Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Human cerebral organoides“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Human cerebral organoides" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Human cerebral organoides"
Logan, Sarah, Thiago Arzua, Yasheng Yan, Congshan Jiang, Xiaojie Liu, Lai-Kang Yu, Qing-Song Liu und Xiaowen Bai. „Dynamic Characterization of Structural, Molecular, and Electrophysiological Phenotypes of Human-Induced Pluripotent Stem Cell-Derived Cerebral Organoids, and Comparison with Fetal and Adult Gene Profiles“. Cells 9, Nr. 5 (23.05.2020): 1301. http://dx.doi.org/10.3390/cells9051301.
Der volle Inhalt der QuelleEstridge, R. Chris, Jennifer E. O’Neill und Albert J. Keung. „Matrigel Tunes H9 Stem Cell-Derived Human Cerebral Organoid Development“. Organoids 2, Nr. 4 (05.10.2023): 165–76. http://dx.doi.org/10.3390/organoids2040013.
Der volle Inhalt der QuelleHe, Zhisong, Ashley Maynard, Akanksha Jain, Tobias Gerber, Rebecca Petri, Hsiu-Chuan Lin, Malgorzata Santel et al. „Lineage recording in human cerebral organoids“. Nature Methods 19, Nr. 1 (30.12.2021): 90–99. http://dx.doi.org/10.1038/s41592-021-01344-8.
Der volle Inhalt der QuelleGomez-Jones, Tashaé, und Robert M. Kao. „Ethical Dimensions of Human Organoids Research“. American Biology Teacher 83, Nr. 9 (November 2021): 575–78. http://dx.doi.org/10.1525/abt.2021.83.9.575.
Der volle Inhalt der QuelleBao, Zhongyuan, Kaiheng Fang, Zong Miao, Chong Li, Chaojuan Yang, Qiang Yu, Chen Zhang, Zengli Miao, Yan Liu und Jing Ji. „Human Cerebral Organoid Implantation Alleviated the Neurological Deficits of Traumatic Brain Injury in Mice“. Oxidative Medicine and Cellular Longevity 2021 (22.11.2021): 1–16. http://dx.doi.org/10.1155/2021/6338722.
Der volle Inhalt der QuelleCamp, J. Gray, Farhath Badsha, Marta Florio, Sabina Kanton, Tobias Gerber, Michaela Wilsch-Bräuninger, Eric Lewitus et al. „Human cerebral organoids recapitulate gene expression programs of fetal neocortex development“. Proceedings of the National Academy of Sciences 112, Nr. 51 (07.12.2015): 15672–77. http://dx.doi.org/10.1073/pnas.1520760112.
Der volle Inhalt der QuelleYakoub, Abraam M., und Mark Sadek. „Development and Characterization of Human Cerebral Organoids“. Cell Transplantation 27, Nr. 3 (März 2018): 393–406. http://dx.doi.org/10.1177/0963689717752946.
Der volle Inhalt der QuelleBerdenis van Berlekom, Amber, Raphael Kübler, Jeske W. Hoogeboom, Daniëlle Vonk, Jacqueline A. Sluijs, R. Jeroen Pasterkamp, Jinte Middeldorp et al. „Exposure to the Amino Acids Histidine, Lysine, and Threonine Reduces mTOR Activity and Affects Neurodevelopment in a Human Cerebral Organoid Model“. Nutrients 14, Nr. 10 (23.05.2022): 2175. http://dx.doi.org/10.3390/nu14102175.
Der volle Inhalt der QuelleShnaider, T. A. „Cerebral organoids: a promising model in cellular technologies“. Vavilov Journal of Genetics and Breeding 22, Nr. 2 (08.04.2018): 168–78. http://dx.doi.org/10.18699/vj18.344.
Der volle Inhalt der QuellePeng, Xiyao, Lei Wu, Qiushi Li, Yuqing Ge, Tiegang Xu und Jianlong Zhao. „An Easy-to-Use Arrayed Brain–Heart Chip“. Biosensors 14, Nr. 11 (22.10.2024): 517. http://dx.doi.org/10.3390/bios14110517.
