Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Human neurogenesis“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Human neurogenesis" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Human neurogenesis"
Snyder, Jason S. „Questioning human neurogenesis“. Nature 555, Nr. 7696 (März 2018): 315–16. http://dx.doi.org/10.1038/d41586-018-02629-3.
Der volle Inhalt der QuelleMurrell, Wayne, Gillian R. Bushell, Jonathon Livesey, John McGrath, Kelli P. A. MacDonald, Paul R. Bates und Alan Mackay-Sim. „Neurogenesis in adult human“. NeuroReport 7, Nr. 6 (April 1996): 1189–94. http://dx.doi.org/10.1097/00001756-199604260-00019.
Der volle Inhalt der QuelleSugano, Hidenori, Madoka Nakajima, Ikuko Ogino und Hajime Arai. „Neurogenesis in Human Epileptic Hippocampus“. Journal of the Japan Epilepsy Society 26, Nr. 1 (2008): 16–25. http://dx.doi.org/10.3805/jjes.26.16.
Der volle Inhalt der QuelleFlor-García, Miguel, Julia Terreros-Roncal, Elena P. Moreno-Jiménez, Jesús Ávila, Alberto Rábano und María Llorens-Martín. „Unraveling human adult hippocampal neurogenesis“. Nature Protocols 15, Nr. 2 (08.01.2020): 668–93. http://dx.doi.org/10.1038/s41596-019-0267-y.
Der volle Inhalt der QuelleLucassen, Paul J., Nicolas Toni, Gerd Kempermann, Jonas Frisen, Fred H. Gage und Dick F. Swaab. „Limits to human neurogenesis—really?“ Molecular Psychiatry 25, Nr. 10 (07.01.2019): 2207–9. http://dx.doi.org/10.1038/s41380-018-0337-5.
Der volle Inhalt der QuelleLiu, He, und Ni Song. „Molecular Mechanism of Adult Neurogenesis and its Association with Human Brain Diseases“. Journal of Central Nervous System Disease 8 (Januar 2016): JCNSD.S32204. http://dx.doi.org/10.4137/jcnsd.s32204.
Der volle Inhalt der QuelleInta, agos, und Peter Gass. „Is Forebrain Neurogenesis a Potential Repair Mechanism after Stroke?“ Journal of Cerebral Blood Flow & Metabolism 35, Nr. 7 (13.05.2015): 1220–21. http://dx.doi.org/10.1038/jcbfm.2015.95.
Der volle Inhalt der QuelleMustafin, Rustam N., und Elza K. Khusnutdinova. „Postnatal neurogenesis in the human brain“. Morphology 159, Nr. 2 (01.08.2022): 37–46. http://dx.doi.org/10.17816/1026-3543-2021-159-2-37-46.
Der volle Inhalt der QuelleKessaris, Nicoletta. „Human cortical interneuron development unraveled“. Science 375, Nr. 6579 (28.01.2022): 383–84. http://dx.doi.org/10.1126/science.abn6333.
Der volle Inhalt der QuelleLewis, Sian. „Human olfaction is not neurogenesis-dependent“. Nature Reviews Neuroscience 13, Nr. 7 (20.06.2012): 451. http://dx.doi.org/10.1038/nrn3286.
Der volle Inhalt der QuelleDissertationen zum Thema "Human neurogenesis"
Andersson, Annika. „Studies on neurogenesis in the adult human brain“. Thesis, Södertörn University College, School of Life Sciences, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:sh:diva-3646.
Der volle Inhalt der QuelleMany studies on neurogenesis in adult dentate gyrus (DG) have been performed on rodents and other mammalian species, but only a few on adult human DG. This study is focusing on neurogenesis in adult human DG. To characterize the birth of cells in DG, the expression of the cell proliferation marker Ki67 was examined using immunohistochemistry. Ki67-positive labelling was indeed observed in the granular cell layer and the molecular layer of dentate gyrus and in the hilus of hippocampus, as well as in the subgranular zone (SGZ). The Ki67 positive nuclei could be divided into three groups, based on their morphology and position, suggesting that one of the groups represents neuronal precursors. Fewer Ki67 positive cells were seen in aged subjects and in subjects with an alcohol abuse. When comparing the Ki67 positive cells and the amount of blood vessels as determined by anti factor VIII, no systematic pattern could be discerned. To identify possible stem/progenitor cells in DG a co-labelling with nestin and glial fibrillary acid protein was carried out. Co-labelling was found in the SGZ, but most of the filaments were positive for just one of the two antibodies. Antibodies to detect immature/mature neurons were also used to investigate adult human neurogenesis in DG. The immature marker βIII-tubulin showed a weak expression. The other two immature markers (PSA-NCAM and DCX) used did not work, probably since they were not cross-reacting against human tissue. In summary, this study shows that new cells are continuously formed in the adult human hippocampus, but at a slower pace compared to the rat, and that some of these new cells may represent neuronal precursors.
