Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Human Activity Prediction“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Human Activity Prediction" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Human Activity Prediction"
Dönmez, İlknur. „Human Activity Analysis and Prediction Using Google n-Grams“. International Journal of Future Computer and Communication 7, Nr. 2 (Juni 2018): 32–36. http://dx.doi.org/10.18178/ijfcc.2018.7.2.516.
Der volle Inhalt der QuelleYan, Aixia, Zhi Wang, Jiaxuan Li und Meng Meng. „Human Oral Bioavailability Prediction of Four Kinds of Drugs“. International Journal of Computational Models and Algorithms in Medicine 3, Nr. 4 (Oktober 2012): 29–42. http://dx.doi.org/10.4018/ijcmam.2012100104.
Der volle Inhalt der QuelleD., Manju, und Radha V. „A survey on human activity prediction techniques“. International Journal of Advanced Technology and Engineering Exploration 5, Nr. 47 (21.10.2018): 400–406. http://dx.doi.org/10.19101/ijatee.2018.547006.
Der volle Inhalt der QuelleKeshinro, Babatunde, Younho Seong und Sun Yi. „Deep Learning-based human activity recognition using RGB images in Human-robot collaboration“. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 66, Nr. 1 (September 2022): 1548–53. http://dx.doi.org/10.1177/1071181322661186.
Der volle Inhalt der QuelleBragança, Hendrio, Juan G. Colonna, Horácio A. B. F. Oliveira und Eduardo Souto. „How Validation Methodology Influences Human Activity Recognition Mobile Systems“. Sensors 22, Nr. 6 (18.03.2022): 2360. http://dx.doi.org/10.3390/s22062360.
Der volle Inhalt der QuelleGiri, Pranit. „Human Activity Recognition System“. International Journal for Research in Applied Science and Engineering Technology 11, Nr. 5 (31.05.2023): 6671–73. http://dx.doi.org/10.22214/ijraset.2023.53135.
Der volle Inhalt der QuelleBhambri, Pankaj, Sachin Bagga, Dhanuka Priya, Harnoor Singh und Harleen Kaur Dhiman. „Suspicious Human Activity Detection System“. December 2020 2, Nr. 4 (31.10.2020): 216–21. http://dx.doi.org/10.36548/jismac.2020.4.005.
Der volle Inhalt der QuelleXu-Nan Tan, Xu-Nan Tan. „Human Activity Recognition Based on CNN and LSTM“. 電腦學刊 34, Nr. 3 (Juni 2023): 221–35. http://dx.doi.org/10.53106/199115992023063403016.
Der volle Inhalt der QuelleEsther, Ekemeyong, und Teresa Zielińska. „Predicting Human Activity – State of the Art“. Pomiary Automatyka Robotyka 27, Nr. 2 (16.06.2023): 31–46. http://dx.doi.org/10.14313/par_248/31.
Der volle Inhalt der QuelleLiu, Zhenguang, Kedi Lyu, Shuang Wu, Haipeng Chen, Yanbin Hao und Shouling Ji. „Aggregated Multi-GANs for Controlled 3D Human Motion Prediction“. Proceedings of the AAAI Conference on Artificial Intelligence 35, Nr. 3 (18.05.2021): 2225–32. http://dx.doi.org/10.1609/aaai.v35i3.16321.
Der volle Inhalt der QuelleDissertationen zum Thema "Human Activity Prediction"
Coen, Paul Dixon. „Human Activity Recognition and Prediction using RGBD Data“. OpenSIUC, 2019. https://opensiuc.lib.siu.edu/theses/2562.
Der volle Inhalt der QuelleBergelin, Victor. „Human Activity Recognition and Behavioral Prediction using Wearable Sensors and Deep Learning“. Thesis, Linköpings universitet, Matematiska institutionen, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-138064.
Der volle Inhalt der QuelleBaldo, Fatima Magdi Hamza. „Integrating chemical, biological and phylogenetic spaces of African natural products to understand their therapeutic activity“. Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/289714.
Der volle Inhalt der QuelleSnyder, Kristian. „Utilizing Convolutional Neural Networks for Specialized Activity Recognition: Classifying Lower Back Pain Risk Prediction During Manual Lifting“. University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1583999458096255.
Der volle Inhalt der QuelleMehdi, Nima. „Approches probabilistes pour la perception et l’interprétation de l’activité humaine“. Electronic Thesis or Diss., Université de Lorraine, 2024. http://www.theses.fr/2024LORR0202.