Der volle Inhalt der QuelleDissertationen zum Thema "Human cerebral organoides"
Wimmer, Ryszard. „Migration of neural stem cells during human neocortical development“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLS016.
Der volle Inhalt der QuelleIn gyrencephalic species, and in particular in humans, the strong size increase of the neocortex is largely supported by an expanded neurogenic niche, the outer subventricular zone (oSVZ). This is largely due to the amplification of a neural stem cell population, the basal radial glial cells (bRGs, also known as oRGs). bRG cells colonize the oSVZ through an acto-myosin dependent movement called mitotic somal translocation (MST). The exact molecular mechanism of MST, whether the microtubule cytoskeleton also controls other steps of bRG cell translocation, and the contribution of these movements to bRG cell dissemination into the human developing neocortex are however unknown. Here, using live imaging of gestational week 14-21 human fetal tissue and cerebral organoids, we identify a two-step mode of translocation for bRG cells. On top MST, bRG cells undergo a microtubule-dependent movement during interphase, that we call interphasic somal translocation (IST). IST is slower than MST and controlled by the LINC complex that recruits the dynein molecular motor and its activator LIS1 to the nuclear envelope for transport. Consequently, IST is affected in LIS1 patient derived organoids. We furthermore show that MST occurs during prometaphase and is therefore a mitotic spindle translocation event. MST is controlled by the mitotic cell rounding molecular pathway, that increases the cell cortex stiffness to drive translocation. Both IST and MST are bidirectional with a net basal movement of 0,57 mm per month of human fetal gestation. We show that 85% of this movement is dependent on IST, that is both more polarized and more processive than MST. Finally, we demonstrate that IST and MST are conserved in bRG-related glioblastoma cells and occur through the same molecular pathways. Overall, our work identifies how bRG cells colonize the human fetal cortex, and how these mechanisms can be linked to pathological conditions
Kitahara, Takahiro. „Axonal Extensions along Corticospinal Tracts from Transplanted Human Cerebral Organoids“. Kyoto University, 2021. http://hdl.handle.net/2433/261613.
Der volle Inhalt der QuelleSKAROS, ADRIANOS. „CEREBRAL CORTICAL GENERIC CIRCUITS SELECTED IN ANATOMICALLY MODERN HUMAN EVOLUTION: A DISSECTION VIA ORTHOGONAL CRISPR PERTURBATIONS“. Doctoral thesis, Università degli Studi di Milano, 2022. https://hdl.handle.net/2434/945932.
Der volle Inhalt der QuelleBuchsbaum, Isabel Yasmin [Verfasser], und Silvia [Akademischer Betreuer] Cappello. „Discovering novel mechanisms of human cortical development & disease using in vivo mouse model and in vitro human-derived cerebral organoids / Isabel Yasmin Buchsbaum ; Betreuer: Silvia Cappello“. München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2019. http://d-nb.info/1215499760/34.
Der volle Inhalt der QuelleKrefft, Olivia [Verfasser], und Philipp [Akademischer Betreuer] Koch. „Unraveling the pathology of different disease severities in human cerebral organoid models of LIS1-lissencephaly / Olivia Krefft ; Betreuer: Philipp Koch“. Heidelberg : Universitätsbibliothek Heidelberg, 2020. http://d-nb.info/1223028062/34.
Der volle Inhalt der QuelleKanton, Sabina. „Dissecting human cortical development evolution and malformation using organoids and single-cell transcriptomics“. 2019. https://ul.qucosa.de/id/qucosa%3A71686.
Der volle Inhalt der QuelleBuchteile zum Thema "Human cerebral organoides"
Daoutsali, Elena, und Ronald A. M. Buijsen. „Establishment of In Vitro Brain Models for AON Delivery“. In Methods in Molecular Biology, 257–64. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2010-6_17.
Der volle Inhalt der QuelleLavazza, Andrea. „Human Cerebral Organoids: Evolving Entities and Their Moral Status“. In Advances in Neuroethics, 65–95. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97641-5_4.
Der volle Inhalt der QuelleHester, Mark E., und Alexis B. Hood. „Generation of Cerebral Organoids Derived from Human Pluripotent Stem Cells“. In Neuromethods, 123–34. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7024-7_8.