Yu, Chieh. „Heparan sulfate proteoglycans in human models of Neurogenesis“. Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/203960/1/Chieh_Yu_Thesis.pdf.
Der volle Inhalt der QuelleKomuro, Yutaro. „Altered adult neurogenesis in a mouse model of human tauopathy“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=case1434743393.
Der volle Inhalt der QuelleAhmad, Ruhel [Verfasser], und Albrecht [Akademischer Betreuer] Müller. „Neurogenesis from parthenogenetic human embryonic stem cells / Ruhel Ahmad. Betreuer: Albrecht Müller“. Würzburg : Universitätsbibliothek der Universität Würzburg, 2013. http://d-nb.info/1031379878/34.
Der volle Inhalt der QuelleWei, Yulei. „Genetic Knowledge-based Artificial Control over Neurogenesis in Human Cells Using Synthetic Transcription Factor Mimics“. Kyoto University, 2018. http://hdl.handle.net/2433/232265.
Der volle Inhalt der QuelleGarnett, Shaun. „Generating a proteomic profile of neurogenesis, through the use of human foetal neural stem cells“. Doctoral thesis, Faculty of Science, 2019. http://hdl.handle.net/11427/31143.
Der volle Inhalt der QuelleBramwell, Thomas William. „Investigations into the use of human embryonal carcinoma stem cells as a model to study dopaminergic neurogenesis“. Thesis, Durham University, 2009. http://etheses.dur.ac.uk/2071/.
Der volle Inhalt der QuelleOikari, Lotta Emilia. „Regulation of human neural stem cell fate determination by proteoglycans“. Thesis, Queensland University of Technology, 2017. https://eprints.qut.edu.au/103844/8/Lotta_Emilia_Oikari_Thesis.pdf.
Der volle Inhalt der QuelleGUARNIERI, GIULIA. „Human cholinergic neurons from nucleus basalis of Meynert: a new promising tool to study pathogenetic mechanisms affecting neurogenesis“. Doctoral thesis, Università di Siena, 2019. http://hdl.handle.net/11365/1072770.
Der volle Inhalt der QuellePigeon, Julien. „The role of NEUROG2 T149 phosphorylation site in the developing human neocortex“. Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS092.
Der volle Inhalt der QuelleNeocortical expansion throughout evolution has been responsible for higher-order cognitive abilities and relies on the increased proliferative capacities of cortical progenitors to increase neuronal production. Therefore, in gyrencephalic species such as humans and primates, where the neurogenic period is protracted, the regulation of the balance between progenitor maintenance and differentiation is of key importance for the right neuronal production. The control of this balance in the dorsal telencephalon, which gives rise to the neocortex, is mediated by feedback regulation between Notch signaling and the proneural transcription factor Neurogenin2 (NEUROG2). As the expression of NEUROG2 alone is sufficient to induce neurogenesis in the neocortex, its regulation at the gene level has been extensively studied in mice. However, recent findings highlight that regulation at the protein level through post-translational modifications can profoundly influence protein activity and stability. Indeed, the modulation of the conserved NEUROG2 T149 phosphorylation site in the developing mouse neocortex results in an altered pool of progenitors and number of neurons in the deep and upper layers. Nevertheless, it is not known how such post-translation modification regulates NEUROG2 activity in the development of the human neocortex under endogenous levels and its contribution to the development of the neocortex.We hypothesize that modulation of the activity of the transcription factor NEUROG2 through this T149 phosphorylation site may regulate the pace of the temporal advance of human cortical progenitors down the differentiation landscape.To test this hypothesis in humans, we used 3D cortical organoids derived from CRISPR/Cas9 engineered iPSCs lines to study cortical neurogenesis. Before diving into the role of post translational modifications regulating NEUROG2 activity we started by confirming, for the first time in humans that Neurogenin2 is indeed the gateway gene of neuronal differentiation. In differentiated iPSCs NEUROG2 KO clones, we observed reduced proportions of neurons after 70 and 140 days in vitro at both the mid and late stages of cortical organoid development. This phenotype is accompanied by