Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Human activity“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Human activity" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Human activity"
Patel, Mayur A. „Combating Human Diseases through Physical Activity“. Indian Journal of Applied Research 3, Nr. 2 (01.10.2011): 312–13. http://dx.doi.org/10.15373/2249555x/feb2013/106.
Der volle Inhalt der QuelleL, Latha, Cynthia J, G. Seetha Lakshmi, Raajshre B, Senthil J und Vikashini S. „Human Activity Recognition Using Smartphone Sensors“. Webology 18, Nr. 04 (28.09.2021): 1499–511. http://dx.doi.org/10.14704/web/v18si04/web18294.
Der volle Inhalt der QuelleZhang, Tongda, Xiao Sun, Yueting Chai und Hamid Aghajan. „Human Computer Interaction Activity Based User Identification“. International Journal of Machine Learning and Computing 4, Nr. 4 (2014): 354–58. http://dx.doi.org/10.7763/ijmlc.2014.v4.436.
Der volle Inhalt der QuelleP. Ambiga, P. Ambiga, R. Bhavani R. Bhavani, P. Sivamani P. Sivamani und R. R. Thanighai arassu. „Comparative Analysis of Microbial and Human Amylase Activity“. Indian Journal of Applied Research 3, Nr. 3 (01.10.2011): 380–84. http://dx.doi.org/10.15373/2249555x/mar2013/130.
Der volle Inhalt der QuelleGuda, B. B., V. V. Pushkarev, O. V. Zhuravel, A. Ye Kovalenko, V. M. Pushkarev, Y. M. Taraschenko und M. D. Tronko. „Protein kinase Akt activity in human thyroid tumors“. Ukrainian Biochemical Journal 88, Nr. 5 (31.10.2016): 90–95. http://dx.doi.org/10.15407/ubj88.05.090.
Der volle Inhalt der QuelleXu-Nan Tan, Xu-Nan Tan. „Human Activity Recognition Based on CNN and LSTM“. 電腦學刊 34, Nr. 3 (Juni 2023): 221–35. http://dx.doi.org/10.53106/199115992023063403016.
Der volle Inhalt der QuelleKhupavtseva, Nataliia, und Liana Onufriieva. „Facilitative Interaction as a Multi-Level Human Activity“. Collection of Research Papers "Problems of Modern Psychology" 59 (30.03.2023): 73–95. http://dx.doi.org/10.32626/2227-6246.2023-59.73-95.
Der volle Inhalt der QuelleChun-Mei Ma, Chun-Mei Ma, Hui Zhao Chun-Mei Ma, Ying Li Hui Zhao, Pan-Pan Wu Ying Li, Tao Zhang Pan-Pan Wu und Bo-Jue Wang Tao Zhang. „Human Activity Recognition with Multimodal Sensing of Wearable Sensors“. 電腦學刊 32, Nr. 6 (Dezember 2021): 024–37. http://dx.doi.org/10.53106/199115992021123206003.
Der volle Inhalt der QuelleBobrovnik, S. A., M. A. Demchenko und S. V. Komisarenko. „Age changes of human serum polyreactive immunoglobulins (PRIG) activity“. Ukrainian Biochemical Journal 86, Nr. 5 (27.10.2014): 151–55. http://dx.doi.org/10.15407/ubj86.05.151.
Der volle Inhalt der QuelleDönmez, İlknur. „Human Activity Analysis and Prediction Using Google n-Grams“. International Journal of Future Computer and Communication 7, Nr. 2 (Juni 2018): 32–36. http://dx.doi.org/10.18178/ijfcc.2018.7.2.516.
Der volle Inhalt der QuelleDissertationen zum Thema "Human activity"
Albinali, Fahd. „Activity-Aware Computing: Modeling of Human Activity and Behavior“. Diss., The University of Arizona, 2008. http://hdl.handle.net/10150/195382.
