global energy mix In addition, according to the climate scenario assessed in the fifth assessment report (AR5) of the International Panel on Climate Change (IPCC), the prevention of undesirable climate effects requires a 40-70% reduction of greenhouse gas (GHG) emissions, compared with 2010 levels, by mid-century, and to near-zero by the end of this century (IPCC, 2014). The achievement of such objectives requires and encourages the spread of RESs in the global energy mix, gradually replacing depleting and polluting energy sources based on fossil fuels, which still have the main incidence on the energy sector. RESs already play a major role in several countries, due to the technological development and the increasing market competitiveness, and the world renewable power capacity reached 22.1% in 2013, showing an increasing trend in 2014 (REN, 2014). However, supporting policies, robust investments from the private sector and efforts from the scientific community are still crucial to demonstrate the technical and economic sustainability and effectiveness of RESs, helping their large-scale diffusion. Starting from such a background, this Ph.D dissertation focuses on the study, design and development of methods and tools for the optimization and enhancement of renewable energy technologies and their effective integration with energy storage solutions and traditional energy sources powered by fossil fuels (hybrid energy systems). The analysis of the major literature and the different scenarios and perspectives of RESs in the national and international contexts have shown that their economic sustainability, and then their diffusion, is closely connected to a number of technical, economic/financial and geographical parameters. Such parameters are the input of the analytic models developed for the techno-economic design of photovoltaic (PV) plants and small wind turbines (SWTs) and applied to the economic feasibility study, through multi-scenario analysis, of such systems in some of the main European Union (EU) Countries. Among the obtained results, the self-consumption of the produced energy plays a crucial role in the economic viability of SWTs and PV plants and, particularly, after the partial or total cut of incentives and uncertainties related to supporting policies within the EU context. The study of the energy demand profile of a specific user and the adoption of battery energy storage (BES) systems have been identified as effective strategies to increase the energy self-consumption contribution. Such aspects have led to the development of an analytic model for the techno-economic design of a grid connected hybrid energy system (HES), integrating a PV plant and a BES system (grid connected PV-BES HES). The economic profitability of the grid connected PV-BES HES, evaluated for a real case study, is comparable with PV plants without storage in case of a significant gap between the cost of energy purchased from the grid and the price of energy sold to the grid, but high BES system costs due to the initial investment and the maintenance activities and the eventual presence of incentives for the energy sold to the grid can make the investment not particularly attractive. Thus, the focus has shifted to the techno-economic analysis of off-grid HES to meet the energy demand of users in remote areas. In this context, BES systems have a significant role in the operation and management of the system, in addition to the storage of exceeding energy produced by the intermittent and variable RESs. The analysis has also been strengthened by an industrial application with the aim to configure, test and install two off-grid HESs to meet the energy demand of a remote village and a telecommunication system. In parallel, two experimental activities in the context of solar concentrating technology, a promising and not fully developed technology, have been carried out. The former activity deals with the design, development and field test of a Fresnel lens pilot-scale solar concentrating prototype for the PV energy distributed generation, through multi-junction solar cells, and the parallel low temperature heat recovery (micro-cogeneration CPV/T system). The latter activity deals with the development of a low cost thermal energy (TES) storage prototype for concentrating solar power (CSP) plants. TES systems show a great potential in the CSP plants profitability since they can overcome the intermittent nature of sunlight and increase the capacity factor of the solar thermal power plant. Concluding, the present Ph.D dissertation describes effective methods and tools for the optimization and enhancement of RESs. The obtained results, showing their critical issues and potential, aim to contribute to their diffusion and favor a sustainable development
Il progetto delle Nazioni Unite "Sustainable energy for all" ha fissato tre obiettivi ambiziosi per favorire uno sviluppo sostenibile e limitare l'impatto del cambiamento climatico: - Accesso universale a moderni servizi elettrici. Tali servizi sono attualmente indisponibili per circa 1.3 miliardi di persone ed è previsto un aumento del 40% della domanda globale di energia elettrica entro il 2040, a causa dell'incremento della popolazione mondiale e delle economie in crescita nei paesi in via di sviluppo - Raddoppio del tasso globale di miglioramento dell'efficienza energetica - Raddoppio del contributo di fonti di tipo rinnovabile nel mix energetico globale Inoltre, lo scenario climatico proposto nel "fifth assessment report (AR5)" redatto da "International Panel on Climate Change (IPCC)" stabilisce la necessità di ridurre l'emissione di gas ad effetto serra del 40-70%, rispetto ai valori registrati nel 2010, entro il 2050 ed eliminarli in modo quasi definitivo entro la fine del secolo con lo scopo di evitare effetti climatici indesiderati. Il raggiungimento di tali obiettivi richiede e incoraggia la diffusione di fonti energetiche rinnovabili (FER) all'interno del mix energetico globale, rimpiazzando gradualmente le fonti di energia convenzionali basate su combustibili fossili, inquinanti e in via di esaurimento, che hanno ancora l'incidenza principale nel settore energetico. A seguito nel loro sviluppo tecnologico e la crescente competitività nel mercato, le FER rivestono già un ruolo fondamentale nel mix energetico di numerose Nazioni ricoprendo il 22.1% del fabbisogno globale di energia nel 2013 e mostrando un andamento in rialzo nel 2014 (REN, 2014). Tuttavia, sono ancora cruciali politiche di supporto, ingenti investimenti privati e contributi della comunità scientifica per dimostrare l'efficacia e la sostenibilità tecnica ed economica delle FER e favorire, quindi, una loro diffusione in larga scala. In questo contesto, la seguente tesi di dottorato è rivolta allo studio, progettazione e sviluppo di metodi e strumenti per l'ottimizzazione e la valorizzazione di tecnologie energetiche rinnovabili e la loro integrazione efficace con fonti di produzione di energia convenzionali alimentate da combustibili fossili e sistemi di accumulo di energia (Sistemi energetici di tipo ibrido). I contributi scientifici disponibili in letteratura e l'analisi dei diversi scenari e delle prospettive delle FER nei vari contesti nazionali ed internazionali hanno dimostrato che la loro sostenibilità economica, e quindi la loro diffusione, è strettamente legata ad una serie di parametri tecnici, economico / finanziari e geografici. Tali parametri sono stati impiegati come input in due modelli analitici sviluppati per la progettazione tecnico-economica di impianti fotovoltaici (FV) e micro turbine eoliche e applicati per lo studio della loro fattibilità economica, attraverso analisi multi-scenario, in alcuni dei maggiori Paesi Europei. I risultati ottenuti hanno mostrato come l'autoconsumo dell'energia prodotta rivesta un ruolo fondamentale nella redditività economica dei citati impianti ed, in particolare, a seguito del taglio parziale o totale dei sistemi di incentivazione e l'incertezza attorno alle politiche di supporto all'interno del panorama Europeo. Lo studio specifico del profilo di domanda elettrica delle utenze e l'impiego di sistemi di accumulo di energia sono stati identificati come strategie efficaci al fine di incrementare la quota di autoconsumo. Tali considerazioni hanno portato allo sviluppo di un modello analitico utile alla progettazione tecnico-economica un sistema energetico ibrido connesso alla rete Nazionale integrante un impianto FV e un sistema di accumulo a batterie. La redditività del sistema, valutata su un caso reale, risulta comparabile a un impianto fotovoltaico privo di batterie in caso di un gap significativo tra il costo dell'energia elettrica acquistata dalla rete e il prezzo di vendita dell'energia elettrica ceduta in rete. Tuttavia, gli elevati costi dovuti all'acquisto iniziale e alle attività di manutenzione, e l'eventuale incentivazione sulla vendita dell'energia in rete, non rendono l'investimento particolarmente attrattivo per impianti connessi alla rete. L'attenzione si è quindi rivolta all'analisi tecnico-economica di sistemi energetici ibridi non connessi alla rete, comunemente definiti in isola o off-grid, per soddisfare il fabbisogno energetico di utenti in area remote e quindi prive di allaccio a una rete elettrica. In tali sistemi, i sistemi di accumulo a batterie, oltre alla capacità di accumulo dell'energia prodotta in eccesso variabili e intermittenti FER, hanno funzioni fondamentali nella gestione del sistema stesso. L'attività è stata anche rafforzata da un'applicazione industriale per la configurazione, test e installazione di due sistemi energetici ibridi in isola impiegati per soddisfare il fabbisogno energetico di un villaggio e di un sistema di telecomunicazione situati in aree remote. In parallelo, sono state svolte due attività sperimentali applicate alla promettente, ma non ancora completamente sviluppata a livello industriale, tecnologia solare a concentrazione. La prima attività riguarda la progettazione, sviluppo e test sperimentali di un prototipo in scala ridotta di concentratore solare a lenti di Fresnel per la produzione distribuita di energia elettrica, mediante l'uso di celle fotovoltaiche multi giunzione, ed energia termica a bassa temperatura, tramite un sistema di recupero termico. La seconda attività concerne lo sviluppo e test sperimentali di un prototipo di sistema di accumulo termico per impianti termodinamici alimentati da sistemi a concentrazione solare. Il sistema di accumulo consente di compensare la natura intermittente e variabile della fonte solare incrementando le ore di funzionamento dell'impianto termodinamico con i conseguenti benefici economici. Concludendo, la presente tesi di dottorato include la descrizione di metodi e strumenti per l'ottimizzazione e valorizzazione delle FER. I risultati evidenziano le criticità e potenzialità dei sistemi studiati con lo scopo di contribuire a una loro diffusione e favorire uno sviluppo sostenibile
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Ptáček, Michal. „Parciální řešení hybridního systému s nízkoteplotními palivovými články a obnovitelnými zdroji“. Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-233620.