Der volle Inhalt der QuelleGabriel, Markus. „Could a Robot Be Conscious? Some Lessons from Philosophy“. In Robotics, AI, and Humanity, 57–68. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-54173-6_5.
Der volle Inhalt der QuelleDe Paola, Massimiliano. „TLR4-Mediated Neuroinflammation in Human Induced Pluripotent Stem Cells and Cerebral Organoids“. In The Role of Toll-Like Receptor 4 in Infectious and Non Infectious Inflammation, 119–27. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56319-6_8.
Der volle Inhalt der QuelleSuzuki, Ikuro. „Toxicological Assessment of Drugs Based on Electrical Activities of Human iPSC-Derived Cortical Neurons, Sensory Neurons and Cerebral Organoids“. In Current Human Cell Research and Applications, 57–91. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-4256-1_4.
Der volle Inhalt der QuelleKanton, Sabina, Barbara Treutlein und J. Gray Camp. „Single-cell genomic analysis of human cerebral organoids“. In Methods in Cell Biology, 229–56. Elsevier, 2020. http://dx.doi.org/10.1016/bs.mcb.2020.03.013.
Der volle Inhalt der QuelleYan, Yasheng, Thiago Arzua, Sarah Logan und Xiaowen Bai. „Isolation and Culture of Human-Induced Pluripotent Stem Cell-Derived Cerebral Organoid Cells“. In Methods in Molecular Biology. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/7651_2020_328.
Der volle Inhalt der QuelleLachman, Herbert M. „Use of cerebral organoids to model environmental and gene x environment interactions in the developing fetus and neurodegenerative disorders“. In Phenotyping of Human iPSC-derived Neurons, 173–200. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-12-822277-5.00006-7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Human cerebral organoides"
Yildirim, Murat, Chloe Delepine, Danielle Feldman, Vincent Pham, Stephanie Chou, Jacque Pak Kan Ip, Alexi Nott et al. „Label-free three-photon imaging of intact human cerebral organoids for tracking early events in brain development“. In Optics and the Brain. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/brain.2023.bth1b.3.
Der volle Inhalt der QuelleMunyeshyaka, Maxime, Sanjay Singh, Joy Gumin, Jing Yang, Daniel Ledbetter und Frederick Lang. „Abstract 3907: Invasive properties of GSCs with knownIDH1status into human cerebral organoids“. In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-3907.
Der volle Inhalt der QuelleZhang, Jinqiu, Jolene Ooi, Sarah R. Langley, Obed Akwasi Aning, Magdalena Renner, Chit Fang Cheok, Enrico Petretto, Juergen A. Knoblich und Mahmoud A. Pouladi. „A48 Expanded HTT cag repeats disrupt the balance between neural progenitor expansion and differentiation in isogenic human cerebral organoids“. In EHDN 2018 Plenary Meeting, Vienna, Austria, Programme and Abstracts. BMJ Publishing Group Ltd, 2018. http://dx.doi.org/10.1136/jnnp-2018-ehdn.46.
Der volle Inhalt der QuelleYildirim, Murat, Danielle Feldman, Tianyu Wang, Dimitre G. Ouzounov, Stephanie Chou, Justin Swaney, Kwanghun Chung, Chris Xu, Peter T. C. So und Mriganka Sur. „Third harmonic generation imaging of intact human cerebral organoids to assess key components of early neurogenesis in Rett Syndrome (Conference Presentation)“. In Multiphoton Microscopy in the Biomedical Sciences XVII, herausgegeben von Ammasi Periasamy, Peter T. So, Xiaoliang S. Xie und Karsten König. SPIE, 2017. http://dx.doi.org/10.1117/12.2256182.
Der volle Inhalt der QuelleDutta, Anirban, John Biber, Yongho Bae, Justyna Augustyniak, Michal Liput, Ewa Stachowiak und Michal K. Stachowiak. „Model-based investigation of elasticity and spectral exponent from atomic force microscopy and electrophysiology in normal versus Schizophrenia human cerebral organoids“. In 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2022. http://dx.doi.org/10.1109/embc48229.2022.9871376.
Der volle Inhalt der Quelle