Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Human-robot physical interactions“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Human-robot physical interactions" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Human-robot physical interactions"
Lai, Yujun, Gavin Paul, Yunduan Cui und Takamitsu Matsubara. „User intent estimation during robot learning using physical human robot interaction primitives“. Autonomous Robots 46, Nr. 2 (15.01.2022): 421–36. http://dx.doi.org/10.1007/s10514-021-10030-9.
Der volle Inhalt der QuelleShiomi, Masahiro, Hidenobu Sumioka und Hiroshi Ishiguro. „Special Issue on Human-Robot Interaction in Close Distance“. Journal of Robotics and Mechatronics 32, Nr. 1 (20.02.2020): 7. http://dx.doi.org/10.20965/jrm.2020.p0007.
Der volle Inhalt der QuellePark, Eunil, und Jaeryoung Lee. „I am a warm robot: the effects of temperature in physical human–robot interaction“. Robotica 32, Nr. 1 (02.08.2013): 133–42. http://dx.doi.org/10.1017/s026357471300074x.
Der volle Inhalt der QuelleLosey, Dylan P., Andrea Bajcsy, Marcia K. O’Malley und Anca D. Dragan. „Physical interaction as communication: Learning robot objectives online from human corrections“. International Journal of Robotics Research 41, Nr. 1 (25.10.2021): 20–44. http://dx.doi.org/10.1177/02783649211050958.
Der volle Inhalt der QuelleIkemoto, Shuhei, Takashi Minato und Hiroshi Ishiguro. „Analysis of Physical Human–Robot Interaction for Motor Learning with Physical Help“. Applied Bionics and Biomechanics 5, Nr. 4 (2008): 213–23. http://dx.doi.org/10.1155/2008/360304.
Der volle Inhalt der QuelleWang, Nana, Yi Zeng und Jie Geng. „A Brief Review on Safety Strategies of Physical Human-robot Interaction“. ITM Web of Conferences 25 (2019): 01015. http://dx.doi.org/10.1051/itmconf/20192501015.
Der volle Inhalt der QuelleAvelino, João, Tiago Paulino, Carlos Cardoso, Ricardo Nunes, Plinio Moreno und Alexandre Bernardino. „Towards natural handshakes for social robots: human-aware hand grasps using tactile sensors“. Paladyn, Journal of Behavioral Robotics 9, Nr. 1 (01.08.2018): 221–34. http://dx.doi.org/10.1515/pjbr-2018-0017.
Der volle Inhalt der QuelleKAMBAROV, Ikrom, Matthias BROSSOG, Jorg FRANKE, David KUNZ und Jamshid INOYATKHODJAEV. „From Human to Robot Interaction towards Human to Robot Communication in Assembly Systems“. Eurasia Proceedings of Science Technology Engineering and Mathematics 23 (16.10.2023): 241–52. http://dx.doi.org/10.55549/epstem.1365802.
Der volle Inhalt der QuelleDing, Zhangchi, Masoud Baghbahari und Aman Behal. „A Passivity-Based Framework for Safe Physical Human–Robot Interaction“. Robotics 12, Nr. 4 (14.08.2023): 116. http://dx.doi.org/10.3390/robotics12040116.
Der volle Inhalt der QuelleNiiyama, Ryuma, Masahiro Ikeda und Young Ah Seong. „Inflatable Humanoid Cybernetic Avatar for Physical Human–Robot Interaction“. International Journal of Automation Technology 17, Nr. 3 (05.05.2023): 277–83. http://dx.doi.org/10.20965/ijat.2023.p0277.
Der volle Inhalt der QuelleDissertationen zum Thema "Human-robot physical interactions"
Fortineau, Vincent. „Couplage physique humain robot lors de tâches rythmiques en interaction avec l'environnement : estimation de l'impédance mécanique“. Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPAST077.