Der volle Inhalt der QuelleReyes, Ortiz Jorge Luis. „Smartphone-based human activity recognition“. Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/284725.
Der volle Inhalt der QuelleEl Reconocimiento de Actividades Humanas (RAH) es un campo de investigación multidisciplinario que busca recopilar información sobre el comportamiento de las personas y su interacción con el entorno con el propósito de ofrecer información contextual de alta significancia sobre las acciones que ellas realizan. Recientemente, el RAH ha contribuido en el desarrollo de áreas de estudio enfocadas a la mejora de la calidad de vida del hombre tales como: la inteligència ambiental (Ambient Intelligence) y la vida cotidiana asistida por el entorno para personas dependientes (Ambient Assisted Living). El primer paso para conseguir el RAH consiste en realizar observaciones mediante el uso de sensores fijos localizados en el ambiente, o bien portátiles incorporados de forma vestible en el cuerpo humano. Sin embargo, para el segundo caso, aún se dificulta encontrar dispositivos poco invasivos, de bajo consumo energético, que permitan ser llevados a cualquier lugar, y de bajo costo. En esta tesis, nosotros exploramos el uso de teléfonos móviles inteligentes (Smartphones) como una alternativa para el RAH. Estos dispositivos, de uso cotidiano y fácilmente asequibles en el mercado, están dotados de sensores embebidos, potentes capacidades de cómputo y diversas tecnologías de comunicación inalámbrica que los hacen apropiados para esta aplicación. Nuestro trabajo presenta una serie de contribuciones en relación al desarrollo de sistemas para el RAH con Smartphones. En primera instancia proponemos un sistema que permite la detección de seis actividades físicas en tiempo real y que, además, tiene en cuenta las transiciones posturales que puedan ocurrir entre ellas. Con este fin, hemos contribuido en distintos ámbitos que van desde el procesamiento de señales y la selección de características, hasta algoritmos de Aprendizaje Automático (AA). Nosotros utilizamos dos sensores inerciales (el acelerómetro y el giroscopio) para la captura de las señales de movimiento de los usuarios. Estas han de ser procesadas a través de técnicas de filtrado para la reducción de ruido, segmentación y obtención de características relevantes en la detección de actividad. También hacemos énfasis en el estudio de Máquinas de soporte vectorial (MSV) que son uno de los algoritmos de AA más usados en la actualidad. Para ello reformulamos varios de sus métodos estándar (lineales y no lineales) con el propósito de encontrar la mejor combinación de variables que garanticen un buen desempeño del sistema en cuanto a precisión, coste computacional y requerimientos de energía, los cuales son aspectos esenciales en dispositivos portátiles con suministro de energía mediante baterías. En concreto, proponemos dos MSV multiclase para la clasificación de actividad: un algoritmo lineal que permite el balance entre la reducción de la dimensionalidad y la precisión del sistema; y asimismo presentamos un algoritmo no lineal conveniente para dispositivos con limitaciones de hardware que solo utiliza aritmética de punto fijo en la fase de predicción y que permite reducir la complejidad del modelo de aprendizaje mientras mantiene el rendimiento del sistema. La eficacia del sistema propuesto es verificada a través de una experimentación extensiva sobre la base de datos RAH que hemos generado y hecho pública en la red. Esta contiene la información inercial obtenida de un grupo de 30 participantes que realizaron una serie de actividades de la vida cotidiana en un ambiente controlado mientras tenían sujeto a su cintura un smartphone que capturaba su movimiento. Los resultados obtenidos en esta investigación demuestran que es posible realizar el RAH en tiempo real con una precisión cercana al 97%. De esta manera, podemos emplear la metodología propuesta en aplicaciones de alto nivel que requieran el RAH tales como monitorizaciones ambulatorias para personas dependientes (ej. ancianos o discapacitados) durante periodos mayores a cinco días sin la necesidad de recarga de baterías.
