Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Hybrid Cartesian“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Hybrid Cartesian" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Hybrid Cartesian"
OKAZAKI, Takeo, Bing hu PIAO und Shigeaki KURODA. „Cartesian/Structured Hybrid Grid Method for Viscous flows“. Proceedings of Conference of Kanto Branch 2002.8 (2002): 505–6. http://dx.doi.org/10.1299/jsmekanto.2002.8.505.
Der volle Inhalt der QuelleBackes, P. G., G. G. Leininger und Chun-Hsien Chung. „Joint Self-Tuning With Cartesian Setpoints“. Journal of Dynamic Systems, Measurement, and Control 108, Nr. 2 (01.06.1986): 146–50. http://dx.doi.org/10.1115/1.3143757.
Der volle Inhalt der QuelleHan, Ping, Hiroyuki Kojima, Lingfang Huang und Saputra Meruadi. „Grasp Transfer Control Using Cartesian Coordinate Two-Link Robot Arm with Prototype Robot Hand Consisting of Stepping Motors, Gears and Plate Springs“. International Journal of Automation Technology 2, Nr. 5 (05.09.2008): 360–67. http://dx.doi.org/10.20965/ijat.2008.p0360.
Der volle Inhalt der QuelleZhang, Laiping, Wei Liu, Lixin He und Xiaogang Deng. „A Class of Hybrid DG/FV Methods for Conservation Laws III: Two-Dimensional Euler Equations“. Communications in Computational Physics 12, Nr. 1 (Juli 2012): 284–314. http://dx.doi.org/10.4208/cicp.210111.140711a.
Der volle Inhalt der QuelleKashmar, G., und O. Nalcioglu. „Cartesian echo planar hybrid scanning with two to eight echoes“. IEEE Transactions on Medical Imaging 10, Nr. 1 (März 1991): 1–10. http://dx.doi.org/10.1109/42.75606.
Der volle Inhalt der QuelleWeinzierl, Marion, und Tobias Weinzierl. „Quasi-matrix-free Hybrid Multigrid on Dynamically Adaptive Cartesian Grids“. ACM Transactions on Mathematical Software 44, Nr. 3 (26.04.2018): 1–44. http://dx.doi.org/10.1145/3165280.
Der volle Inhalt der QuelleLuo, Hong, Joseph D. Baum und Rainald Löhner. „A hybrid Cartesian grid and gridless method for compressible flows“. Journal of Computational Physics 214, Nr. 2 (Mai 2006): 618–32. http://dx.doi.org/10.1016/j.jcp.2005.10.002.
Der volle Inhalt der Quellevan der Holst, B., und R. Keppens. „Hybrid block-AMR in cartesian and curvilinear coordinates: MHD applications“. Journal of Computational Physics 226, Nr. 1 (September 2007): 925–46. http://dx.doi.org/10.1016/j.jcp.2007.05.007.
Der volle Inhalt der QuelleYang, J. S., und J. M. Chang. „Optimal Independent Spanning Trees on Cartesian Product of Hybrid Graphs“. Computer Journal 57, Nr. 1 (11.12.2012): 93–99. http://dx.doi.org/10.1093/comjnl/bxs157.
Der volle Inhalt der QuelleArmstrong, Jeffrey R., J. Quinn Campbell und Anthony J. Petrella. „A comparison of Cartesian-only vs. Cartesian-spherical hybrid coordinates for statistical shape modeling in the lumbar spine“. Computer Methods and Programs in Biomedicine 204 (Juni 2021): 106056. http://dx.doi.org/10.1016/j.cmpb.2021.106056.
Der volle Inhalt der QuelleDissertationen zum Thema "Hybrid Cartesian"
Thalheimer, William Cooper. „Structural analysis and optimization with a locally-Cartesian Hybrid Shell Model“. Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/107054.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 131-133).
The Hybrid Shell Model (HSM) is presented as an intermediate-fidelity structural model well suited for conceptual design of aerospace vehicles. Although significantly simpler and more economical than full 3D elasticity models, it can still capture full 3D geometries, large deformations, and anisotropic materials. HSM is formulated from the full 3D equilibrium and compatibility equations all projected onto local bases defined on the 2D shell manifold. General anisotropic constitutive equations are also formulated in the local 2D shell manifold bases. The resulting continuous HSM formulation is discretized in weak form with a Galerkin finite element method (FEM), with spherical interpolation used for the local basis vectors. Displacements, basis rotations, and stress resultants are the primary unknowns. A fully adjoint-consistent plane-stress HSM version (HSM2D) is developed for the purpose of model verification and demonstration of order-of-accuracy convergence. The Method of Exact Solutions (MES) is applied to the case of a uniform plate hanging under its own weight. The effectiveness of the adjoint model for structural optimization is also demonstrated for a simplified rotor blade in a centrifugal force field, featuring non-uniform forcing, non-zero Poisson ratio, large deflection, and optimization of multiple parameters. The suitability of HSM as an intermediate fidelity conceptual aircraft design tool is thus demonstrated.
by William Cooper Thalheimer.