Der volle Inhalt der QuelleFrom industry to services, intelligent systems are required to observe, interact with, or cooperate with humans. This thesis is therefore set in the context of intelligent perception methods for the analysis of humans, using the pose and activity associated with them. Due to the variable and changing nature of humans, it is difficult to obtain an accurate representation of theprocesses guiding their movements and actions. These difficulties are compounded when it comes to estimating or predicting movements or activities. In order to take account of the uncertainty inherent in humans, we propose a Bayesian approach to the perception and analysis of human activity. The first contribution is dedicated to the simultaneous estimation of human pose and posture. Using a monocular camera and wearable sensors, we aim to estimate human 3D pose in real time. For robust estimation, a multimodal fusion approach is suggested, incorporating measurements from wearable inertial sensors with camera observations. In this way, we overcome measurement ambiguities related to the camera and inertial drift due to inertial units. We use a particle filter so as to take into account the non-deterministic nature of human motion and thenon-Gaussian nature of posture. In order to reduce the computational cost, we put forward an architecture composed of two consecutive filters. A first filter estimates the posture in a factorized way from inertial observations only. Then a second filter estimates the complete pose from the camera, incorporating the estimation of the first filter. Our approach achieves fusion by constructing the sampling distribution of the second filter. This architecture makes it possible to estimate pose and posture simultaneously, at low computational cost, and is robust to cloaking and drift. The second contribution pertains to the prediction of human activity. Hidden Markov models have proved effective for the analysis of human activity through segmentation and activity recognition tasks. However, they have modeling limitations that make them insufficient for prediction. We therefore propose the use of semi-Markovian models for prediction. These models extend the definition of Markov models by explicitly modeling the duration spent in each state. This explicit modeling of duration enables better modeling of non-stationary processes and improves the predictive capability of these models. Our study thus demonstrates the usefulness of such models for activity prediction while taking uncertainty into account
Rozman, Peter Andrew. „Multi-Unit Activity in the Human Cortex as a Predictor of Seizure Onset“. Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:15821597.
Der volle Inhalt der QuelleKarst, Gregory Mark. „Multijoint arm movements: Predictions and observations regarding initial muscle activity at the shoulder and elbow“. Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184920.
Der volle Inhalt der QuelleCheradame, Stéphane. „Biomodulation du 5-fluorouracile par l'acide folinique et recherche des facteurs de prédiction de la sensibilité tumorale à cette association“. Université Joseph Fourier (Grenoble ; 1971-2015), 1996. http://www.theses.fr/1996GRE10252.
Der volle Inhalt der QuelleSilva, Joana. „Smartphone Based Human Activity Prediction“. Dissertação, 2013. http://hdl.handle.net/10216/74272.
Der volle Inhalt der QuelleSilva, Joana Raquel Cerqueira da. „Smartphone based human activity prediction“. Master's thesis, 2013. http://hdl.handle.net/10216/72620.
Der volle Inhalt der QuelleBücher zum Thema "Human Activity Prediction"
Fu, Yun, Hrsg. Human Activity Recognition and Prediction. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27004-3.
Der volle Inhalt der QuelleFu, Yun. Human Activity Recognition and Prediction. Springer, 2018.
Den vollen Inhalt der Quelle findenFu, Yun. Human Activity Recognition and Prediction. Springer London, Limited, 2015.
Den vollen Inhalt der Quelle findenAndersson, Jenny. The Future as Social Technology. Prediction and the Rise of Futurology. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814337.003.0005.
Der volle Inhalt der QuelleCook, Diane J., und Narayanan C. Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. Wiley & Sons, Incorporated, John, 2015.
Den vollen Inhalt der Quelle findenCook, Diane J., und Narayanan C. Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. Wiley & Sons, Incorporated, John, 2015.
Den vollen Inhalt der Quelle findenCook, Diane J., und Narayanan C. Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. Wiley & Sons, Limited, John, 2015.
Den vollen Inhalt der Quelle findenActivity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. Wiley, 2015.
Den vollen Inhalt der Quelle findenAndersson, Jenny. The Future of the World. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814337.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Human Activity Prediction"
Kong, Yu, und Yun Fu. „Activity Prediction“. In Human Activity Recognition and Prediction, 107–22. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27004-3_6.
Der volle Inhalt der QuelleLi, Kang, und Yun Fu. „Actionlets and Activity Prediction“. In Human Activity Recognition and Prediction, 123–51. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27004-3_7.
Der volle Inhalt der QuelleKong, Yu, und Yun Fu. „Action Recognition and Human Interaction“. In Human Activity Recognition and Prediction, 23–48. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27004-3_2.
Der volle Inhalt der QuelleKong, Yu, und Yun Fu. „Introduction“. In Human Activity Recognition and Prediction, 1–22. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27004-3_1.
Der volle Inhalt der QuelleJia, Chengcheng, und Yun Fu. „Subspace Learning for Action Recognition“. In Human Activity Recognition and Prediction, 49–69. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27004-3_3.
Der volle Inhalt der QuelleJia, Chengcheng, Wei Pang und Yun Fu. „Multimodal Action Recognition“. In Human Activity Recognition and Prediction, 71–85. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27004-3_4.
Der volle Inhalt der QuelleJia, Chengcheng, Yu Kong, Zhengming Ding und Yun Fu. „RGB-D Action Recognition“. In Human Activity Recognition and Prediction, 87–106. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27004-3_5.
Der volle Inhalt der QuelleLi, Kang, Sheng Li und Yun Fu. „Time Series Modeling for Activity Prediction“. In Human Activity Recognition and Prediction, 153–74. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27004-3_8.