Der volle Inhalt der Quelle
Annotation:
The thesis deals with the principle functions of low-temperature fuel cells with proton exchange membrane (PEMFC), photovoltaic sources (PVPP) and wind energy sources (WPP), along with solving their detailed mathematical expressions. In this work, the individual sources and their simulated models are analyzed in depth. The actual simulation is preceded by familiarization with important historical milestones in the development of fuel cells. Furthermore there is a basic classification of fuel cells and the characteristics of the cells used in the energy sectors. The text also provides information on projects that address the implementation of PEMFC as a primary or supplementary source of energy. Along with outlining the options for PEMFC as a perspective hydrogen technologies in the near future, the basic methods of hydrogen production and storage options are presented for the complexity. The work is exclusively focused on improving PEMFC mathematical models that under the hybrid system cooperate with renewable energy sources (RES). Part of the theses contains a short review of run or modeled concepts of hybrid systems in the energy sector. Using these models the main deficiencies of the models or of the whole PEMFC system can be identify. Specifications of the deficiencies lead to the creation of a new advanced dynamic PEMFC model that allows an analysis of the development of electrical and non-electrical quantities using long term tests. Furthermore, the thesis presents results of the experiments of thermal and dynamic behavior PEMFC, which were obtained from the additionally extended model with a reformer and the DC/DC converter. In this text there is a model of a photovoltaic module created, which is based on the nominal values parameterization. The model is subjected to basic experiments in which measured hydrometeorological data are used. If the hybrid system utilizes renewable energy sources, it is good to know the evolution of atmospheric conditions in the installation of these resources. Specifically for PVPP, publicly available databases containing information about solar radiation levels can be used for the selected location. Public databases are often used for initial design and manufacturing options for PVPP. An evaluation of the relevancy of public databases is performed based on a long-term observation of real measured data. Furthermore, these data are used for experiments on the photovoltaic module. Partially the text addresses the issue of the wind energy sources, however, it is simulated only on a simplified model of WPP. Created models of subsystems can be generally implemented as partial inputs hybrid systems in the future work. The thesis was developed at Centre for Research and Utilization of Renewable Energy (CVVOZE) with the financial support of the National Programme for Sustainability and the Ministry of Education, Youth and Sports of the Czech Republic under the project no. LO1210 - Energy for Sustainable Development and the project no. FEKT-S-14-2520 - New Technologies for Sustainable Development of Electrical Power Systems. The thesis was also generated under the project no. TA03020523 - Dynamic model of distribution network with the financial support of Technology Agency of the Czech Republic.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Nováček, Richard. „Malé a mikro fotovoltaické systémy“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-254480.

Der volle Inhalt der Quelle
Annotation:
Master thesis deals with photovoltaic components and their principles. Evaluate the types of photovoltaic systems and their impact on the transmission system. The thesis deals with financial support to small and micro-photovoltaic systems, which can be used in terms of legislation of the Czech Republic. There are also described the changes in the amendment to the energy act and effect on the price of electricity in households. Compared with the domestic photovoltaic rest of the world and the view of the German energy concept. Part of the theoretical design of a hybrid photovoltaic plant, including the use of heat pump. Thesis deals with using hybrid photovoltaic plant and economic viability of the proposed system. The last part deals with the implementation of the proposed system and assesses the true value from those anticipated in the design.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Darbyshire, James. „Multi-function power electronic interface for hybrid mini-grid systems“. Thesis, Curtin University, 2010. http://hdl.handle.net/20.500.11937/2394.

Der volle Inhalt der Quelle
Annotation:
In the past five years, global interest regarding the development of renewable energy technologies has significantly increased. The conventional electric power generation methods sourced from fossil fuels is now problematic, from both the supply and emission points of view. Fossil fuels are non-renewable limited resources that have taken millions of years to form; eventually they will be exhausted and the current cost of automotive fuel is evidence of them becoming diminished. The carbon dioxide emissions created through the energy conversion process are causing an increase in the overall atmospheric concentrations, which through global warming may have serious consequences for humanity.Natural sources of energy production can be derived from the Sun through the use of solar and wind generation methods. Converting these sources to electricity requires the technology of power electronics, the central area of research for this dissertation. Solar energy can most easily be harnessed through the photo-electric effect which creates DC electricity. However, the majority of electric loads and transmission require AC electricity. The inverter is the electronic device required for this power conversion. Wind turbines usually create variable voltage and frequency AC that is rectified to DC and then converted to grid type AC through an inverter.Voltage source inverters, their topologies and control are investigated within this dissertation. Voltage control methods are adopted for both stand-alone and grid connected techniques where control of active and reactive power is required. Current control techniques in the form of PI and hysteresis are applied to allow novel interfaces between generation sources to be achieved. Accurate control of the power electronics allows an enhancement in the power production from the renewable energy source. The power electronic device of the DC-DC converter, either buck or boost is controlled to allow the renewable resource to operate at its optimum power point. The control aspects and algorithms of these converters are central to this research. The solar algorithms of perturb and observe, and incremental conductance are developed with the latter being more favourable to changing levels of irradiation. The author draws a parallel between rapidly changing solar conditions with normally changing wind states. This analogy with an understanding of the mechanics of PMSG allows a novel wind MPPT algorithm to be developed which is simulated in PSIM. Methods to analyse the usefulness of the algorithm are developed and general conclusions are drawn.Another aim central to the research is the efficient combination of renewable energy sources into a single reliable power system. This forms the multi-function aspect of the research. The interconnection of the sources on the AC or DC sides is investigated for both stand-alone and grid connected topologies. A requirement of the stand-alone system is to provide power when no renewable resources are available causing some form of energy storage to be utilised. Conventional batteries are used, causing the VC-VSI to become bi-directional allowing charging. This is simulated in PSIM and demonstrated as part of the Denmark and Eco Beach projects. Many differing topologies of stand alone, grid connected and edge of grid systems are developed, simulated and some are demonstrated.While investigating the currently used topologies the author invents the novel complimentary hybrid system concept. This idea allows a single inverter to be used to feed energy from either the wind or solar resource. With careful engineering of the PV array and wind turbine characteristics only a small loss of energy is caused, deemed the crossover loss. This original concept is mathematically modelled, simulated and demonstrated with results presented from the Denmark project. The strength of this idea is from the quite complimentary nature of wind and solar resources, for only a small proportion of the year are high solar and strong wind conditions occurring simultaneously.Compared to a solar resource, the wind resource is much more complicated to model. An analysis of readily available wind source data is presented with a statistical analysis of the scaling methods; a novel box and whiskers plot is used to convey this information. New software is presented to allow a more accurate and digital model of a power curve to be recreated, allowing a more precise annual energy generation calculation. For various wind turbines a capacity factor analysis is presented with its disadvantages explained. To overcome these issues the concepts of economic efficiency and conversion efficiency are explained. These prevent some of the typical methods to enhance the standard capacity factor expression. The combination of these three methods allows selection of the most suitable wind turbine for a site.The concept of a mini-grid is an isolated power generation and distribution system, which can have its renewable energy sources, centralised or decentralised. The methods used to coalesce conventional generation with renewable energy technology forms another key piece of this research. A design methodology for the development of a hybrid power system is created with examples used from projects attributed to the author. The harmonising of the renewable energy sources with the conventional generation while providing a stable and robust grid is explained in detail with respect to the generator loading and control. The careful control of the renewable resource output is shown to allow a greater overall penetration of renewable energy into the network while continuing network stability. The concept of frequency shift control is presented, simulated and demonstrated with reference to the Eco Beach project. This project epitomises much of the research that has been presented in this dissertation. It combines centralised and decentralised inverters, with battery storage and the control of diesel generators. An overall controller dictates the optimum times to charge or draw from the battery based upon the local environmental and time of day variables. Finally, the monitoring aspects of this project are representative of a future smart grid where loads may be shed on demand through under frequency or direct control.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Romaniuk, O. „Renewable energy sources“. Thesis, Видавництво СумДУ, 2009. http://essuir.sumdu.edu.ua/handle/123456789/13666.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Schön, Gustav. „NUMERICAL MODELLING OF A NOVEL PVT COLLECTOR AT CELL RESOLUTION“. Thesis, KTH, Energiteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-212731.