Outten, Alan Gerard. „Analysis of human muscle activity“. Thesis, Imperial College London, 1997. http://hdl.handle.net/10044/1/7958.
Der volle Inhalt der QuelleTOKALA, SAI SUJIT, und RANADEEP ROKALA. „HUMAN ACTIVITY MONITORING USING SMARTPHONE“. Thesis, Blekinge Tekniska Högskola, Institutionen för tillämpad signalbehandling, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-2566.
Der volle Inhalt der QuelleI denna modell har vi utvecklat en algoritm för aktivitetsklassificeringoch energiförbrukning uppskattning , vilket hjälper oss i övervakningen daglig mänsklig aktivitet med större noggrannhet . Resultaten valideras med standard energiförbrukning teknik och aktivitetsklassificeringsvideoobservationer. Vi vill att denna modell ska integreras i smarta mobiltelefoner för att ge slutanvändaren en vänlig atmosfär utan att lägga några komplicerade funktioner för hantering av utrustningen . Denna modell är mycket användbart i klinisk uppföljning av patienterna , kommer det att hjälpa oss att övervaka gamla , sjuka och utvecklingsstörda personens aktivitetsidentifiering och hjälper oss i nära övervakning av patienterna men fysiskt att vara borta från dem . Våra bärbara MEMS baserade treaxlig accelerometer system baserat smartphone kompatibel algoritm tillsammans med andra fysiologiska övervakningsparametrarkommer att ge korrekt övervakning rörelse och energiförbrukning uppskattning för klinisk analys . Denna modell är användbar för analys och övervakning av grupp -och enskilda individer , vilket kommer att leda till att spåra deras rörelser och en framgångsrik räddningsaktion för att rädda dem från dödliga sjukdomar och förebygga risker när de är skadade . Framtida arbete kommer att vara kontinuerlig övervakning av ämnen enskild aktivitet tillsammans med gruppaktivitet . Identifiera hållning övergång av olika aktiviteter i en kort tid som att springa till sittande , sittande till stående , står att krypa etc.
0091-7660885577
Ameri-Daragheh, Alireza. „Wearable human activity recognition systems“. Thesis, California State University, Long Beach, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1595755.
Der volle Inhalt der QuelleIn this thesis, we focused on designing wearable human activity recognition (WHAR) systems. As the first step, we conducted a thorough research over the publications during the recent ten years in this area. Then, we proposed an all-purpose architecture for designing the software of WHAR systems. Afterwards, among various applications of these wearable systems, we decided to work on wearable virtual fitness coach device which can recognize various types and intensities of warm-up exercises that an athlete performs. We first proposed a basic hardware platform for implementing the WHAR software. Afterwards, the software design was done in two phases. In the first phase, we focused on four simple activities to be recognized by the wearable device. We used Weka machine learning tool to build a mathematical model which could recognize the four activities with the accuracy of 99.32%. Moreover, we proposed an algorithm to measure the intensity of the activities with the accuracy of 93%. In the second phase, we focused on eight complex warm-up exercises. After building the mathematical model, the WHAR system could recognize the eight activities with the accuracy of 95.60%.
Kepenekci, Burcu. „Human Activity Recognition By Gait Analysis“. Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613089/index.pdf.
Der volle Inhalt der QuelleAkpinar, Kutalmis. „Human Activity Classification Using Spatio-temporal“. Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614587/index.pdf.
Der volle Inhalt der Quellehowever, the feature relation histogram has the ability to represent the locational information of the features. Our extension defines a new set of relations between the features, which makes the method more effective for action description. Classifications are performed and results are compared using feature histogram, Ryoo&rsquo
s feature relation histogram and our feature relation histogram using the same datasets and the feature type. Our experiments show that feature relation histogram performs slightly better than the feature histogram, our feature relation histogram is even better than both of the two. Although the difference is not clearly observable in the datasets containing periodic actions, a 12% improvement is observed for the non-periodic action datasets. Our work shows that the spatio-temporal relation represented by our new set of relations is a better way to represent the activity for classification.