Der volle Inhalt der QuelleFriedrich, Björn, und Andreas Hein. „Ensemble Classifier for Nurse Care Activity Prediction Based on Care Records“. In Human Activity and Behavior Analysis, 323–32. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003371540-22.
Der volle Inhalt der QuellePiergiovanni, A. J., Anelia Angelova, Alexander Toshev und Michael S. Ryoo. „Adversarial Generative Grammars for Human Activity Prediction“. In Computer Vision – ECCV 2020, 507–23. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58536-5_30.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Human Activity Prediction"
Shete, Amar, Aashita Gupta, Ajay Waghumbare, Upasna Singh, Triveni Dhamale und Kiran Napte. „Human Activity Prediction Using Generative Adversarial Networks“. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/icccnt61001.2024.10726013.
Der volle Inhalt der QuelleSukanya, K., Addagatla Prashanth und Ugendhar Addagatla. „Development of Human Activity Prediction Systems in Smart Homes“. In 2024 IEEE International Conference on Smart Power Control and Renewable Energy (ICSPCRE), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/icspcre62303.2024.10675115.
Der volle Inhalt der QuelleNirmala, S., und R. A. Priya. „A Human Activity Determination Predicting Abnormality Using SVM Approach for Mining Field Workers“. In 2024 7th International Conference on Circuit Power and Computing Technologies (ICCPCT), 1659–63. IEEE, 2024. http://dx.doi.org/10.1109/iccpct61902.2024.10673253.
Der volle Inhalt der QuelleMansoor, Zara, Mustansar Ali Ghazanfar, Syed Muhammad Anwar, Ahmed S. Alfakeeh und Khaled H. Alyoubi. „Pain Prediction in Humans using Human Brain Activity Data“. In Companion of the The Web Conference 2018. New York, New York, USA: ACM Press, 2018. http://dx.doi.org/10.1145/3184558.3186348.
Der volle Inhalt der QuelleKarthikeyan, M. V., Mohamed Faisal M und Jithesh R. „Public Human Assault Prediction Using Human Activity Recognition with AI“. In 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS). IEEE, 2024. http://dx.doi.org/10.1109/adics58448.2024.10533461.
Der volle Inhalt der QuelleZiaeefard, Maryam, Robert Bergevin und Jean-Francois Lalonde. „Deep Uncertainty Interpretation in Dyadic Human Activity Prediction“. In 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2017. http://dx.doi.org/10.1109/icmla.2017.00-55.
Der volle Inhalt der QuelleDönnebrink, Robin, Fernando Moya Rueda, Rene Grzeszick und Maximilian Stach. „Miss-placement Prediction of Multiple On-body Devices for Human Activity Recognition“. In iWOAR 2023: 8th international Workshop on Sensor-Based Activity Recognition and Artificial Intelligence. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3615834.3615838.
Der volle Inhalt der QuelleDong-Gyu Lee und Seong-Whan Lee. „Human activity prediction based on Sub-volume Relationship Descriptor“. In 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, 2016. http://dx.doi.org/10.1109/icpr.2016.7899939.
Der volle Inhalt der QuelleRodrigues, Royston, Neha Bhargava, Rajbabu Velmurugan und Subhasis Chaudhuri. „Multi-timescale Trajectory Prediction for Abnormal Human Activity Detection“. In 2020 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2020. http://dx.doi.org/10.1109/wacv45572.2020.9093633.
Der volle Inhalt der QuelleNagpal, Diana, und Shikha Gupta. „Human Activity Recognition and Prediction: Overview and Research Gaps“. In 2023 IEEE 8th International Conference for Convergence in Technology (I2CT). IEEE, 2023. http://dx.doi.org/10.1109/i2ct57861.2023.10126458.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Human Activity Prediction"
Allen-Dumas, Melissa, Kuldeep Kurte, Haowen Xu, Jibonananda Sanyal und Guannan Zhang. A Spatiotemporal Sequence Forecasting Platform to Advance the Predictionof Changing Spatiotemporal Patterns of CO2 Concentrationby Incorporating Human Activity and Hydrological Extremes. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1769653.
Der volle Inhalt der QuelleHarris, Virginia, Gerald C. Nelson und Steven Stone. Spatial Econometric Analysis and Project Evaluation: Modeling Land Use Change in the Darién. Inter-American Development Bank, November 1999. http://dx.doi.org/10.18235/0008801.
Der volle Inhalt der QuelleAlter, Ross, Michelle Swearingen und Mihan McKenna. The influence of mesoscale atmospheric convection on local infrasound propagation. Engineer Research and Development Center (U.S.), Februar 2024. http://dx.doi.org/10.21079/11681/48157.
Der volle Inhalt der QuelleSaville, Alan, und Caroline Wickham-Jones, Hrsg. Palaeolithic and Mesolithic Scotland : Scottish Archaeological Research Framework Panel Report. Society for Antiquaries of Scotland, Juni 2012. http://dx.doi.org/10.9750/scarf.06.2012.163.
Der volle Inhalt der QuelleEparkhina, Dina. EuroSea Legacy Report. EuroSea, 2023. http://dx.doi.org/10.3289/eurosea_d8.12.
Der volle Inhalt der Quelle