Zeitschriftenartikel zum Thema „Hot carrier solar cell“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Hot carrier solar cell" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Ikeri, H. I., A. I. Onyia und F. N. Kalu. „Hot carrier exploitation strategies and model for efficient solar cell applications“. Chalcogenide Letters 18, Nr. 11 (November 2021): 745–57. http://dx.doi.org/10.15251/cl.2021.1811.745.
Der volle Inhalt der QuelleConibeer, Gavin, Robert Patterson, Lunmei Huang, Jean-Francois Guillemoles, Dirk Kőnig, Santosh Shrestha und Martin A. Green. „Modelling of hot carrier solar cell absorbers“. Solar Energy Materials and Solar Cells 94, Nr. 9 (September 2010): 1516–21. http://dx.doi.org/10.1016/j.solmat.2010.01.018.
Der volle Inhalt der QuelleKonovalov, Igor, und Vitali Emelianov. „Hot carrier solar cell as thermoelectric device“. Energy Science & Engineering 5, Nr. 3 (Juni 2017): 113–22. http://dx.doi.org/10.1002/ese3.159.
Der volle Inhalt der QuelleSogabe, Tomah, Kodai Shiba und Katsuyoshi Sakamoto. „Hydrodynamic and Energy Transport Model-Based Hot-Carrier Effect in GaAs pin Solar Cell“. Electronic Materials 3, Nr. 2 (11.05.2022): 185–200. http://dx.doi.org/10.3390/electronicmat3020016.
Der volle Inhalt der QuelleKönig, D., Y. Takeda und B. Puthen-Veettil. „Technology-compatible hot carrier solar cell with energy selective hot carrier absorber and carrier-selective contacts“. Applied Physics Letters 101, Nr. 15 (08.10.2012): 153901. http://dx.doi.org/10.1063/1.4757979.
Der volle Inhalt der QuelleWürfel, P., A. S. Brown, T. E. Humphrey und M. A. Green. „Particle conservation in the hot-carrier solar cell“. Progress in Photovoltaics: Research and Applications 13, Nr. 4 (2005): 277–85. http://dx.doi.org/10.1002/pip.584.
Der volle Inhalt der QuelleKönig, Dirk, Yasuhiko Takeda, Binesh Puthen-Veettil und Gavin Conibeer. „Lattice-Matched Hot Carrier Solar Cell with Energy Selectivity Integrated into Hot Carrier Absorber“. Japanese Journal of Applied Physics 51 (22.10.2012): 10ND02. http://dx.doi.org/10.1143/jjap.51.10nd02.
Der volle Inhalt der QuelleKönig, Dirk, Yasuhiko Takeda, Binesh Puthen-Veettil und Gavin Conibeer. „Lattice-Matched Hot Carrier Solar Cell with Energy Selectivity Integrated into Hot Carrier Absorber“. Japanese Journal of Applied Physics 51, Nr. 10S (01.10.2012): 10ND02. http://dx.doi.org/10.7567/jjap.51.10nd02.
Der volle Inhalt der QuelleBoyer-Richard, Soline, Fei Fan, Nicolas Chevalier, Antoine Létoublon, Alexandre Beck, Karine Tavernier, Shalu Rani et al. „Preliminary study of selective contacts for hot carrier solar cells“. EPJ Photovoltaics 15 (2024): 38. http://dx.doi.org/10.1051/epjpv/2024031.
Der volle Inhalt der QuelleFerry, D. K. „In search of a true hot carrier solar cell“. Semiconductor Science and Technology 34, Nr. 4 (20.03.2019): 044001. http://dx.doi.org/10.1088/1361-6641/ab0bc3.
Der volle Inhalt der QuelleKonovalov, I., V. Emelianov und R. Linke. „Hot carrier solar cell with semi infinite energy filtering“. Solar Energy 111 (Januar 2015): 1–9. http://dx.doi.org/10.1016/j.solener.2014.10.028.
Der volle Inhalt der QuelleConibeer, G. J., D. König, M. A. Green und J. F. Guillemoles. „Slowing of carrier cooling in hot carrier solar cells“. Thin Solid Films 516, Nr. 20 (August 2008): 6948–53. http://dx.doi.org/10.1016/j.tsf.2007.12.102.
Der volle Inhalt der QuelleLi, Mingjie, Jianhui Fu, Qiang Xu und Tze Chien Sum. „Slow Hot‐Carrier Cooling in Halide Perovskites: Prospects for Hot‐Carrier Solar Cells“. Advanced Materials 31, Nr. 47 (02.01.2019): 1802486. http://dx.doi.org/10.1002/adma.201802486.