Qi, Lin. „Autonomous Identification of Human Activity Regions“. Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-212052.
Der volle Inhalt der QuelleMänskliga aktivitetsregioner, HARs (Human Activity Regions) är människocentreraderegioner som ger en semantisk partitionering av inomhusmiljöer. HARs är användbara för att uppnå väl fungerande människarobot- interaktioner. I denna avhandling utformas ett system för att generera HARs automatiskt baserat på data från robotar. Detta görs genom att klustra observationer av människor för att på så vis få fram de områden som är associerade med frekvent mänsklig närvaro. Experiment visar att systemet kan hantera data som registrerats av olika sensorer i olika inomhusmiljöer och att det är robust. Framförallt genererar systemet en pålitlig partitionering av miljön.
Lakins, Johnathon N. „Structure and activity of human clusterin“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0021/NQ45178.pdf.
Der volle Inhalt der QuelleDevaraj, Revathy. „Validation of the Human Activity Profile“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ52893.pdf.
Der volle Inhalt der QuelleBücher zum Thema "Human activity"
Kawaguchi, Nobuo, Nobuhiko Nishio, Daniel Roggen, Sozo Inoue, Susanna Pirttikangas und Kristof Van Laerhoven, Hrsg. Human Activity Sensing. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13001-5.
Der volle Inhalt der QuellePike, Graham. Human rights: Activity file. London: Thornes, 1990.
Den vollen Inhalt der Quelle findenAhad, Md Atiqur Rahman, Upal Mahbub und Tauhidur Rahman, Hrsg. Contactless Human Activity Analysis. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68590-4.
Der volle Inhalt der QuelleAhad, Md Atiqur Rahman, Paula Lago und Sozo Inoue, Hrsg. Human Activity Recognition Challenge. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8269-1.
Der volle Inhalt der QuelleNaur, Peter. Computing, a human activity. New York: ACM Press, 1992.
Den vollen Inhalt der Quelle findenPike, Graham. Human rights: Activity file. Leckhampton, Eng: Stanley Thornes (Publishers) Ltd., 1991.
Den vollen Inhalt der Quelle findenPike, Graham. Human rights: Activity file. London: Mary Glasgow, 1988.
Den vollen Inhalt der Quelle findenHodakov, Viktor. Natural environment and human activity. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1194879.
Der volle Inhalt der QuelleHu, Zhongxu, und Chen Lv. Vision-Based Human Activity Recognition. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2290-9.
Der volle Inhalt der QuelleReyes Ortiz, Jorge Luis. Smartphone-Based Human Activity Recognition. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14274-6.
Der volle Inhalt der QuelleBuchteile zum Thema "Human activity"
Welle, Stephen. „Physical Activity“. In Human Protein Metabolism, 177–95. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1458-8_8.
Der volle Inhalt der QuelleKomukai, Kohei, und Ren Ohmura. „Optimizing of the Number and Placements of Wearable IMUs for Automatic Rehabilitation Recording“. In Human Activity Sensing, 3–15. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13001-5_1.
Der volle Inhalt der QuelleLago, Paula, Shingo Takeda, Tsuyoshi Okita und Sozo Inoue. „MEASURed: Evaluating Sensor-Based Activity Recognition Scenarios by Simulating Accelerometer Measures from Motion Capture“. In Human Activity Sensing, 135–49. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13001-5_10.
Der volle Inhalt der QuelleWang, Lin, Hristijan Gjoreski, Mathias Ciliberto, Sami Mekki, Stefan Valentin und Daniel Roggen. „Benchmark Performance for the Sussex-Huawei Locomotion and Transportation Recognition Challenge 2018“. In Human Activity Sensing, 153–70. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13001-5_11.
Der volle Inhalt der QuelleOsmani, Aomar, und Massinissa Hamidi. „Bayesian Optimization of Neural Architectures for Human Activity Recognition“. In Human Activity Sensing, 171–95. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13001-5_12.