Der volle Inhalt der QuelleRobots are more inclined to interact with humans or their environment for collaborative purposes. Knowledge on the human endpoint vis-coelastic properties during physical interactions provides insights for the field of human movement science and also for the design of innovative bio-inspired collaborative robotic control strategies. In this work, the focus is placed on a simplistic linear mechanical model of the human arm, with endpoint apparent parameters like stiffness, damping and mass. Perturbation rejection behaviours occuring remarkably during physical interactions can be met using this modelling.In order to estimate those properties for the human arm, an experimental test-bed was designed using an endpoint admittance controled polyarticulated robot. A benchmark task was used so that rhythmic movements emerged, while haptic feedback were introduced by the robot. A methodology to identify the linear parameters of the chosen impedance model was designed, tackling the issue of the estimation of virtual trajectories of the arm during dynamic movements. The estimations of the arm's virtual trajectories both in position and force relied on spline interpolations and sine optimisations, for small deviations that did not alter the performances of the task.A cohort of participants took part in experiments proposed to observe significant variations of the viscoelastic apparent parameters, and improve the understanding of the implications of such variations during a physical interaction with a robot. The famous trade-off between stability and transparency while the robot is coupled with an environment was then study thanks to the obtained estimations, to enhance the tuning of the endpoint admittance control empirically designed
Métillon, Marceau. „Modelling, Control and Performance Analysis of Cable-Driven Parallel Cobots“. Electronic Thesis or Diss., Ecole centrale de Nantes, 2023. http://www.theses.fr/2023ECDN0015.
Der volle Inhalt der QuelleThis PhD thesis addresses the modelling,control and performance analysis of collaborative Cable-Driven Parallel Robots (CDPRs). An elasto-geometric modelling of the actuation elements is proposed to improve their positioning accuracy. Different inverse elastogeometricmodels are simulated and experimentally assessed then analysed in a sensitivity analysis.Then, control strategies allowing the physical interactions of operators with CDPRs are proposed. These strategies are based on the impedance control and allow the robots comanipulation. A hybrid controller for trajectory tracking and co-manipulation is presented and experimented. A safety device for the proximity detection based on the capacitive coupling principle is fitted to CDPRs and tested. Finally, user experiments are led to determine the performance of the proposed strategies.Three experiments led with volunte erenable the performance variation evaluationand the user behaviour study during physical human-CDPR interactions
Ahmed, Muhammad Rehan. „Compliance Control of Robot Manipulator for Safe Physical Human Robot Interaction“. Doctoral thesis, Örebro universitet, Akademin för naturvetenskap och teknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-13986.
Der volle Inhalt der QuelleGopinathan, Sugeeth [Verfasser]. „Personalization and Adaptation in Physical Human-Robot Interaction / Sugeeth Gopinathan“. Bielefeld : Universitätsbibliothek Bielefeld, 2019. http://d-nb.info/1181946336/34.
Der volle Inhalt der QuelleShe, Yu. „Compliant robotic arms for inherently safe physical human-robot interaction“. The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1541335591178684.
Der volle Inhalt der QuelleTownsend, Eric Christopher. „Estimating Short-Term Human Intent for Physical Human-Robot Co-Manipulation“. BYU ScholarsArchive, 2017. https://scholarsarchive.byu.edu/etd/6358.
Der volle Inhalt der QuelleGuled, Pavan. „Analysis of the physical interaction between Human and Robot via OpenSim software“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Den vollen Inhalt der Quelle findenBriquet-Kerestedjian, Nolwenn. „Impact detection and classification for safe physical Human-Robot Interaction under uncertainties“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC038/document.
Der volle Inhalt der QuelleThe present thesis aims to develop an efficient strategy for impact detection and classification in the presence of modeling uncertainties of the robot and its environment and using a minimum number of sensors, in particular in the absence of force/torque sensor.The first part of the thesis deals with the detection of an impact that can occur at any location along the robot arm and at any moment during the robot trajectory. Impact detection methods are commonly based on a dynamic model of the system, making them subject to the trade-off between sensitivity of detection and robustness to modeling uncertainties. In this respect, a quantitative methodology has first been developed to make explicit the contribution of the errors induced by model uncertainties. This methodology has been applied to various detection strategies, based either on a direct estimate of the external torque or using disturbance observers, in the perfectly rigid case or in the elastic-joint case. A comparison of the type and structure of the errors involved and their consequences on the impact detection has been deduced. In a second step, novel impact detection strategies have been designed: the dynamic effects of the impacts are isolated by determining the maximal error range due to modeling uncertainties using a stochastic approach.Once the impact has been detected and in order to trigger the most appropriate post-impact robot reaction, the second part of the thesis focuses on the classification step. In particular, the distinction between an intentional contact (the human operator intentionally interacts with the robot, for example to reconfigure the task) and an undesired contact (a human subject accidentally runs into the robot), as well as the localization of the contact on the robot, is investigated using supervised learning techniques and more specifically feedforward neural networks. The challenge of generalizing to several human subjects and robot trajectories has been investigated
Roche, Lucas. „Kinaesthetic communication : cooperation and negotiation during one dimensional physical interaction with human or virtual partners“. Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS499.