Der volle Inhalt der QuellePiccone, Ashley. „Combining hot-carrier and multijunction solar cells increases efficiency, lowers cost“. Scilight 2022, Nr. 21 (27.05.2022): 211106. http://dx.doi.org/10.1063/10.0009522.
Der volle Inhalt der QuelleChung, Simon, Santosh Shrestha, Xiaoming Wen, Yu Feng, Neeti Gupta, Hongze Xia, Pyng Yu, Jau Tang und Gavin Conibeer. „Hafnium nitride for hot carrier solar cells“. Solar Energy Materials and Solar Cells 144 (Januar 2016): 781–86. http://dx.doi.org/10.1016/j.solmat.2014.10.011.
Der volle Inhalt der QuelleHirst, L. C., M. P. Lumb, R. Hoheisel, C. G. Bailey, S. P. Philipps, A. W. Bett und R. J. Walters. „Spectral sensitivity of hot carrier solar cells“. Solar Energy Materials and Solar Cells 120 (Januar 2014): 610–15. http://dx.doi.org/10.1016/j.solmat.2013.10.003.
Der volle Inhalt der QuelleKönig, Dirk, und Yao Yao. „Practical concept of an all-optical hot carrier solar cell“. Japanese Journal of Applied Physics 54, Nr. 8S1 (02.07.2015): 08KA03. http://dx.doi.org/10.7567/jjap.54.08ka03.
Der volle Inhalt der QuelleFarrell, D. J., Y. Takeda, K. Nishikawa, T. Nagashima, T. Motohiro und N. J. Ekins-Daukes. „A hot-carrier solar cell with optical energy selective contacts“. Applied Physics Letters 99, Nr. 11 (12.09.2011): 111102. http://dx.doi.org/10.1063/1.3636401.
Der volle Inhalt der QuelleLimpert, S., S. Bremner und H. Linke. „Reversible electron–hole separation in a hot carrier solar cell“. New Journal of Physics 17, Nr. 9 (21.09.2015): 095004. http://dx.doi.org/10.1088/1367-2630/17/9/095004.
Der volle Inhalt der QuelleConibeer, Gavin, Santosh Shrestha, Shujuan Huang, Robert Patterson, Hongze Xia, Yu Feng, Pengfei Zhang et al. „Hot carrier solar cell absorber prerequisites and candidate material systems“. Solar Energy Materials and Solar Cells 135 (April 2015): 124–29. http://dx.doi.org/10.1016/j.solmat.2014.11.015.
Der volle Inhalt der QuelleSambur, Justin. „(Invited) Energy Level Alignment and Hot Carrier Extraction in Monolayer Semiconductor Photoelectrochemical Cells“. ECS Meeting Abstracts MA2023-01, Nr. 13 (28.08.2023): 1300. http://dx.doi.org/10.1149/ma2023-01131300mtgabs.
Der volle Inhalt der QuelleCao, Wenkai, Zewen Zhang, Rob Patterson, Yuan Lin, Xiaoming Wen, Binesh Puthen Veetil, Pengfei Zhang et al. „Quantification of hot carrier thermalization in PbS colloidal quantum dots by power and temperature dependent photoluminescence spectroscopy“. RSC Advances 6, Nr. 93 (2016): 90846–55. http://dx.doi.org/10.1039/c6ra20165b.
Der volle Inhalt der QuelleSambur, Justin, Rachelle Austin, Yusef Farah und Amber Krummel. „(Invited) Energy Level Alignment at Monolayer MoS2/Electrolyte Interfaces“. ECS Meeting Abstracts MA2022-01, Nr. 12 (07.07.2022): 864. http://dx.doi.org/10.1149/ma2022-0112864mtgabs.
Der volle Inhalt der QuelleKonovalov, Igor, und Bernd Ploss. „Modeling of hot carrier solar cell with semi-infinite energy filtering“. Solar Energy 185 (Juni 2019): 59–63. http://dx.doi.org/10.1016/j.solener.2019.04.050.
Der volle Inhalt der QuelleKamide, K. „Current–voltage curves and operational stability in hot-carrier solar cell“. Journal of Applied Physics 127, Nr. 18 (14.05.2020): 183102. http://dx.doi.org/10.1063/5.0002934.
Der volle Inhalt der QuelleSambur, Justin, Rachelle Austin, Rafael Almaraz, Amber Krummel, Andres Montoya-Castillo, Tom Sayer und Justin Toole. „(Invited) Photoelectrochemistry of Monolayer 2D Semiconductors: Quantifying Band Gap Renormalization Effects and Hot Carrier Extraction“. ECS Meeting Abstracts MA2024-01, Nr. 12 (09.08.2024): 1015. http://dx.doi.org/10.1149/ma2024-01121015mtgabs.