Der volle Inhalt der QuelleWidhalm, Peter, Maximilian Leodolter und Norbert Brändle. „Into the Wild—Avoiding Pitfalls in the Evaluation of Travel Activity Classifiers“. In Human Activity Sensing, 197–211. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13001-5_13.
Der volle Inhalt der QuelleSloma, Michael, Makan Arastuie und Kevin S. Xu. „Effects of Activity Recognition Window Size and Time Stabilization in the SHL Recognition Challenge“. In Human Activity Sensing, 213–31. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13001-5_14.
Der volle Inhalt der QuelleJanko, Vito, Martin Gjoreski, Gašper Slapničar, Miha Mlakar, Nina Reščič, Jani Bizjak, Vid Drobnič et al. „Winning the Sussex-Huawei Locomotion-Transportation Recognition Challenge“. In Human Activity Sensing, 233–50. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13001-5_15.
Der volle Inhalt der QuelleScholl, Philipp M., und Kristof Van Laerhoven. „Identifying Sensors via Statistical Analysis of Body-Worn Inertial Sensor Data“. In Human Activity Sensing, 17–28. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13001-5_2.
Der volle Inhalt der QuelleNozaki, Junto, Kei Hiroi, Katsuhiko Kaji und Nobuo Kawaguchi. „Compensation Scheme for PDR Using Component-Wise Error Models“. In Human Activity Sensing, 29–46. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13001-5_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Human activity"
Damarla, Thyagaraju, Lance Kaplan und Alex Chan. „Human infrastructure & human activity detection“. In 2007 10th International Conference on Information Fusion. IEEE, 2007. http://dx.doi.org/10.1109/icif.2007.4408122.
Der volle Inhalt der QuelleParmar, Divaksh, Mitanshu Bhardwaj, Aayush Garg, Anjali Kapoor und Anju Mishra. „Human activity recognition system“. In 2023 International Conference on Computational Intelligence, Communication Technology and Networking (CICTN). IEEE, 2023. http://dx.doi.org/10.1109/cictn57981.2023.10141250.
Der volle Inhalt der QuelleReid, Shane, Sonya Coleman, Dermot Kerr, Philip Vance und Siobhan O’Neill. „Fast Human Activity Recognition“. In International Conference on Image Processing and Vision Engineering. SCITEPRESS - Science and Technology Publications, 2021. http://dx.doi.org/10.5220/0010420300910098.
Der volle Inhalt der QuelleHung, Tzu-Yi, Jiwen Lu, Junlin Hu, Yap-Peng Tan und Yongxin Ge. „Activity-based human identification“. In ICASSP 2013 - 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2013. http://dx.doi.org/10.1109/icassp.2013.6638077.
Der volle Inhalt der QuelleGioanni, Luis, Christel Dartigues-Pallez, Stéphane Lavirotte und Jean-Yves Tigli. „Opportunistic Human Activity Recognition“. In MOBIQUITOUS 2016: Computing, Networking and Services. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2994374.3004075.
Der volle Inhalt der QuelleNair, Nitin, Chinchu Thomas und Dinesh Babu Jayagopi. „Human Activity Recognition Using Temporal Convolutional Network“. In iWOAR '18: 5th international Workshop on Sensor-based Activity Recognition and Interaction. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3266157.3266221.
Der volle Inhalt der Quelle„Ayllu: Agent-Inspired Cooperative Services for Human Interaction“. In The 3rd International Workshop on Computer Supported Activity Coordination. SciTePress - Science and and Technology Publications, 2006. http://dx.doi.org/10.5220/0002480600550064.
Der volle Inhalt der QuelleZhdanova, Marina, Viacheslav V. Voronin, Evgeny Semenishchev, Yurii V. Ilyukhin und Aleksandr Zelensky. „Human activity recognition for efficient human-robot collaboration“. In Artificial Intelligence and Machine Learning in Defense Applications II, herausgegeben von Judith Dijk. SPIE, 2020. http://dx.doi.org/10.1117/12.2574133.