Der volle Inhalt der QuelleThe study of physical Human-Human Interaction (pHHI) has recently become a topic of interest for the robotics community. The objective of this research is to translate findings on how humans behave while interacting together towards improvements in physical Human-Robot Interaction (pHRI). The present thesis follows this process of studying human interaction in order to extract design blocks for human-robot interaction. Focused on the context of lightweight and precise tasks, an emphasis is placed on the multidisciplinary nature of human interaction. The resulting work is a blend of robotic design, human-robot interaction, and cognitive psychology. A first contribution of the thesis is the design and evaluation of a novel experimental setup for the study of lightweight pHHI and pHRI. The setup is composed of two one degree-of-freedom haptic interfaces, combined with a state-of-the-art teleoperation controller allowing precision and transparency while guaranteeing stability and high-frequency force and position data acquisition. Multiple experiments are then presented, which use the previously described setup, each concerning a different aspect of pHHI or pHRI.The first series of experiments is realized to investigate the effect of haptic feedback on joint decision making in a tracking task. A second series of experiments is organised to explore the interaction between human and virtual partners from a multidisciplinary perspective. The study of kinaesthetic communication is the common focus of the experiments
Bussy, Antoine. „Approche cognitive pour la représentation de l’interaction proximale haptique entre un homme et un humanoïde“. Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20090/document.
Der volle Inhalt der QuelleRobots are very close to arrive in our homes. But before doing so, they must master physical interaction with humans, in a safe and efficient way. Such capacities are essential for them to live among us, and assit us in various everyday tasks, such as carrying a piece of furniture. In this thesis, we focus on endowing the biped humanoid robot HRP-2 with the capacity to perform haptic joint actions with humans. First, we study how human dyads collaborate to transport a cumbersome object. From this study, we define a global motion primitives' model that we use to implement a proactive behavior on the HRP-2 robot, so that it can perform the same task with a human. Then, we assess the performances of our proactive control scheme by perfoming user studies. Finally, we expose several potential extensions to our work: self-stabilization of a humanoid through physical interaction, generalization of the motion primitives' model to other collaboratives tasks and the addition of visionto haptic joint actions
Bücher zum Thema "Human-robot physical interactions"
Metta, Giorgio. Humans and humanoids. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199674923.003.0047.
Der volle Inhalt der QuelleVerschure, Paul F. M. J. A chronology of Distributed Adaptive Control. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199674923.003.0036.
Der volle Inhalt der QuelleBuchteile zum Thema "Human-robot physical interactions"
Lestingi, Livia. „Model-Driven Development of Formally Verified Human-Robot Interactions“. In Special Topics in Information Technology, 41–51. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-51500-2_4.
Der volle Inhalt der QuelleCho, Jang Ho, Minki Sin, Hyukjin Lee, Bohyeon An und Kiyoung Kim. „On the Development of a Motor Driver for Physical Human-Robot Interactions“. In Intelligent Autonomous Systems 18, 333–43. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-44851-5_25.
Der volle Inhalt der QuelleSarantopoulos, Iason, Dimitrios Papageorgiou und Zoe Doulgeri. „Task-Based Variation of Active Compliance of Arm/Hand Robots in Physical Human Robot Interactions“. In Towards Autonomous Robotic Systems, 236–45. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22416-9_28.
Der volle Inhalt der QuelleHaddadin, Sami. „Physical Human-Robot Interaction“. In Encyclopedia of Robotics, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-642-41610-1_26-1.
Der volle Inhalt der QuelleNatale, Ciro. „Physical Human-Robot Interaction“. In Encyclopedia of Systems and Control, 1–9. London: Springer London, 2019. http://dx.doi.org/10.1007/978-1-4471-5102-9_100033-1.
Der volle Inhalt der QuelleNatale, Ciro. „Physical Human-Robot Interaction“. In Encyclopedia of Systems and Control, 1716–24. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-44184-5_100033.