a ventralization of these dorsal forebrain organoids with a downregulation of the genes encoding for the dorsal forebrain identity and an upregulation of the genes encoding for the ventral forebrain identity. Knowing that Neurogenin2 is required for cortical neurogenesis, we next studied how the loss of NEUROG2 phosphorylation site T149 by its replacement with an Alanine (T149A) at endogenous levels alters neuronal production. To this end we combined live imaging of radial glial clones, immunohistochemistry for key cell fate markers, machine-learning based cell type quantification, transcriptional activation and stem cell reprogramming assays, RNA sequencing and chromatin immunoprecipitation to analyze cortical neurogenesis. We found, on the one hand, the TA/TA mutant does not change the pattern of NEUROG2 expression in both radial glial cells and intermediate progenitors, nor its ability to bind and activate target genes or reprogram human stem cells to neurons. However, the TA/TA mutant radial glia switch their division mode from proliferative to neurogenic and generate more neurons at both the mid and late stages of cortical development in organoids. Mechanistically, we found that this phenotype is accompanied by an upregulation of the genes encoding the organization and the movements of the primary cilium of radial glial cells, which are downregulated in the NEUROG2 KO clones. These results suggest a strong link between the primary cilium, Neurogenin2, and its phosphorylation profile with the regulation of neurogenesis in human cortical organoids
Bücher zum Thema "Human neurogenesis"
Winter, Robin M. London dysmorphology database: &, London neurogenetics database. 2. Aufl. Oxford: Oxford University Press, 1998.
Den vollen Inhalt der Quelle findenWinter, Robin M. London dysmorphology database. 2. Aufl. Oxford: Oxford University Press, 1996.
Den vollen Inhalt der Quelle findenR, Hayden Michael, und Rubinsztein D. C, Hrsg. Analysis of triplet repeat disorders. Oxford: Bios Scientific Publishers, 1998.
Den vollen Inhalt der Quelle findenSutcliffe, Alastair. Congenital anomalies: Case studies and mechanisms. Rijeka, Croatia: InTech, 2012.
Den vollen Inhalt der Quelle findenD, Wells R., Warren Stephen T und Sarmiento Marion, Hrsg. Genetic instabilities and hereditary neurological diseases. San Diego, Calif: Academic Press, 1998.
Den vollen Inhalt der Quelle finden1946-, Oostra Ben A., Hrsg. Trinucleotide diseases and instability. Berlin: Springer, 1998.
Den vollen Inhalt der Quelle findenTakao, Kumazawa, Kruger Lawrence und Mizumura Kazue, Hrsg. The polymodal receptor: A gateway to pathological pain. Amsterdam: Elsevier, 1996.
Den vollen Inhalt der Quelle findenCryan, John F., und Andreas Reif. Behavioral Neurogenetics. Springer, 2014.
Den vollen Inhalt der Quelle findenCryan, John F., und Andreas Reif. Behavioral Neurogenetics. Springer, 2012.
Den vollen Inhalt der Quelle findenCryan, John F., und Andreas Reif. Behavioral Neurogenetics. Springer London, Limited, 2012.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Human neurogenesis"
Bédard, Andréanne, Patrick J. Bernier und André Parent. „Neurogenesis in Monkey and Human Adult Brain“. In Neurogenesis in the Adult Brain II, 1–21. Tokyo: Springer Japan, 2011. http://dx.doi.org/10.1007/978-4-431-53945-2_1.
Der volle Inhalt der QuelleSachan, Nalani, Mousumi Mutsuddi und Ashim Mukherjee. „Notch Signaling: From Neurogenesis to Neurodegeneration“. In Insights into Human Neurodegeneration: Lessons Learnt from Drosophila, 185–221. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-2218-1_7.
Der volle Inhalt der QuelleSuzuki, Masatoshi, Jacalyn McHugh und Narisorn Kitiyanant. „Human Neural Progenitor Cells: Mitotic and Neurogenic Effects of Growth Factors, Neurosteroids, and Excitatory Amino Acids“. In Hormones in Neurodegeneration, Neuroprotection, and Neurogenesis, 331–45. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527633968.ch19.
Der volle Inhalt der QuelleVineyard, Craig M., Stephen J. Verzi, Thomas P. Caudell, Michael L. Bernard und James B. Aimone. „Adult Neurogenesis: Implications on Human And Computational Decision Making“. In Foundations of Augmented Cognition, 531–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39454-6_57.