Der volle Inhalt der QuelleCheng, Zhiqing, Stephen Mosher, Huaining Cheng und Timothy Webb. „Human activity recognition based on human shape dynamics“. In SPIE Defense, Security, and Sensing, herausgegeben von Ivan Kadar. SPIE, 2013. http://dx.doi.org/10.1117/12.2015487.
Der volle Inhalt der QuelleSaroja, M. N., K. R. Baskaran und P. Priyanka. „Human pose estimation approaches for human activity recognition“. In 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA). IEEE, 2021. http://dx.doi.org/10.1109/icaeca52838.2021.9675787.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Human activity"
Griffith, J. Telomerase activity in human cancer. Office of Scientific and Technical Information (OSTI), Oktober 2000. http://dx.doi.org/10.2172/766184.
Der volle Inhalt der QuelleAli, Anjum, und J. K. Aggarwal. Segmentation and Recognition of Continuous Human Activity. Fort Belvoir, VA: Defense Technical Information Center, Januar 2001. http://dx.doi.org/10.21236/ada396147.
Der volle Inhalt der QuelleFlater, David, Philippe A. Martin und Michelle L. Crane. Rendering UML activity diagrams as human-readable text. Gaithersburg, MD: National Institute of Standards and Technology, 2007. http://dx.doi.org/10.6028/nist.ir.7469.
Der volle Inhalt der QuelleCheng, Zhiqing, Steve Mosher, Jeanne Smith, Isiah Davenport, John Camp und Darrell Lochtefeld. Human Activity Modeling and Simulation with High Biofidelity. Fort Belvoir, VA: Defense Technical Information Center, Januar 2013. http://dx.doi.org/10.21236/ada584135.
Der volle Inhalt der QuelleCamp, John, Darrell Lochtefeld, Zhiqing Cheng, Isiah Davenport, Tim MtCastle, Steve Mosher, Jeanne Smith und Max Grattan. Biofidelic Human Activity Modeling and Simulation with Large Variability. Fort Belvoir, VA: Defense Technical Information Center, November 2014. http://dx.doi.org/10.21236/ada618197.
Der volle Inhalt der QuelleAllen, Melissa R., H. M. Abdul Aziz, Mark A. Coletti, Joseph H. Kennedy, Sujithkumar S. Nair und Olufemi A. Omitaomu. Workshop on Human Activity at Scale in Earth System Models. Office of Scientific and Technical Information (OSTI), Januar 2017. http://dx.doi.org/10.2172/1343540.
Der volle Inhalt der QuelleMocan, H. Naci, Stephen Billups und Jody Overland. A Dynamic Model of Differential Human Capital and Criminal Activity. Cambridge, MA: National Bureau of Economic Research, März 2000. http://dx.doi.org/10.3386/w7584.
Der volle Inhalt der QuelleHristova, Marina, Plamen Todorov, Nadya Petrova, Diana Gulenova, Ibryam Ibryam und Elena Hristova. Clonogenic Activity of Human Haematopoietic Stem Cells Cultured under Micro-vibrations. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, Mai 2018. http://dx.doi.org/10.7546/crabs.2018.04.08.
Der volle Inhalt der QuelleMatzen, Laura E., Michael Joseph Haass, Michael Christopher Stefan Trumbo, Austin Ray Silva, Susan Marie Stevens-Adams, Jennifer Taylor White, Anna Ho und David Eugene Peercy. Using recordings of brain activity to predict and improve human performance. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1055638.
Der volle Inhalt der QuelleManfredi, James. Regulation of the Tumor Suppressor Activity of p53 in Human Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, September 2000. http://dx.doi.org/10.21236/ada395583.
Der volle Inhalt der Quelle