Der volle Inhalt der Quelle
Annotation:
Solar photovoltaic-thermal (PVT) modules produce heat and power via a heat exchanger attached to the rear of the PV cells. The novel PVT collector in this study is previously untested and therefore its behaviour and thermo-electric performance due to fluid channel configuration and in various climate and operating conditions are unknown. Moreover, the working fluid flowing through the heat exchanger cause a temperature gradient across the module such that a cell near the inlet and a cell near the outlet may have significant temperature differences. PV cells are sensitive to temperature; however the most common way to simulate power output from a PVT is to use the average temperature and ignore the gradient. In this study, a single diode PV model is incorporated into a commercial thermal solver to co-simulate the thermal and electrical output of a novel PVT module design with cell level resolution. The PVT system is modelled in steady state under various wind speeds, inlet temperatures, ambient temperatures, flow rates, irradiation, convection coefficients from coolant and back of the module and two different fluid channel configurations. The results show that of the controllable variables, the inlet temperature has the highest influence of the total power output and that a parallel flow of the fluid channel configuration is preferable. The difference between the cell resolution and the module resolution simulations do not motivate the use of a higher resolution numerical simulation.
En kombinerad solcellspanel och solvärmefångare (PVT) producerar värme och elenergi på samma yta genom att en värmeväxlare upptar värmen från baksidan av solcellspanelen. Den PVT som berörs i denna studien är nyutvecklad och har aldrig tidigare testats, vilket medför att data för hur den beter sig samt dess termo-elektiska prestanda saknas för olika driftförhållanden samt flödeskonfigurationer. Vidare ger mediet som flödar genom värmeväxlaren upphov till en temperaturgradient, vilken kan innebära en påtaglig skillnad i temperatur mellan solcellerna i solcellspanelen vid mediets in- respektive utlopp. Trots solcellers temperaturkänslighet, så sker simulering i allmänhet med avseende på panelens medeltemperatur istället för att hänsyn tas till denna temperaturgradient. I den här studien implementeras en så kallad  ”single diode”-modell i en kommersiell numerisk mjukvara termiska beräkningar för att samsimulera termiskt och elektriskt effektuttag ur den nyutvecklade PVT-designen. Designen modelleras statiskt under givna variationer av vindhastighet, inloppstemperatur, omgivande temperatur, flödeshastighet, solinstrålning och konvektionskoefficienter för mediet samt baksidan av modulen. Resultaten visar att kontrollerbara variabler som inloppstemperatur har högst inverkan på den totala effekten samt att en parallell flödeskonfiguration lämpar sig bäst. Studien visar också att skillnaden mellan simulering på cellnivå och modulnivå inte motiverar en numerisk beräkningsmetod med upplösning satt till solcellsnivå.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Леуш, Богдан Михайлович, und Bohdan Leush. „Оцінка енергоефективності застосування сонячно-вітрових енергоустановок для електропостачання підприємств“. Master's thesis, ТНТУ імені Івана Пулюя, 2019. http://elartu.tntu.edu.ua/handle/lib/29801.

Der volle Inhalt der Quelle
Annotation:
У дипломній роботі проведено дослідження рівня сонячної інсоляції та вітрового потенціалу в умовах Західної України. Проаналізовано наявні енергоустановки для перетворення сонячної тв вітрової енергії в електроенергію. Наведено переваги і недоліки такого перетворення. Проведено статистичний розрахунок можливого виробітку електричної енергії сонячною електростанцією та вертикальним вітрогенератором. Проведено статистичний розрахунок можливого сумарного виробітку електроенергії гібридною установкою. Здійснено кошторисний аналіз застосування гібридної енергоустановки.
There has been researched, the level of solar insolation and wind potential in the conditions of Western Ukraine. The available energy installations for the conversion of solar TV to wind energy were analyzed. The advantages and disadvantages of such conversion were substantiated. A statistics’ of the possible generation of electricity by a solar power plant and a vertical wind generator was calculated. A statistical calculation of the possible total electricity generation by a hybrid installation has been carried out. The use of the hybrid power plant was estimated.
ПЕРЕЛІК УМОВНИХ СКОРОЧЕНЬ...7 ВСТУП...9 1.ЛІТЕРАТУРНИЙ ОГЛЯД...13 1.1.Ефективність використання сонячно-вітрової енергії...13 1.2.Розгляд та аналізів сонячно-вітрових енергоустановок...29 1.3.Перспективи розвитку сонячно-вітрових енергоустановок України та ЄС...34 Висновки до розділу 1...40 2.ОСНОВНА ЧАСТИНА...42 2.1.Розрахунок автономно-мережевої гібридної установки для електропостачання малого підприємства...42 2.1.1.Загальні принципи побудови гібридної установки сонце ‒ вітер...42 2.2.Визначення сумарної спожитої енергії за тиждень...46 2.3.Вибір вітрової установки...48 2.4.Дослідження вітрового потенціалу м. Яворів...50 2.5. Розрахунок вітроколеса...54 2.6.Дослідження притоку енергії від сонячної радіації...59 2.7.Вибір сонячних модулів...62 Висновки до розділу 2...75 СПЕЦІАЛЬНА ЧАСТИНА...76 ОБҐРУНТУВАННЯ ЕКОНОМІЧНОЇ ЕФЕКТИВНОСТІ...81 4.1.Розрахунок капітальних затрат...81 4.2.Розрахунок експлуатаційних витрат...84 ОХОРОНА ПРАЦІ ТА БЕЗПЕКА В НАДЗВИЧАЙНИХ СИТУАЦІЯХ...87 5.1.Основні причини виникнення пожеж на виробництві...87 5.2.Допомога при ураженні електричним струмом...89 5.3 Підвищення стійкості роботи об’єктів енергетики у воєнний час...92 5.4.Запобігання виникненню та ліквідація наслідків надзвичайних ситуацій техногенного і природного походження на об’єктах енергетики...94 ЕКОЛОГІЯ...97 ЗАГАЛЬНІ ВИСНОВКИ...102 ПЕРЕЛІК ПОСИЛАНЬ...103
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Kondratyuk, O. V. „Renewable energy sources in Ukraine“. Thesis, Видавництво СумДУ, 2009. http://essuir.sumdu.edu.ua/handle/123456789/13612.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Malý, Jan. „Renewable Energy Sources Support Policy“. Master's thesis, Vysoká škola ekonomická v Praze, 2009. http://www.nusl.cz/ntk/nusl-11041.

Der volle Inhalt der Quelle
Annotation:
Renewable energy sources support policy employs a great variety of economic tools in order to promote the use of green energy. Following thesis at first offers an overview and economic insight into the most applied ones. Since the majority of the European Union Member States nowadays prefer so-called feed-in tariffs schemes we proceed in-depth analysis of effectiveness of that instrument in electricity sector in four selected European countries Austria, Czech Republic, Germany and Spain. An effectiveness indicator which compares marginal electricity generation potential with additional realizable potential of particular renewable energy sources technology is used for that analysis. The results clearly show that the best practice of feed-in tariff design is pursued in Germany where the special set of tariff design and adjustment measures is applied.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Smugala, Ondrej. „Řízení a monitoring decentralizovaných zdrojů energie a akumulačních zařízení“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2018. http://www.nusl.cz/ntk/nusl-377033.