Der volle Inhalt der QuelleZhang, Yu, ChiYung Yam und George C. Schatz. „Fundamental Limitations to Plasmonic Hot-Carrier Solar Cells“. Journal of Physical Chemistry Letters 7, Nr. 10 (05.05.2016): 1852–58. http://dx.doi.org/10.1021/acs.jpclett.6b00879.
Der volle Inhalt der QuelleConibeer, G. J., C. W. Jiang, D. König, S. Shrestha, T. Walsh und M. A. Green. „Selective energy contacts for hot carrier solar cells“. Thin Solid Films 516, Nr. 20 (August 2008): 6968–73. http://dx.doi.org/10.1016/j.tsf.2007.12.031.
Der volle Inhalt der QuelleKönig, D., K. Casalenuovo, Y. Takeda, G. Conibeer, J. F. Guillemoles, R. Patterson, L. M. Huang und M. A. Green. „Hot carrier solar cells: Principles, materials and design“. Physica E: Low-dimensional Systems and Nanostructures 42, Nr. 10 (September 2010): 2862–66. http://dx.doi.org/10.1016/j.physe.2009.12.032.
Der volle Inhalt der QuelleShrestha, Santosh K., Pasquale Aliberti und Gavin J. Conibeer. „Energy selective contacts for hot carrier solar cells“. Solar Energy Materials and Solar Cells 94, Nr. 9 (September 2010): 1546–50. http://dx.doi.org/10.1016/j.solmat.2009.11.029.
Der volle Inhalt der QuelleTakeda, Yasuhiko, Tadashi Ito, Tomoyoshi Motohiro, Dirk König, Santosh Shrestha und Gavin Conibeer. „Hot carrier solar cells operating under practical conditions“. Journal of Applied Physics 105, Nr. 7 (April 2009): 074905. http://dx.doi.org/10.1063/1.3086447.
Der volle Inhalt der QuelleTakeda, Yasuhiko. „Intermediate‐band effect in hot‐carrier solar cells“. Progress in Photovoltaics: Research and Applications 27, Nr. 6 (27.03.2019): 528–39. http://dx.doi.org/10.1002/pip.3129.
Der volle Inhalt der QuelleAšmontas, Steponas, Oleksandr Masalskyi, Ihor Zharchenko, Algirdas Sužiedėlis und Jonas Gradauskas. „Some Aspects of Hot Carrier Photocurrent across GaAs p-n Junction“. Inorganics 12, Nr. 6 (20.06.2024): 174. http://dx.doi.org/10.3390/inorganics12060174.
Der volle Inhalt der QuelleLimpert, Steven C., und Stephen P. Bremner. „Hot carrier extraction using energy selective contacts and its impact on the limiting efficiency of a hot carrier solar cell“. Applied Physics Letters 107, Nr. 7 (17.08.2015): 073902. http://dx.doi.org/10.1063/1.4928750.
Der volle Inhalt der QuelleBehaghel, B., R. Tamaki, H.-L. Chen, P. Rale, L. Lombez, Y. Shoji, A. Delamarre et al. „A hot-carrier assisted InAs/AlGaAs quantum-dot intermediate-band solar cell“. Semiconductor Science and Technology 34, Nr. 8 (17.07.2019): 084001. http://dx.doi.org/10.1088/1361-6641/ab23d0.
Der volle Inhalt der QuelleWang, Gang, Li Ping Liao, Ahmed Mourtada Elseman, Yan Qing Yao, Chun Yan Lin, Wei Hu, De Bei Liu et al. „An internally photoemitted hot carrier solar cell based on organic-inorganic perovskite“. Nano Energy 68 (Februar 2020): 104383. http://dx.doi.org/10.1016/j.nanoen.2019.104383.
Der volle Inhalt der QuelleFarrell, Daniel J., Hassanet Sodabanlu, Yunpeng Wang, Masakazu Sugiyama und Yoshitaka Okada. „Can a Hot-Carrier Solar Cell also be an Efficient Up-converter?“ IEEE Journal of Photovoltaics 5, Nr. 2 (März 2015): 571–76. http://dx.doi.org/10.1109/jphotov.2014.2373817.
Der volle Inhalt der QuelleCalderón-Muñoz, Williams R., und Cristian Jara-Bravo. „Hydrodynamic modeling of hot-carrier effects in a PN junction solar cell“. Acta Mechanica 227, Nr. 11 (14.01.2016): 3247–60. http://dx.doi.org/10.1007/s00707-015-1538-5.
