Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Hybrid asymmetric pseudocapacitors“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Hybrid asymmetric pseudocapacitors" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Hybrid asymmetric pseudocapacitors"
Su, Hailan, Tuzhi Xiong, Qirong Tan, Fang Yang, Paul B. S. Appadurai, Afeez A. Afuwape, M. Sadeeq (Jie Tang) Balogun, Yongchao Huang und Kunkun Guo. „Asymmetric Pseudocapacitors Based on Interfacial Engineering of Vanadium Nitride Hybrids“. Nanomaterials 10, Nr. 6 (10.06.2020): 1141. http://dx.doi.org/10.3390/nano10061141.
Der volle Inhalt der QuelleChodankar, Nilesh R., Hong Duc Pham, Ashok Kumar Nanjundan, Joseph F. S. Fernando, Kolleboyina Jayaramulu, Dmitri Golberg, Young‐Kyu Han und Deepak P. Dubal. „True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors“. Small 16, Nr. 37 (06.08.2020): 2002806. http://dx.doi.org/10.1002/smll.202002806.
Der volle Inhalt der QuelleCheng, Ding, Yefeng Yang, Jinlei Xie, Changjiang Fang, Guoqing Zhang und Jie Xiong. „Hierarchical NiCo2O4@NiMoO4 core–shell hybrid nanowire/nanosheet arrays for high-performance pseudocapacitors“. Journal of Materials Chemistry A 3, Nr. 27 (2015): 14348–57. http://dx.doi.org/10.1039/c5ta03455h.
Der volle Inhalt der QuelleForouzandeh, Parnia, Vignesh Kumaravel und Suresh C. Pillai. „Electrode Materials for Supercapacitors: A Review of Recent Advances“. Catalysts 10, Nr. 9 (26.08.2020): 969. http://dx.doi.org/10.3390/catal10090969.
Der volle Inhalt der QuelleDissertationen zum Thema "Hybrid asymmetric pseudocapacitors"
Rogier, Clémence. „Vers le développement d’un pseudocondensateur asymétrique avec des électrodes composites à base d’oxydes métalliques (MnO2, MoO3) et de carbones nanostructurés“. Thesis, CY Cergy Paris Université, 2020. http://www.theses.fr/2020CYUN1098.
Der volle Inhalt der QuelleSupercapacitors are energy storage devices for applications requiring high power densities. By developing new electrode materials with high capacitance energy densities can be enhanced. In that regard this work presents the development of composites materials associating nanostructured carbons (architectures with carbon nanotubes and/or reduced graphene oxide) and pseudocapacitive metal oxides (MnO2 and MoO3 for positive and negative electrodes respectively). Metal oxides generate high capacitances thanks to reversible redox reactions in a wide range of potentials. The nanostructured carbon matrix optimizes porosity and conductivity of the electrodes to ensure good ionic and electronic transport within the materials.First MnO2-rGO-CNTs is developed as a positive electrode using spray gun deposition of carbon nanomaterials before electrochemical growth of the oxide. The interest of these elaboration techniques lies in their easy large-scale implementation. Its maximum capacitance is measured at 265 F/g. In a similar approach MoO3-CNTs is developed as a negative electrode with a maximum capacitance of 274 F/g. The materials are characterized using different physicochemical methods (microscopy, spectroscopy, porosity analysis, XRD).These electrodes are then combined in an asymmetric hybrid pseudocapacitor in an organic electrolyte (LiTFSI/GBL) with an operating voltage window of 2V. The performances of this system in terms of energy and power densities as well as electrochemical stability were studied over several thousand cycles. The maximum energy density was found to be of 25 Wh/kg for a power density of 0.1 kW/kg