Der volle Inhalt der Quelle
Annotation:
The diploma thesis is dealing with possible approaches to control distributed energy resources and storage systems. One of these approaches is a virtual power plant and its concept is described in the first part of the thesis. The virtual power plant is a controlled system of distributed energy resources, storage systems and controllable loads interconnected via communication network, that can act as a conventional power plant. The theoretical part contains a survey of control system's topologies, a brief summary of available communication infrastructures and standards. The second part of the thesis is focused on the description of operation and control of hybrid system that represents an inseparable component of virtual power plant. A Matlab Simulink model was created for this purpose. A simulation of hybrid inverter's step response is realised to test the operation of the hybrid system and it is compared with the real measurements in the laboratory. A comparison of control approaches of hybrid system implemented on the basis of measurements is also included in this thesis and was published in the scientific paper attached in the appendix.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Kanchev, Hristiyan. „Gestion des flux énergétiques dans un système hybride de sources d’énergie renouvelable : Optimisation de la planification opérationnelle et ajustement d’un micro réseau électrique urbain“. Thesis, Ecole centrale de Lille, 2014. http://www.theses.fr/2014ECLI0001/document.

Der volle Inhalt der Quelle
Annotation:
L’objectif est de développer un algorithme de gestion énergétique d’un parc de production comprenant de la production distribuée sous forme de micro turbines à gaz et de générateurs PV pilotables dits «actifs » en vue de minimiser le coût économique et environnemental. Les principes généraux de la production d’électricité à base d’énergie renouvelable et non renouvelable sont d’abord présentés et le fonctionnement actuel des réseaux électriques est rappelé pour situer les innovations attendues dans les futurs réseaux dits intelligents. Ensuite, un algorithme de suivi du point de puissance maximale et de puissance limitée dans un générateur actif PV est présenté. La modélisation des micro-turbines à gaz est aussi présentée. La contribution principale concerne la conception d’une planification opérationnelle des moyens de production la veille pour le lendemain à partir de prédictions de la charge et de la production PV en utilisant une programmation dynamique adaptée. La méthode proposée prédétermine le profil de production des générateurs de manière à réaliser une optimisation globale d’une fonction objective pour un réseau électrique urbain. Pour l’exploitation, un algorithme d’ajustement est proposé et intervient toutes les ½ heures de manière à prendre en compte les déviations par rapport aux prédictions en utilisant un réseau de communication. Un micro réseau urbain est utilisé pour tester les algorithmes de gestion implantés dans un superviseur interfacé à un simulateur temps réel. Des comparaisons dans des situations identiques avec différentes fonctions objectives sont réalisées ainsi que des évaluations économiques et environnementales à l’aide d’indicateurs
The presented research works aim to develop an energy management system for a cluster of distributed micro gas turbines and controllable PV generators called «active generators». The general principles of electricity generation from renewable and non-renewable energy sources are first presented. The operation of actual electric grids is also recalled in order to highlight the challenges and expected innovations in future Smart Grids. Then, the integration of a novel method for maximum and limited power point tracking in a PV-based active generator is presented. The modeling of micro-gas turbines in a microgrid energy management system is also presented. The main contribution of this thesis concerns the design of an operational planning of generators one day ahead by the means of a dynamic programming-based algorithm, taking into account the PV power production and the consumption forecasts. The proposed method calculates the production planning of generators by performing a global optimization of an objective function. An adjustment algorithm is proposed and executed every ½ hours through a communication network in order to take into account the uncertainty in forecasted values. An urban microgrid is used for testing the developed algorithms through Supervisory Control and Data Acquisition (SCADA) with hardware-in-the-loop and real-time simulations. Comparisons of the microgrid operation in identical situations with different objective functions are performed, as well as evaluations of economic and environmental indicators
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Johnson, Darrin B. „Federal renewable-energy research and development funding and innovation /“. View online, 2008. http://repository.eiu.edu/theses/docs/32211131423535.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Yan, Zuanhong. „Control of fluctuating renewable energy sources : energy quality & energy filters“. Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8568/.

Der volle Inhalt der Quelle
Annotation:
This doctoral study discusses how to control fluctuating renewable energy sources at converter, unit, and system layers to deliver smoothed power output to the grid. This is particularly relevant to renewable power generation since the output power of many kinds of renewable energy sources have huge fluctuations (e.g. solar, wind and wave) that needs to be properly treated for grid integration. In this research, the energy quality is developed to describe the friendliness and compatibility of power flows/waveforms to the grid, by contrast with the well-known concept of power quality which is used to assess the voltage and current waveforms. In Chapter 1 & 2, a background introduction and a literature review of studied subjects are presented, respectively. In Chapter 3, the problem of determining the PI parameters in dq decoupling control of voltage source converter (VSC) is studied based on a state-space model. The problems of the conventional method when there is insufficient interface resistance are addressed. New methods are proposed to overcome these drawbacks. In Chapter 4 & 5, energy quality and the energy filters (EFs) are proposed as tools to assess and manage power fluctuations of renewable energy sources. The proposed EFs are energy storage control systems that could be implemented on a variety of energy storage hardware. EFs behave like low-pass filters to the power flows. Finally, in Chapter 6, as an application example of renewable power plant with energy filter control and smoothed power output, a master-slave wave farm system is proposed. The wave farm system uses enlarged rotor inertia of electric machines as self-energy storage devices.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Martínez, Díaz Maria del Mar. „Stand-alone hybrid renewable energy systems (HRES)“. Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/457978.