Der volle Inhalt der QuelleGupta, Ritesh Kant, Rabindranath Garai, Mohammad Adil Afroz und Parameswar Krishnan Iyer. „Regulating active layer thickness and morphology for high performance hot-casted polymer solar cells“. Journal of Materials Chemistry C 8, Nr. 24 (2020): 8191–98. http://dx.doi.org/10.1039/d0tc00822b.
Der volle Inhalt der QuelleWang, Junyi, Youlin Wang, Xiaohang Chen, Jincan Chen und Shanhe Su. „Hot carrier-based near-field thermophotovoltaics with energy selective contacts“. Applied Physics Letters 122, Nr. 12 (20.03.2023): 122203. http://dx.doi.org/10.1063/5.0143300.
Der volle Inhalt der QuelleAšmontas, S., J. Gradauskas, A. Sužiedėlis, A. Šilėnas, E. Širmulis, V. Švedas, V. Vaičikauskas und O. Žalys. „Hot carrier impact on photovoltage formation in solar cells“. Applied Physics Letters 113, Nr. 7 (13.08.2018): 071103. http://dx.doi.org/10.1063/1.5043155.
Der volle Inhalt der QuelleFerry, D. K., S. M. Goodnick, V. R. Whiteside und I. R. Sellers. „Challenges, myths, and opportunities in hot carrier solar cells“. Journal of Applied Physics 128, Nr. 22 (14.12.2020): 220903. http://dx.doi.org/10.1063/5.0028981.
Der volle Inhalt der QuelleWatanabe, Daiki, Naofumi Kasamatsu, Yukihiro Harada und Takashi Kita. „Hot-carrier solar cells using low-dimensional quantum structures“. Applied Physics Letters 105, Nr. 17 (27.10.2014): 171904. http://dx.doi.org/10.1063/1.4900947.
Der volle Inhalt der QuelleLuque, Antonio, und Antonio Martí. „Electron–phonon energy transfer in hot-carrier solar cells“. Solar Energy Materials and Solar Cells 94, Nr. 2 (Februar 2010): 287–96. http://dx.doi.org/10.1016/j.solmat.2009.10.001.
Der volle Inhalt der QuelleLe Bris, Arthur, Jean Rodiere, Clément Colin, Stéphane Collin, Jean-Luc Pelouard, Rubén Esteban, Marine Laroche, Jean-Jacques Greffet und Jean-François Guillemoles. „Hot Carrier Solar Cells: Controlling Thermalization in Ultrathin Devices“. IEEE Journal of Photovoltaics 2, Nr. 4 (Oktober 2012): 506–11. http://dx.doi.org/10.1109/jphotov.2012.2207376.
Der volle Inhalt der QuelleGiteau, Maxime, Daniel Suchet, Stéphane Collin, Jean-François Guillemoles und Yoshitaka Okada. „Detailed balance calculations for hot-carrier solar cells: coupling high absorptivity with low thermalization through light trapping“. EPJ Photovoltaics 10 (2019): 1. http://dx.doi.org/10.1051/epjpv/2019001.
Der volle Inhalt der QuelleChen, Yuzhong, Yujie Li, Yida Zhao, Hongzhi Zhou und Haiming Zhu. „Highly efficient hot electron harvesting from graphene before electron-hole thermalization“. Science Advances 5, Nr. 11 (November 2019): eaax9958. http://dx.doi.org/10.1126/sciadv.aax9958.
Der volle Inhalt der QuelleChen Shuhan, 陈舒涵, 刘晓春 Liu Xiaochun, 王丽娜 Wang Lina und 弓爵 Gong Jue. „钙钛矿材料在热载流子太阳能电池中的研究进展“. Laser & Optoelectronics Progress 60, Nr. 13 (2023): 1316021. http://dx.doi.org/10.3788/lop230819.
Der volle Inhalt der QuelleKahmann, Simon, und Maria A. Loi. „Hot carrier solar cells and the potential of perovskites for breaking the Shockley–Queisser limit“. Journal of Materials Chemistry C 7, Nr. 9 (2019): 2471–86. http://dx.doi.org/10.1039/c8tc04641g.
Der volle Inhalt der QuelleGradauskas, J., O. Masalskyi, S. Asmontas, A. Suziedelis, A. Rodin und I. Zharchenko. „HOT CARRIER PHOTOCURRENT AS AN INTRINSIC LOSS IN A SINGLE JUNCTION SOLAR CELL“. Ukrainian Journal of Physical Optics 25, Nr. 1 (2024): 01106–12. http://dx.doi.org/10.3116/16091833/ukr.j.phys.opt.2024.01106.
Der volle Inhalt der Quelle