S.M.
Iberg, Nadine Graedel. „Three-dimensional hybrid radial Cartesian echo planar imaging for functional MRI“. Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:5cf2f481-a517-48ce-b6b2-7370d22500c9.
Der volle Inhalt der QuelleLiu, Jianming. „The study on adaptive Cartesian grid methods for compressible flow and their applications“. Thesis, De Montfort University, 2014. http://hdl.handle.net/2086/10876.
Der volle Inhalt der QuelleAhmadi, Mohammad. „Modelling and quantification of structural uncertainties in petroleum reservoirs assisted by a hybrid Cartesian cut cell/enriched multipoint flux approximation approach“. Thesis, Heriot-Watt University, 2012. http://hdl.handle.net/10399/2502.
Der volle Inhalt der QuelleMazzolo, Lisa-Marie. „Étude et développement d’un outil efficace de simulation pour l’évaluation de SER : Application à la détection d’objets enfouis à partir de plates-formes aéroportées“. Electronic Thesis or Diss., Toulouse, ISAE, 2024. http://www.theses.fr/2024ESAE0047.
Der volle Inhalt der QuelleThe detection of buried objects, whether explosive devices in a military context or archaeological structures in a civilian context, is a major concern. In radar remote sensing, airborne systems such as Synthetic Aperture Radar (SAR) allow non-destructive imaging of subsurface environments while offering the possibility of exploring large areas from a safe distance. However, their effectiveness in detecting buried objects depends on many factors, such as the dielectric properties of the soil, which affect the penetration depth of electromagnetic waves, the nature of targets, and the type of transmitter... A preliminary study that predicts target response based on system and scene characteristics would be a valuable tool for assessing detection capabilities before launching measurement campaigns.This thesis addresses such context by focusing on the research, development, and optimization of a numerical simulation tool designed to accurately evaluate the radar cross-section (RCS) of buried objects. The proposed approach is based on a hybridization strategy using Finite Volume Time Domain (FVTD) solvers applied to hybrid Cartesian/unstructured meshes to optimize computational costs. More specifically, these hybrid meshes allow for a conformal representation of curved geometries and spatial discretization adapted to the varying electromagnetic wave propagation speeds in different media. The procedure for generating these meshes, based on the subdivision of the computational domain into subdomains is detailed, and used FVTD solvers are described, highlighting the choices made to optimize their efficiency. The implementation of models for representative soil description, accurate handling of plane-wave sources, and far-field calculations in lossy media are also addressed. The hybridization of FVTD solvers through a multi-domain/multi-method strategy is presented in detail, emphasizing proposed software architecture, the stability of the hybrid solution, and the challenges of hybridization. Finally, a comparison of simulated results with experimental data obtained during a measurement campaign conducted for this thesis provides an initial assessment of the performance of developed simulation tool. In conclusion, this thesis highlights the potential of this tool in studying the impact of radar system configuration parameters on buried objects RCS in given scenarios
ZENG, HUAN-BIN, und 曾煥斌. „Cartesian adaptive hybrid control for constrained robot manipulators“. Thesis, 1991. http://ndltd.ncl.edu.tw/handle/76295779789321647826.
Der volle Inhalt der QuelleBuchteile zum Thema "Hybrid Cartesian"
Deister, F., D. Rocher, E. H. Hirschel und F. Monnoyer. „Self-Organizing Hybrid Cartesian Grid Generation and Solutions for Arbitrary Geometries“. In Numerical Flow Simulation II, 19–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-44567-8_2.
Der volle Inhalt der QuelleLuis, Sweeney, und Marcus Vinicius dos Santos. „On the Evolvability of a Hybrid Ant Colony-Cartesian Genetic Programming Methodology“. In Lecture Notes in Computer Science, 109–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37207-0_10.
Der volle Inhalt der QuelleDeister, Frank, Frederic Waymel, Ernst Heinrich Hirschel und Francois Monnoyer. „Self-Organizing Hybrid Cartesian Grid Generation and Application to External and Internal Flow Problems“. In Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), 18–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45693-3_2.
Der volle Inhalt der QuelleFortmeier, Oliver, und H. Martin Bücker. „A Hybrid Parallel Algorithm for Transforming Finite Element Functions from Adaptive to Cartesian Grids“. In High Performance Computing Systems and Applications, 48–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12659-8_4.
Der volle Inhalt der QuelleHuang, WeiHong, Pei He, ZhengHeng Yan und HaoYu Wu. „An Efficient MRI Impulse Noise Multi-stage Hybrid Filter Based on Cartesian Genetic Programming“. In Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery, 95–106. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-89698-0_11.
Der volle Inhalt der QuelleCoimbra, Vitor, und Marcus Vinicius Lamar. „Design and Optimization of Digital Circuits by Artificial Evolution Using Hybrid Multi Chromosome Cartesian Genetic Programming“. In Lecture Notes in Computer Science, 195–206. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30481-6_16.
Der volle Inhalt der QuelleMeattini, Roberto, Davide Chiaravalli, Gianluca Palli und Claudio Melchiorri. „Mapping Finger Motions on Anthropomorphic Robotic Hands: Two Realizations of a Hybrid Joint-Cartesian Approach Based on Spatial In-Hand Information“. In Human-Friendly Robotics 2021, 77–89. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96359-0_6.
Der volle Inhalt der QuelleMelo Neto, Johnathan, Heder S. Bernardino und Helio J. C. Barbosa. „Hybrid Cartesian Genetic Programming Algorithms: A Review“. In Hybrid Computational Intelligence, 27–62. CRC Press, 2019. http://dx.doi.org/10.1201/9780429453427-2.
Der volle Inhalt der QuelleZavoleas, Y. „Rethinking BIM: Non-cartesian geometry through hybrid workflows“. In Structures and Architecture: Bridging the Gap and Crossing Borders, 681–88. CRC Press, 2019. http://dx.doi.org/10.1201/9781315229126-81.
Der volle Inhalt der QuelleHussain S., Satham, Jahir Hussain R., Isnaini Rosyida und Said Broumi. „Quadripartitioned Neutrosophic Soft Graphs“. In Handbook of Research on Advances and Applications of Fuzzy Sets and Logic, 771–95. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-7979-4.ch034.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Hybrid Cartesian"
Jung, Yong, Bharath Govindarajan und James Baeder. „A Hamiltonian-Strand Approach for Aerodynamic Flows Using Overset and Hybrid Meshes“. In Vertical Flight Society 72nd Annual Forum & Technology Display, 1–20. The Vertical Flight Society, 2016. http://dx.doi.org/10.4050/f-0072-2016-11387.
Der volle Inhalt der QuelleRocher, Dominique, Frank Deister, Francois Monnoyer und Ernst Hirschel. „Flow simulation on adaptive Cartesian and hybrid prismatic-Cartesian grids around arbitrary geometries“. In 14th Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-3313.
Der volle Inhalt der QuelleTang, Lei, Jun Yang und Jae Lee. „Hybrid Cartesian Grid/Gridless Algorithm for Store Separation Prediction“. In 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-508.
Der volle Inhalt der QuelleHirschel, E., und F. Deister. „Self-organizing hybrid Cartesian grid/solution system with multigrid“. In 40th AIAA Aerospace Sciences Meeting & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-112.
Der volle Inhalt der QuelleYen, Ping-lang, und Chi-chung Lai. „Developing a Hybrid Cartesian Parallel Manipulator for Knee Surgery“. In 2006 IEEE Conference on Robotics, Automation and Mechatronics. IEEE, 2006. http://dx.doi.org/10.1109/ramech.2006.252724.
Der volle Inhalt der QuelleDeister, Frank, und Ernst Hirschel. „Self-organizing hybrid Cartesian grid/solution system for arbitrary geometries“. In 18th Applied Aerodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-4406.
Der volle Inhalt der QuelleLiu, Song. „A Hybrid Overset Grid Approach Based On Adaptive Cartesian Grid“. In 21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-2425.
Der volle Inhalt der QuelleLahur, Paulus. „A Hybrid Grid Generation Using Unstructured Prismatic and Cartesian Grids“. In 41st Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-804.
Der volle Inhalt der QuelleLuo, Hong, Joseph Baum und Rainald Lohner. „A Hybrid Cartesian Grid and Gridless Method for Compressible Flows“. In 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-492.
Der volle Inhalt der QuelleHeap, T., und DC Hogg. „Automated Pivot Location for the Cartesian-Polar Hybrid Point Distribution Model.“ In British Machine Vision Conference 1995. British Machine Vision Association, 1995. http://dx.doi.org/10.5244/c.9.10.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Hybrid Cartesian"
Bryan, Kirk. Evaluation of a new hybrid cartesian-isopycnal ocean circulation model for the study of ocean circulation and climate. Office of Scientific and Technical Information (OSTI), Oktober 2002. http://dx.doi.org/10.2172/804900.
Der volle Inhalt der QuelleMenon, Suresh, Tim Gallagher und Balaji Muralidharan. Hybrid Solution-Adaptive Unstructured Cartesian Method for Large-Eddy Simulation of Detonation in Multi-Phase Turbulent Reactive Mixtures. Fort Belvoir, VA: Defense Technical Information Center, März 2012. http://dx.doi.org/10.21236/ada567123.
Der volle Inhalt der Quelle