Der volle Inhalt der Quelle
Annotation:
End of Energy Poverty and achieving Sustainable Energy for all by 2030 is a universal challenge. 1.3 billion people without energy access and 2.8 billion people using unsustainable solid fuel for cooking and heating are global challenges for human and societal sustainable development. Nearly $1 trillion of investment is expected in the Sustainable Energy for All (SE4ALL) scenario to achieve universal energy access in 2030. Around 60% of investments will be in isolated off-grid and mini-grid systems with the relevant goal of duplicating the renewable energy sources in the energy mix. Access to innovation trends in renewable energy off-grid would benefit future installations. This work brings to light the recent years research contributions in Hybrid Renewable Energy Systems (HRES) and related aspects that would benefit these required investments in isolated off-grid and mini-grid systems. An overview on the thematic focus of research in Hybrid Renewable Energy Systems (HRES) in the last decade, period 2005 - 2015, is provided. This review covers multiple key aspects of HRES as the main focus of the research (technical, economical, environmental, financial, etc.); the design of the system (type of load, energy sources, storage, availability of meteorology data, etc.); different optimization criteria and objective function; software and modelling tools; and the type of application and country among others. A methodology for searching, identifying and categorizing the innovations related to HRES is proposed. Applying this methodology during this PhD work results in a primary database with a categorized bibliography including nearly 400 entries. Currently system design is mainly technical driven with economic feasibility analysis regarding the energy cost. As for environmental aspects, the beneficial impacts of renewable energy are hardly introduced as an economical value that is so far the most important decision-making criteria. Regarding decision-making tools, the most currently used optimization algorithms and software tools for the design of HRES is HOMER and a case study for understanding is proposed. Following the analysis of most popular and relevant criteria, an easy to use guideline is proposed encouraging decision-making for more sustainable energy access. There are untapped research opportunities for HRES in multi-disciplinary thematic areas. The analysis of innovations regarding the system design for Hybrid Renewable Energy Systems (HRES) have identified potential for research community aligned with the trends to integrate the value chain and foster innovative business models and sustainable energy markets. After the analysis of those different focus that goes from technical and economical, to environmental, regulatory or policy aspects, an integrated value chain for HRES systems is defined. Knowledge, methodologies & tools are provided in this PhD work for more stand-alone hybrid systems creating value for more of the stakeholders involved. After reviewing the latest innovations in HRES per thematic focus, an integrated value chain for those systems has been proposed and multidisciplinary research opportunities have been identified. Identifying the need to include the environmental aspects in early stages of the decision-making has lead to propose an easy to use guideline integrating most relevant criteria for the design of stand-alone renewable power systems. Finally, the research opportunities identified and the untapped potential of transferring latest innovations have result in the creation of the website ElectrifyMe (www.electrifyme.org) to enable valuable international networking contacts among researchers and encouraging multi-disciplinary research. "Knowledge, methodologies & tools" are powerful contributions by research community and innovators to foster more sustainable energy for all.
El fi de la pobresa energètica i l'assoliment d'energia sostenible per a tothom l'any 2030 és un repte universal. 1,3 mil milions de persones sense accés a l'energia i 2,8 mil milions de persones que utilitzen combustible sòlid insostenible per cuinar i escalfar són desafiaments globals pel desenvolupament humà sostenible i social. S'espera una inversió aproximada de $1 trilió en l'energia sostenible per a tots (SE4ALL) per aconseguir l'accés universal a l'energia en 2030. Al voltant del 60 % de les inversions seran en sistemes off-grid i mini-grid, amb la corresponent meta de duplicar les fonts d'energia renovables en el mix energétic. En aquesta tesis es facilita una visió general sobre els àmbits temàtics de la recerca en Hybrid Renewable Energy Systems (HRES) en l'última dècada, període 2005-2015. Aquesta revisió es refereix a diversos aspectes clau deis HRES com: el focus principal de la investigació (tècnics, econòmics, ambientals, financers, etc.); el disseny del sistema (tipus de carrega, fonts d'energia, l'emmagatzematge, la disponibilitat de dades de meteorologia, etc.); diferents criteris d'optimització i funció objectiu; programari de modelatge eines; i el tipus d'aplicació i el país, entre d'altres. Es proposa una metodologia per buscar, identificar i categoritzar les innovacions relacionades amb els HRES. L'aplicació d'aquesta metodologia durant aquest treball de doctorat proporciona una base de dades primaria amb una bibliografia classificada incloent prop de 400 entrades. Actualment el disseny dels sistemes incorporen criteris tècnics amb anàlisi de viabilitat econòmica sobre el cost de l'energia. Pel que fa a les eines de presa de decisions, el métode d'optimització més utilitzats en l'actualitat pel disseny de HRES és HOMER, i es proposa un estudi de cas per a la comprensió deis criteris de disseny. Després de l'anàlisi de la majoria deis valors més habituals i rellevants, es proposa una senzilla guia per la presa de decisions per a l'accés a l'energia més sostenible. Després de compartir innovacions i proporcionar metodologies i eines, facilitar la creació de xarxes entre els investigadors ha demostrat ser una poderosa acció per promoure recerca sense explotar amb equips multidisciplinaris i internacionals. La pàgina web ElectrifyMe (www .electrifyme .org) ha estat creada amb la finalitat de facilitar a la comunitat d'investigació descobrir les innovacions i compartir projectes . Coneixements, metodologies i eines es proporcionen en aquest treball de doctorat per afavorir la creació de valor als sistemes aïllats híbrids renovables (stand-alone HRES) pels actors involucrats. Després de revisar les últimes innovacions en la introducció de renovables en sistemes aïllats en diferent enfoc temàtic, s'han estat identificat oportunitats de recerca multidisciplinars i s'ha proposat una cadena de valor integrada per aquests sistemes. La identificació de la necessitat d'incloure els aspectes ambientals en les primeres etapes de la presa de decisions ha portat a proposar una guia fàcil per utilitzar la integració de criteris més rellevants pel disseny de sistemes d'energia renovables independents. Finalment, tes oportunitats de recerca identificades i el potencial sense explotar de transferir les darreres innovacions tenen com a resultat la creació de la pàgina web ElectrifyMe (www.electrifyme.org) per promoure contactes i col·laboracions de xarxes internacionals entre investigadors i el foment de la investigació multidisciplinar. "El coneixement, les metodologies i les eines són poderoses contribucions de la comunitat de recerca per assolir un accés sostenible a l'energia per tots"
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Ashby, Scott John. „Remaining off-line : an investigation of Australia's reaction to renewable energy technology development /“. Title page, table of contents and abstract only, 1998. http://web4.library.adelaide.edu.au/theses/09ENV/09enva823.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Griffin, James. „Improving cost-effectiveness and mitigating risks of renewable energy requirements“. Santa Monica, CA : RAND, 2008. http://www.rand.org/pubs/rgs_dissertations/2008/RAND_RGSD236.pdf.

Der volle Inhalt der Quelle
Annotation:
Thesis (Ph.D.)--RAND Graduate School, 2008.
Title from title screen (viewed on Oct. 24, 2008). "This document was submitted as a dissertation in September 2008 in partial fulfillment of the requirements of the doctoral degree in public policy analysis at the Pardee RAND Graduate School." --T.p. Includes bibliographical references: p. 168-178.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Mendes, Barlach Leonardo. „Dynamic modelling of variable renewable energy generation sources“. Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112066.

Der volle Inhalt der Quelle
Annotation:
Thesis: S.M. in Engineering and Management, Massachusetts Institute of Technology, School of Engineering, System Design and Management Program, 2017.
Cataloged from PDF version of thesis.
Includes bibliographical references (page 56).
Renewable energy is one of the most important technologies for decarbonizing the economy and fighting climate change. In recent years, wind energy has become cheaper and more widely adopted. However, the variable nature of wind production creates unique challenges that are not faced by conventional thermal technologies. Several studies to date have showed the decrease in economic value of wind energy as penetration increases due to this variable nature. Plus, they also show that high wind penetration favors intermediate energy sources such as natural gas. I claim however, that few of these studies have considered the dynamic behavior and feedbacks of these systems, including investment delays and learning curves. This thesis uses system dynamics models to simulate the long term changes in the electric grid for Texas. The goal is to test two hypothesis: that the economic value of wind energy decreases as penetration increases, and that variable wind production favors natural gas technologies. It does this by calculating how wind energy changes the shape of the net load duration curve for a given region. This affect changes the profitability of different technologies in unique ways, due to their different fix and variable costs. The conclusions of this thesis are consistent with the literature, with the caveat that they are highly dependent on assumptions regarding the learning curve for energy technologies. The economic value of wind decreases, but this effect can be compensated by lower costs, leading to a continuing adaptation. Faster Wind adoption also reduces the profitably of technologies with high fixed costs such as coal and nuclear, and favors intermediate and peaking sources such as natural gas.
by Leonardo Mendes Barlach.
S.M. in Engineering and Management
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Jhala, Kumarsinh. „Coordinated electric vehicle charging with renewable energy sources“. Thesis, Kansas State University, 2015. http://hdl.handle.net/2097/19767.

Der volle Inhalt der Quelle
Annotation:
Master of Science
Department of Electrical and Computer Engineering
Balasubramaniam Natarajan
Anil Pahwa
Electric vehicles (EVs) are becoming increasingly popular because of their low operating costs and environmentally friendly operation. However, the anticipated increase of EV usage and increased use of renewable energy sources and smart storage devices for EV charging presents opportunities as well as challenges. Time-varying electricity pricing and day-ahead power commitment adds another dimension to this problem. This thesis, describes development of coordinated EV charging strategies for renewable energy-powered charging stations at homes and parking lots. We develop an optimal control theory-based charging strategy that minimizes power drawn from the electricity grid while utilizing maximum energy from renewable energy sources. Specifically, we derive a centralized iterative control approach in which charging rates of EVs are optimized one at a time. We also propose an algorithm that maximizes profits for parking lot operators by advantageously utilizing time-varying electricity pricing while satisfying system constraints. We propose a linear programming-based strategy for EV charging, and we specifically derive a centralized linear program that minimizes charging costs for parking lot operators while satisfying customer demand in available time. Then we model EV charging behavior of Active Consumers. We develop a real-time pricing scheme that results in favorable load profile for electric utility by influencing EV charging behavior of Active Consumers. We develop this pricing scheme as a game between electric utility and Active Consumers, in which the electric utilities decide optimal electricity prices that minimize peak-to-average load ratio and Active Consumers decide optimal charging strategy that minimizes EV charging costs for Active Consumers.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Nielsen, Knut Erik. „Superconducting magnetic energy storage in power systems with renewable energy sources“. Thesis, Norwegian University of Science and Technology, Department of Electrical Power Engineering, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-10817.