Der volle Inhalt der QuelleØlstørn, Håvard, Morten C. Moe, Mercy Varghese und Iver A. Langmoen. „Neurogenesis and Potential Use of Stem Cells from Adult Human Brain“. In Stem Cells, Human Embryos and Ethics, 41–53. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6989-5_4.
Der volle Inhalt der Quellede los Rios, Maria Elizabeth. „Reflections on neurogenetic challenges to human dignity and social doctrine of the Catholic Church“. In Interreligious Perspectives on Mind, Genes and the Self, 112–16. Abingdon, Oxon ; New York, NY : Routledge, 2019. | Series: Routledge science and religion series: Routledge, 2018. http://dx.doi.org/10.4324/9780429456145-12.
Der volle Inhalt der QuelleBhaduri, Aparna, Madeline G. Andrews und Arnold R. Kriegstein. „Human neurogenesis“. In Patterning and Cell Type Specification in the Developing CNS and PNS, 751–67. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-814405-3.00029-1.
Der volle Inhalt der Quelle„Timespans of Neurogenesis“. In Atlas of Human Central Nervous System Development, 490–97. CRC Press, 2007. http://dx.doi.org/10.1201/9781420003284.ax1.
Der volle Inhalt der QuelleGong, Jing, Jiahui Kang, Minghui Li, Xiao Liu, Jun Yang und Haiwei Xu. „Applications of Neural Organoids in Neurodevelopment and Regenerative Medicine“. In Organoids [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.104044.
Der volle Inhalt der QuelleCho, Kyung-Ok, und Jenny Hsieh. „Adult Neurogenesis in Epileptogenesis and Comorbidities“. In Jasper's Basic Mechanisms of the Epilepsies, herausgegeben von Annamaria Vezzani und Helen E. Scharfman, 523–38. 5. Aufl. Oxford University PressNew York, 2024. http://dx.doi.org/10.1093/med/9780197549469.003.0025.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Human neurogenesis"
Proshchina, Alexandra, Anastasia Kharlamova, Olga Godovalova, Evgeniya Grushetskaya und Sergey Saveliev. „IMMUNOPHENOTYPIC PROFILES OF NEUROGENESIS IN THE DEVELOPMENT OF THE HUMAN CEREBRAL CORTEX“. In XX INTERNATIONAL INTERDISCIPLINARY CONGRESS NEUROSCIENCE FOR MEDICINE AND PSYCHOLOGY, 230–31. LCC MAKS Press, 2024. http://dx.doi.org/10.29003/m4000.sudak.ns2024-20/230-231.
Der volle Inhalt der QuelleBobkova, Natalia Victorovna, Rimma Alekseevna Poltavtseva, Daria Jurievna Zhdanova, Vladimir Igorevich Kovalev und Alina Vadimovna Chaplygina. „THE EFFECT OF YB-1 PROTEIN IN СHIMERIC MODEL OF ALZHEIMER’S DISEASE“. In NEW TECHNOLOGIES IN MEDICINE, BIOLOGY, PHARMACOLOGY AND ECOLOGY. Institute of information technology, 2021. http://dx.doi.org/10.47501/978-5-6044060-1-4.10.
Der volle Inhalt der QuelleYildirim, Murat, Danielle Feldman, Tianyu Wang, Dimitre G. Ouzounov, Stephanie Chou, Justin Swaney, Kwanghun Chung, Chris Xu, Peter T. C. So und Mriganka Sur. „Third harmonic generation imaging of intact human cerebral organoids to assess key components of early neurogenesis in Rett Syndrome (Conference Presentation)“. In Multiphoton Microscopy in the Biomedical Sciences XVII, herausgegeben von Ammasi Periasamy, Peter T. So, Xiaoliang S. Xie und Karsten König. SPIE, 2017. http://dx.doi.org/10.1117/12.2256182.
Der volle Inhalt der QuellePorcino, Caterina. „NEUROTROPHINS, TRK-RECEPTORS AND CALCIUM BINDING PROTEIN LOCALIZATION IN MECHANOSENSORY SYSTEMS AND RETINA OF NOTHOBRANCHIUS GUENTHERI“. In Dubai International Conference on Research in Life-Science & Healthcare, 22-23 February 2024. Global Research & Development Services, 2024. http://dx.doi.org/10.20319/icrlsh.2024.4243.
Der volle Inhalt der Quelle