Der volle Inhalt der QuelleHaddadin, Sami, und Elizabeth Croft. „Physical Human–Robot Interaction“. In Springer Handbook of Robotics, 1835–74. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32552-1_69.
Der volle Inhalt der QuelleD’Onofrio, Grazia, Annamaria Petito, Antonella Calvio, Giusi Antonia Toto und Pierpaolo Limone. „Robot Assistive Therapy Strategies for Children with Autism“. In Psychology, Learning, Technology, 103–16. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15845-2_7.
Der volle Inhalt der QuellePrassler, Prof Dr Erwin, Dr Andreas Stopp, Martin Hägele, Ioannis Iossifidis, Dr Gisbert Lawitzky, Dr Gerhard Grunwald und Prof Dr Ing Rüdiger Dillmann. „4 Co-existence: Physical Interaction and Coordinated Motion“. In Advances in Human-Robot Interaction, 161–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-31509-4_14.
Der volle Inhalt der QuelleSoldatos, John, Babis Ipektsidis, Nikos Kefalakis und Angela-Maria Despotopoulou. „Reference Architecture for AI-Based Industry 5.0 Applications“. In Artificial Intelligence in Manufacturing, 3–26. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-46452-2_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Human-robot physical interactions"
Chen, Kuo, Yizhai Zhang und Jingang Yi. „An Integrated Physical-Learning Model of Physical Human-Robot Interactions: A Bikebot Riding Example“. In ASME 2014 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/dscc2014-6007.
Der volle Inhalt der QuelleOng, Kai Wei, Gerald Seet, Siang Kok Sim, William Teoh, Kean Hee Lim, Ai Nee Yow und Soon Chiang Low. „A Testbed for Human-Robot Interactions“. In ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/detc2004-57171.
Der volle Inhalt der QuelleMohan, Mayumi, und Katherine J. Kuchenbecker. „A Design Tool for Therapeutic Social-Physical Human-Robot Interactions“. In 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE, 2019. http://dx.doi.org/10.1109/hri.2019.8673202.
Der volle Inhalt der QuelleAlbini, Alessandro, Simone Denei und Giorgio Cannata. „Human hand recognition from robotic skin measurements in human-robot physical interactions“. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017. http://dx.doi.org/10.1109/iros.2017.8206300.
Der volle Inhalt der QuelleMohan, Mayumi, Rochelle Mendonca und Michelle J. Johnson. „Towards quantifying dynamic human-human physical interactions for robot assisted stroke therapy“. In 2017 International Conference on Rehabilitation Robotics (ICORR). IEEE, 2017. http://dx.doi.org/10.1109/icorr.2017.8009365.
Der volle Inhalt der QuelleEsteveny, Laure, Laurent Barbe und Bernard Bayle. „A novel actuation technology for safe physical human-robot interactions“. In 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2014. http://dx.doi.org/10.1109/icra.2014.6907596.
Der volle Inhalt der QuelleShe, Yu, Zhaoyuan Gu, Siyang Song, Hai-Jun Su und Junmin Wang. „A Continuously Tunable Stiffness Arm With Cable-Driven Mechanisms for Safe Physical Human-Robot Interaction“. In ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22035.
Der volle Inhalt der QuelleEsteveny, Laure, Laurent Barbé und Bernard Bayle. „A New Indirect Actuation Principle for Safe Physical Human-Robot Interactions“. In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12948.
Der volle Inhalt der QuelleCarter, Elizabeth J., Michael N. Mistry, G. Peter K. Carr, Brooke A. Kelly und Jessica K. Hodgins. „Playing catch with robots: Incorporating social gestures into physical interactions“. In 2014 RO-MAN: The 23rd IEEE International Symposium on Robot and Human Interactive Communication. IEEE, 2014. http://dx.doi.org/10.1109/roman.2014.6926258.
Der volle Inhalt der QuelleRodriguez, Sebastian, Harsh Deep, Drshika Asher, James Schaffer und Alex Kirlik. „Validating Trust in Human-Robot Interaction through Virtual Reality: Comparing Embodied and "Behind-the-Screen" Interactions“. In AHFE 2023 Hawaii Edition. AHFE International, 2023. http://dx.doi.org/10.54941/ahfe1004408.
Der volle Inhalt der Quelle