Der volle Inhalt der Quelle
Annotation:

The increasing focus on large scale integration of new renewable energy sources like wind power and wave power introduces the need for energy storage. Superconducting Magnetic Energy Storage (SMES) is a promising alternative for active power compensation. Having high efficiency, very fast response time and high power capability it is ideal for levelling fast fluctuations. This thesis investigates the feasibility of a current source converter as a power conditioning system for SMES applications. The current source converter is compared with the voltage source converter solution from the project thesis. A control system is developed for the converter. The modulation technique is also investigated. The SMES is connected in shunt with an induction generator, and is facing a stiff network. The objective of the SMES is to compensate for power fluctuations from the induction generator due to variations in wind speed. The converter is controlled by a PI-regulator and a current compensation technique deduced from abc-theory. Simulations on the system are carried out using the software PSIM. The simulations have proved that the SMES works as both an active and reactive power compensator and smoothes power delivery to the grid. The converter does however not seem like an optimum solution at the moment. High harmonic distortion of the output currents is the main reason for this. However this system might be interesting for low power applications like wave power. I

APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Kiljanov, Grigory. „Accumulation of energy in autonomous power plants using renewable energy sources“. Thesis, KTH, Skolan för industriell teknik och management (ITM), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264272.

Der volle Inhalt der Quelle
Annotation:
Kiljanov G.M. Energy storage in autonomous power plants using renewable energy sources, 2017 - p.104, 11 tables, 40 pic. Head Bessel V.V., Professor, Ph.D. Department of Thermodynamics and Thermal Engines. An analysis of existing energy storage devices in the world is carried out. The scientific and technical basis of energy storage. The device and the operating principle of an autonomous combined power plant with an energy storage device are considered. On the basis of the technological calculation, an optimal combination of a wind generator, a system of solar panels and a reservoir, which can provide reliable and uninterrupted power generation, was chosen. The economic efficiency of the project on the use of combined medium power plants at gas production facilities in remote areas was estimated. Conclusions are drawn about the advisability of introducing energy systems based on renewable sources with energy storage devices at the country's enterprises.
Kilyanov G.M. Energilagring i autonoma kraftverk som använder förnybara energikällor, 2017 - s.105, 11 tabeller, 40 bild. Chef Bessel V.V., professor, Ph.D. Institutionen för termodynamik och termiska motorer. En analys av befintliga energilagringsenheter i världen utförs. Den vetenskapliga och tekniska grunden för energilagring. Enheten och driftsprincipen för ett autonomt kombinerat kraftverk med en energilagringsanordning beaktas. Baserat på den tekniska beräkningen valdes en optimal kombination av en vindgenerator, ett system av solpaneler och en reservoar, som kan ge pålitlig och oavbruten elproduktion. Projektets ekonomiska effektivitet på användningen av kombinerade medelkraftverk vid gasproduktionsanläggningar i avlägsna områden uppskattades. Slutsatser dras om att det är lämpligt att införa energisystem baserade på förnyelsebara källor med energilagringsenheter hos landets företag.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Stott, Paul Anthony. „Renewable variable speed hybrid system“. Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4781.

Der volle Inhalt der Quelle
Annotation:
At present many remote and Island communities rely solely on diesel powered generators to provide electricity. Diesel fuel is both expensive and polluting and the constant speed operation of the diesel engine is inefficient. In this thesis the use of renewable energy sources to help offset diesel fuel usage and an alternative way of running the diesel generator with the aim of reducing electrical energy costs is investigated. Diesel generators have to be sized to meet peak demand, in one or two diesel generator island grids, these generators will be running at a fraction of maximum output for most of the time. A new variable speed diesel generator allows for a reduction in fuel consumption at part load compared to constant speed operation. Combining the variable speed diesel generator with renewable generation should maximise the diesel fuel offsetting of the renewable source due to the increased efficiency at low loads. The stability issues of maintaining transient performance in a renewable variable speed hybrid system have been modelled and simulated. A control strategy has been developed and the use of energy storage as a buffer for any remaining stability problems has been explored. The control strategy has then been experimentally tested along with one of the possible energy storage solutions. An economic feasibility study has been performed on a case study community to validate the main aim of this research of reducing the cost of electrical energy in diesel generator grids.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Sakib, Nazmus. „Effects of incorporating renewable energy sources into the electricity grid“. Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53485.

Der volle Inhalt der Quelle
Annotation:
With the increasing demand for energy throughout the world, the environment around us is getting severely affected. The conventional energy sources (coal, oil and gas) are unfortunately the biggest polluters of the environment. The aforementioned energy sources emit greenhouse gases like carbon dioxide and methane, which are responsible for global warming and ozone layer depletion. The only feasible answer to this problem is to reduce the use of the conventional energy sources and focus more on other energy sources. The renewable energy sources (solar, wind and hydro) have been present in nature, but the technology to harvest these energies have always been relatively expensive until recently. The biggest advantage of using renewable energy sources is the fact that these energy sources will never run out and they also do not pollute the environment as their more conventional counterparts. With more research being conducted into better ways of storing the power trapped from the renewable energy sources and the relative difficulty of obtaining the ever-depleting conventional energy sources, the future for renewable energy sources definitely looks better than at any time in the past
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Peker, Zeynep Süel Akın. „Integrating renewable energy technologies into cities through urban planning: In the case of geothermal and wind energy/“. [s.l.]: [s.n.], 2005. http://library.iyte.edu.tr/tezler/doktora/sehirplanlama/T000428.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Ninikas, Konstantinos. „Opportunities for renewable heat energy from shallow geothermal sources“. Thesis, Glasgow Caledonian University, 2017. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.726798.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Zenkert, Patrik, und Douglas Lowén. „Automatic control of renewable energy sources at varying load“. Thesis, Uppsala universitet, Elektricitetslära, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-415098.

Der volle Inhalt der Quelle
Annotation:
With the current climate crisis with the global temperature increasing due to fossil fuels being used there are big investments in green energy. Wind power is a good alternative to fossil fueled power and already has a widespread use. One of the problems with wind poweris control and keeping the grid frequency stable during peaks and lows of power generation. In this master thesis there is a goal to implement a system which can regulate wind mills while always trying to use as much wind power as possible. A model was built in Matlab to represent the final product which was translated into a SCADA system. A fully integrated communication from SCADA computer to PLC to IED to wind mill and back was built. The simulation in the SCADA system gave satisfactory result where the wind power wasutilized to the maximum, and other conditions met. The laboratory experiment with an Arduino represented as the wind mill lacked in communication and the model did not achieveperfect results in every case. There is future work to be done, improved communication, additional or alternative automatic control and creating a bigger system with several powerproducers integrated.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Aldaoudeyeh, Al Motasem. „Weak Power Grid Analysis for Renewable Energy Sources Integration“. Diss., North Dakota State University, 2019. https://hdl.handle.net/10365/31536.

Der volle Inhalt der Quelle
Annotation:
Weakness analysis based on grid strength assessment is useful for identifying potential weak grid issues. However, when taking into account the impact of the interactions among Renewable Energy Sources (RESs), the weakness analysis becomes computationally challenging. Different combinations of PointsofInterconnections (POIs) of RESs may have different impacts on grid strength at each POI. Due to the combination nature, such weakness analysis may be time-consuming when identifying the weakest combination of POIs from a large number of potential candidate locations in realistic power grids. This dissertation addresses the topic of determination of the weakest RESs combinations. Based on impedance ratios as a criterion, the dissertation shows that the impacts of impedance ratios magnitudes and angles are ?quasi-mutually exclusive?. Such a concept is then used to reduce the computational burden with a fast screening algorithm. To further understand the impact of network components on grid strength, vector-based interaction analysis is developed based on the concepts of operational transfer impedances and operational interaction operators. In particular, this dissertation shows how mathematical models of interaction of multiple RESs can be simplified by replacing them with equivalent impedances, allowing us to simplify the mathematical expressions that quantify interactions among RESs. The conclusions and concepts established based on simplified models are statistically tested for their applicability to the generalized interaction model. The result would be a more simplified mathematical representation of interaction among RESs. Finally, a new technique is presented to efficiently update the Bus Impedance Matrix (Zbus) following changes in the series impedance of a branch. Conventionally, such update requires redundant recalculations, which involve matrix inversion operations (i.e., inverting the Bus Admittance Matrix, Ybus) and thus cause high computational burden because of potential matrix ill-conditioning, especially for largescale power grids. This dissertation overcomes these shortcomings by deriving an analytical expression for changes in Zbus in terms of its old elements and the variation of the impedance of a given branch. Hence, the computation overhead is comparatively small, and no issues arise due to the new Ybus being ill-conditioned. Such contribution helps facilitate real-time applications of methods that rely on Zbus.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Folliero, Maria Gelsomina. „Energy Production and Storage from Renewable Sources through Electrocatalysis“. Doctoral thesis, Università di Siena, 2018. http://hdl.handle.net/11365/1042757.

Der volle Inhalt der Quelle
Annotation:
The energy transition from fossil fuels to renewables will be a long and difficult process but it is not avoidable since fossil sources depletion, pollution and geopolitical situations are becoming worrisome. There are different challenges for researchers in the field of energy. From renewable energy production data it is clear the remarkable growth of solar electricity technologies, that crystalline silicon photovoltaics (PV) and wind turbines are the workhorses of the first wave of renewable energy deployment around the globe. Anyway these renewable energy are not equally distributed and, for their natural discontinuity, cannot sustain the requirements of our society. In this perspective the energy storage will play a fundamental role in the development of an energy system based on renewable sources. The storage of hydrogen as gas in pressured tanks poses many problems, in particular for transport safety concerns. The alternative is the production on demand of this gas by using storing hydrogen materials. These materials can help developing mobility systems based on hydrogen as fuel, since the reserve of hydrogen would be stored as a solution, for example of sodium borohydride. The interconversion between electricity and hydrogen and biofuels, like bioethanol, could be the keystone of a new sustainable energy economy. The development of two electrochemical devices can serve to this energy system, fuel cells and electrolyzers. Fuel cells are devices that can convert cleanly chemical energy stored in hydrogen or bioalcohols into electrical energy, while electrolyzers use electrical energy to produce molecules, which can be energy vectors such as hydrogen. The electrical energy surplus could be used in another kind of electrolyzers, for example for the reduction of CO2. In these devices it’s possible to obtain different products but the performance of electrocatalysts at the moment are not so good to make this electroreduction particularly appealing due to high energy costs, low activity and stability of the catalysts. The focus on this thesis is to face the energy problems by different points of view: 1) the production of electrical energy from renewable resources with Direct Liquid Fuel Cells (DLFCs), 2) the production of hydrogen from storage materials and from electrolysis, 3) the storage of electrical energy producing useful molecules in electrolyzers. During the three years catalysts have been synthesized and characterized for their morphology and activity, both in electrochemical half-cell and complete cell systems or in properly designed reactors. In Chapter 1 a description of the state of the art of fuel cells and electrolyzers is provided and describes the advantages in replacing the traditional proton exchange membrane electrolytes with anion exchange membranes. In Chapter 2 an introduction of the electrochemical reduction of CO2 is given, focusing on copper and palladium as electrode for this reaction. The discussion of the results will be divided in three main Chapters,(3,4,5). The first one, Chapter 3, is on Direct Liquid Fuel Cells. The electrocatalysts employed are nanostructured Pd at the anode and Fe-Co at the cathode. The performance of microscale direct ethanol fuel cells (DEFCs) was studied with an equipment of a membrane electrode assembly (MEA) of 1 cm2 size with four anion exchange membranes. A fuel concentration of 6 M ethanol+6 M KOH was chosen to test the stability at a constant current density of 1 mA cm−2. The cell ran for 87 days with a potential drop of 3 mV day−1, and the energy delivered was 1.08 Wh. Furthermore, in order to explore functioning in conditions that maximize delivered energy density, a direct formate fuel cell (DFFC) operating at different formate and alkali concentrations has been investigated. The active DFFC at 60 °C with 4 M HCOOK + 4 M KOH as anode fuel and O2fed to the cathode produces a maximum power density of 258 mA cm−2. In Chapter 4, for the production of hydrogen the design and construction of a reactor for sodium borohydride (SBH) hydrolysis and the performance of palladium and rhodium based electrocatalysts in a electrochemical reformer are presented. For SBH hydrolysis a cobalt boride (CoxB) catalyst supported on a commercial Cordierite Honeycomb Monolith (CHM) was used. The electrooxidation performances of Pd/C and Rh/C catalysts were studied at different temperature with different organic molecules as substrates. In particular, Pd/C with formate, exhibits an onset of 200 mV and a specific activity of 2100 A g−1Pd; while Rh/C has an excellent activity for methanol oxidation, showing an onset potential 200 mV lower than Pd/C and a specific activity almost double reaching the value of 2600 A g−1Rh. In addition examples of electrooxidation of biomass-derived alcohols such as EtOH, EG, G and 1,2-P have been studied in an electroreformer containing Rh nanoparticles supported on carbon as the anode electrocatalyst, equipped with an anion exchange membrane and a Pt/C on carbon cloth cathode. The oxidation of alcohols was investigated in electrochemical half-cells at room temperature and at 60–80 °C in alkaline media. The results highlighted the excellent activity of Rh/C in terms of peak current densities (as high as 5700 A gRh-1 for EG at 80 °C) and low onset of potentials. Copper and Palladium based catalysts, studied for the electroreduction of CO2, are reported in Chapter 5. To enhance the activity of these two metals for CO2RR, two different paths were followed: 1) copper surface and morphology were modified to vary the products compositions and enhance activity; 2) palladium was alloyed with a different metal, gold, to improve performance and stability. The surface modification on copper resulted in an enhancement of the surface area of a copper foil and influenced the selectivity of the reduction reaction products. The Au-Pd alloy nanoparticles have shown high activity and selectivity for the electroreduction of CO2, where CO was the only product of the electrocatalysis. In the Chapter 6 there are conclusions and considerations on the whole work during the three years. The importance of the nanostructured catalyst is evident in every application described in this work. These materials showed improved performance and their applications can really represent a turning point in the energy field.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Sirca, Silvia <1992&gt. „Chinese Investments in Italy in energy from renewable sources“. Master's Degree Thesis, Università Ca' Foscari Venezia, 2018. http://hdl.handle.net/10579/13880.

Der volle Inhalt der Quelle
Annotation:
In recent years Chinese presence in Italian market has grown at a very fast pace, becoming an important player in Italian economy. Quantify the dimension of these investments is one of the most common questions asked by economists, politicians and public opinion in general. A complete, exhaustive analysis on the dimension of investments in Italy is impossible for several reasons. The first is the dimension itself of such investments, being very big, and second, they are in many sectors in all the country. Furthermore, a database on these investments does not exist. It is quite impossible to define exactly how much money China invested in Italy. Write off a document identifying the dimension of Chinese investments in Italy is not the aim of this work. In this work the focus has been put on just one sector in which Chinese companies invested, the production of Energy from renewable sources. Starting from this point I analyzed the companies in Italy financed by Chinese investors, their dimension, revenues and profitability, and compared the results with companies in the same sector, similar for dimension and revenues to see if there were similarities also in profitability. The analysis is not just limited to the profitability of the Chinese run companies, but attention has also been put on the Chinese parent companies, analyzing their business in China and in the rest of the world, to better understand the reasons beside the choice to invest in Italy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Homon, Bohdan. „Combined power supply system converting unit with renewable sources“. Thesis, Дніпропетровський національний університет залізничного транспорту ім. академіка В. Лазаряна, 2017. https://er.knutd.edu.ua/handle/123456789/9329.

Der volle Inhalt der Quelle
Annotation:
The article deals with the implementation of renewable energy sources in local electrical systems such as solar battery, wind turbines. The improvement and wide spread of the sources of distributed generation renewable energy sources is one of the ways to improve the energy security of the country.
Стаття присвячена питанню впровадження відновлювальних джерел енергії (сонячна батарея, вітрові турбіни) в місцевих електричних системах. Покращення та широке розповсюдження поновлюваних джерел енергії розподіленої генерації є одним із способів підвищення енергетичної безпеки країни.
Статья посвящена вопросу внедрения возобновляемых источников энергии (солнечная батарея, ветровые турбины) в местных электрических системах. Улучшение и широкое распространение возобновляемых источников энергии распределенной генерации является одним из способов повышения энергетической безопасности страны.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Guduru, Giridhar Reddy. „Management of energy and power using renewable energy sources based on ZigBee“. Thesis, California State University, Long Beach, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10004167.

Der volle Inhalt der Quelle
Annotation:

The energy and power used at various areas like households and industries is increasing gradually due to many reasons and there is a need to sustain it. This project introduces a method to reduce the energy used in a household by considering the energy sources and the amount of energy used by the appliances concurrently. Modules are used to measure and check the energy utilized by the appliances using ZigBee. Energy is generated on a conventional basis using three sources: solar panel, wind mill and conventional power. An inverter and a battery are used to connect these sources to a grid. When a device is connected, the units of power consumed are computed and shown on the LCD using LPC2148 microcontroller. The output of the battery is connected to the controller, which shows the voltage of the battery and also selects the best source to be used. Modules use a 5V supply and the controller uses 3.3V power supply. Voltage is controlled with the help of a 7805 voltage regulator and the output of transformer is revised by a rectifier.

APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Shvets, O. „The influence of renewable energy sources on the prospects of nuclear energy“. Thesis, Київський національний університет технологій та дизайну, 2018. https://er.knutd.edu.ua/handle/123456789/10804.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Scimone, Tommaso. „Energy Storage in Electric Power Generation Plant from Renewable Sources“. Thesis, Università degli Studi di Catania, 2011. http://hdl.handle.net/10761/228.

Der volle Inhalt der Quelle
Annotation:
During last years the utilization of renewable energy resources has received considerable attention because of the adverse environmental impacts and cost escalation of conventional fuel generation plants. Solar photovoltaic and wind energy industries are two sectors very rapidly growing, and both of them are attracting investments of billions of dollars. However, photovoltaic and wind, like most of the renewable energy sources are characterized by high variability and discontinuity. The high unpredictability of the primary resource makes diffi-cult to forecast the energy production. This is a major trouble for network utility grid management and for the final user, especially in the case of systems operated in island mode. Application of high efficiency energy storage techniques could stimulate in a near future a larger exploitation of renewable energy sources. Energy storage, in fact, could not only improve the quality of the produced power, but, it could also make possible the implementa-tion of sophisticated energy management strategies, fully decoupling the power delivery from power generation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Aljaism, Wadah A., University of Western Sydney und School of Engineering and Industrial Design. „Control method for renewable energy generators“. THESIS_XXX_EID_Aljaism_W.xml, 2002. http://handle.uws.edu.au:8081/1959.7/796.

Der volle Inhalt der Quelle
Annotation:
This thesis presents a study on the design method to optimise the performance for producing green power from multiple renewable energy generators. The design method is presented through PLC (Programmable Logic Controller) theory. All the digital and analogue inputs are connected to the input cards. According to different operations conditions for each generator, the PLC will image all the inputs and outputs, from these images; a software program has been built to create a control method for multiple renewable energy generators to optimise production of green power. A control voltage will supply the output contractor from each generator via an interface relay. Three renewable generators (wind, solar, battery bank) have been used in the model system and the fourth generator is the back up diesel generator. The priority is for the wind generator due to availability of wind 24 hours a day, then solar, battery bank, and LPG or Diesel generators. Interlocking between the operations of the four contractors has been built to prevent interface between them. Change over between contractors, according to the generator's change over has also been built, so that it will delay supplying the main bus bar to prevent sudden supply to the load. Further study for controlling multiple renewable energy generators for different conditions such as controlling the multi-renewable energy generators from remote, or supplying weather forecast data from bureau of meteorology to the PLC directly as recommended.
Master of Electrical Engineering (Hons)
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Eriksson, Emma. „Hybrid Renewable Energy Systems with Battery and Hydrogen Storage“. Thesis, Griffith University, 2017. http://hdl.handle.net/10072/378157.

Der volle Inhalt der Quelle
Annotation:
As population numbers and people's standards of living increase, so does the global energy demand and carbon dioxide emissions and it is imperative that new sustainable and renewable energy sources are sought, as the world's natural resources are depleting. Electricity generation presents the biggest opportunity to lower CO2 emissions and in an emerging world where the demand for alternative renewable energy systems is growing it is expected that one of the technologies in conjunction with conventional storage which will play a key role in reducing emissions is hydrogen fuel cell technology with hydrogen storage. Many attempts have been made to realise optimisation algorithms of renewable energy system using multiple techniques in literature. These attempts have consisted of using mathematical models combined with rules and object oriented modelling in order to assist in the design of renewable applications. The integration methods described in previous papers up to date seems to offer mainly technical and/or economical optimisation parameters. None of the presented methods seems to be based on a unified model where multi objectives and/constraints are taken into account above technical and economic considerations. There are also few practical examples of analysis and optimisation of hybrid renewable energy systems in a complete optimisation model where the behaviour of renewable energy sources, battery banks, electrolysers, fuel cells and hydrogen storage tanks are reviewed throughout the simulation in detail. For a successful transition to a renewable energy economy, optimisation of renewable energy systems must evolve to take into account metrics additional to technical performance and cost. A Normalised Weighted Constrained Multi-Objective (NWCMO) meta-heuristic optimisation algorithm has been proposed in conjunction with optional constraints for achieving a compromise between mutually conflicting objectives in multiple simultaneous categories; technical, economic, environmental and socio-political objectives, to simulate and optimise a renewable energy system with balanced outcomes. The socio political objective is represented by a proposed socio acceptance matrix which outputs a weighted measured social acceptance indicator towards proposed renewable energy systems. The methodology was implemented using an adjusted Particle Swarm Optimisation algorithm and tested against data and other studies from the literature. In each case the original results could be reproduced, but the newly-implemented algorithm was further able to find a more optimal design solution under the same constraints. In addition, the influence of additional quantified socio-political inputs was explored. This thesis presents a review of issues for integration of hydrogen energy technology into energy systems, emphasising electricity generation using fuel cell hydrogen technology. Integration of energy storage, sizing methodologies, energy flow management and their associated optimization algorithms and software implementation are addressed. The model presented in this thesis offers a streamlined integration of design rules, optimization techniques and constraints merged into one planning system. The outcome is a model offering an end user the possibility to carry out a proper feasibility study prior to embarking on implementing a renewable system. An optimisation methodology based on four classes of objective (technical, economic, environmental, socio-political) is presented, benchmarked and tested against various hybrid renewable energy systems with conventional and hydrogen storage.
Thesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Environment and Sc
Science, Environment, Engineering and Technology
Full Text
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Mok, Hei-lun Allen. „An education and research centre on renewable energy“. Hong Kong : University of Hong Kong, 2001. http://sunzi.lib.hku.hk/hkuto/record.jsp?B25947205.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Templeton, Jeffrey. „Abandoned petroleum wells as sustainable/renewable sources of geothermal energy“. Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=121344.

Der volle Inhalt der Quelle
Annotation:
Geothermal energy is an important emerging renewable technology that has the potential to provide power from a virtually unlimited reserve worldwide. The downside to exploiting geothermal energy is the capital intensive drilling of the borehole needed to access relatively hot resources located deep under the ground. However, abandoned petroleum wells present an interesting opportunity to circumvent the capital costs associated with drilling. This thesis proposes a sophisticated heat transfer model that is capable of realistically simulating the heat flow through a double pipe heat exchanger and the surrounding rock mass. The sophisticated model is compared with the analytical cylindrical source model, and two numerical models and reaches comparable results. The purpose of this model is to provide an accurate and realistic representation of heat flow and temperature distribution for a heat exchanger retrofitted to an abandoned well. The effects that inlet fluid temperature, insulation, thermal conductivity of the rock mass, mass flow rate of the working fluid, and vertical movement of groundwater have on the sustainability and performance of the double pipe heat exchanger are investigated. A constant power model is also proposed in order to assess the sustainable rate of heat extraction from a geothermal resource.
L'énergie géothermique est une technologie renouvelable émergente importante qui a le potentiel de fournir de l'énergie d'une source pratiquement illimitée. Le désavantage de l'énergie géothermique est l'ampleur du capital des forages qui sont requis pour accéder aux ressources plus chaudes. Utiliser les forages de pétrole abandonnés est une opportunité originale pour circonvenir ce désavantage. Cette thèse propose un modèle sophistiqué qui est capable de simuler le flux de chaleur à travers un échangeur de chaleur à tube double et le flux de chaleur à travers la masse rocheuse autour du forage. Le modèle sophistiqué est comparé avec le modèle analytique de source cylindrique, et deux autres modèles numériques et arrivent aux résultats comparables. Le but de cette modèle sophistiqué est de fournir une représentation précise et réaliste du flux de chaleur et la distribution de la température pour un échangeur de chaleur situé dans un forage de pétrole abandonné. Les effets de la température d'entrée de fluide, l'isolation, la conductivité thermique de la masse rocheuse, le taux de débit massique du fluide actif, et le mouvement vertical de l'eau souterraine sur la durabilité et performance de la conception sont enquêtés. Un modèle de puissance constante est aussi proposé pour l'extraction de l'énergie géothermique encore plus durable.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie