Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Hot carrier solar cell“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Hot carrier solar cell" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Hot carrier solar cell"
Ikeri, H. I., A. I. Onyia und F. N. Kalu. „Hot carrier exploitation strategies and model for efficient solar cell applications“. Chalcogenide Letters 18, Nr. 11 (November 2021): 745–57. http://dx.doi.org/10.15251/cl.2021.1811.745.
Der volle Inhalt der QuelleConibeer, Gavin, Robert Patterson, Lunmei Huang, Jean-Francois Guillemoles, Dirk Kőnig, Santosh Shrestha und Martin A. Green. „Modelling of hot carrier solar cell absorbers“. Solar Energy Materials and Solar Cells 94, Nr. 9 (September 2010): 1516–21. http://dx.doi.org/10.1016/j.solmat.2010.01.018.
Der volle Inhalt der QuelleKonovalov, Igor, und Vitali Emelianov. „Hot carrier solar cell as thermoelectric device“. Energy Science & Engineering 5, Nr. 3 (Juni 2017): 113–22. http://dx.doi.org/10.1002/ese3.159.
Der volle Inhalt der QuelleSogabe, Tomah, Kodai Shiba und Katsuyoshi Sakamoto. „Hydrodynamic and Energy Transport Model-Based Hot-Carrier Effect in GaAs pin Solar Cell“. Electronic Materials 3, Nr. 2 (11.05.2022): 185–200. http://dx.doi.org/10.3390/electronicmat3020016.
Der volle Inhalt der QuelleKönig, D., Y. Takeda und B. Puthen-Veettil. „Technology-compatible hot carrier solar cell with energy selective hot carrier absorber and carrier-selective contacts“. Applied Physics Letters 101, Nr. 15 (08.10.2012): 153901. http://dx.doi.org/10.1063/1.4757979.
Der volle Inhalt der QuelleWürfel, P., A. S. Brown, T. E. Humphrey und M. A. Green. „Particle conservation in the hot-carrier solar cell“. Progress in Photovoltaics: Research and Applications 13, Nr. 4 (2005): 277–85. http://dx.doi.org/10.1002/pip.584.
Der volle Inhalt der QuelleKönig, Dirk, Yasuhiko Takeda, Binesh Puthen-Veettil und Gavin Conibeer. „Lattice-Matched Hot Carrier Solar Cell with Energy Selectivity Integrated into Hot Carrier Absorber“. Japanese Journal of Applied Physics 51 (22.10.2012): 10ND02. http://dx.doi.org/10.1143/jjap.51.10nd02.
Der volle Inhalt der QuelleKönig, Dirk, Yasuhiko Takeda, Binesh Puthen-Veettil und Gavin Conibeer. „Lattice-Matched Hot Carrier Solar Cell with Energy Selectivity Integrated into Hot Carrier Absorber“. Japanese Journal of Applied Physics 51, Nr. 10S (01.10.2012): 10ND02. http://dx.doi.org/10.7567/jjap.51.10nd02.
Der volle Inhalt der QuelleBoyer-Richard, Soline, Fei Fan, Nicolas Chevalier, Antoine Létoublon, Alexandre Beck, Karine Tavernier, Shalu Rani et al. „Preliminary study of selective contacts for hot carrier solar cells“. EPJ Photovoltaics 15 (2024): 38. http://dx.doi.org/10.1051/epjpv/2024031.
Der volle Inhalt der QuelleFerry, D. K. „In search of a true hot carrier solar cell“. Semiconductor Science and Technology 34, Nr. 4 (20.03.2019): 044001. http://dx.doi.org/10.1088/1361-6641/ab0bc3.
Der volle Inhalt der QuelleDissertationen zum Thema "Hot carrier solar cell"
Vezin, Thomas. „Uneven temperatures in hot carrier solar cells : optical characterization and device simulation“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX061.
Der volle Inhalt der QuelleHot-carrier solar cells promise theoretical efficiencies exceeding 66%. However, actual devicesexhibit significantly lower efficiencies, around 10%. To understand this discrepancy, it is necessary to complicate our understanding of hot-carrier solar cells by introducing non-ideal effects. In this thesis, we study two “uneven temperature” effects: (i) the existence of a temperature gradient within the absorber (inhomogeneous temperature) and (ii) the existence of two different temperatures for electrons and holes. In the first case, we propose a theoretical description of transport adapted to this specific situation. We show that the transport is ambipolar and thermoelectric, and we propose a theoretical expression for the transport coefficients. Next, we suggest an experiment based on hyperspectral photoluminescence imaging in steady-state to characterize transport coefficients. In particular, we measure the ambipolar Seebeck coefficient of an (In,Ga,As)P quantum well. In the second case, we begin by proving that electron and hole temperatures s are both accessible through steady-state photoluminescence spectroscopy. Indeed, the absorptivity of a sample depends on the distributions of electrons and holes due to the ”band filling” effect. This technique requires that the sample be subjected to intense excitation, ensuring that the electrons and holes are in a degenerate regime. Finally, we studied the impact of these two uneven temperature effects on the operation of hot-carrier solar cells. We first calculated the voltage of a cell subject to either of these effects and showed that they result in identical cell voltage. We then demonstrated that the temperature difference between electrons and holes (at a fixed effective temperature) leads to an increase in cell efficiency, by about 1 to 2 points maximum. This effect being limited, precise characterization of electron and hole temperatures is unnecessary to design hot-carrier solar cells
Rodière, Jean. „Optoelectronic characterization of hot carriers solar cells absorbers“. Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066703/document.
Der volle Inhalt der QuelleThe hot carrier solar cell is an energy conversion device where theoretical conversion efficiencies reach almost 86%. Additionally to a standard photovoltaic cell, the device allows the conversion of kinetic energy excess of photogenerated carriers into electrical energy. To achieve this, the thermalisation process must be limited and electrical energy selective contacts added. In order to determine potential absorber performances and overcome the fabrication challenge of energy selective contacts, a set-up and the related method of mapping absolute photoluminescence spectra were used. This technique allows getting quasi-Fermi levels splitting and temperature of emission, both thermodynamic quantities characteristic of the performance of the absorbers. In this study, absorbers based on InGaAsP multiquantum wells on InP substrate were used. The thermodynamic quantities are determined and allow to access at quantities such as thermalisation rate but also a thermoelectric coefficient, so-called Photo-Seebeck. The quantitative analysis of the hot carriers regime, in relevant conditions for photovoltaic is a first: the analysed device indicates a potential photovoltaic conversion over the Schockley-Queisser limit. At last, as the device is supplied with electrical contacts, electrical characterization are made and compared to optical measurements. A first simulation is proposed to better understand the thermodynamic quantities evolution as a function of the electrical bias
Rodière, Jean. „Optoelectronic characterization of hot carriers solar cells absorbers“. Electronic Thesis or Diss., Paris 6, 2014. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2014PA066703.pdf.
Der volle Inhalt der QuelleThe hot carrier solar cell is an energy conversion device where theoretical conversion efficiencies reach almost 86%. Additionally to a standard photovoltaic cell, the device allows the conversion of kinetic energy excess of photogenerated carriers into electrical energy. To achieve this, the thermalisation process must be limited and electrical energy selective contacts added. In order to determine potential absorber performances and overcome the fabrication challenge of energy selective contacts, a set-up and the related method of mapping absolute photoluminescence spectra were used. This technique allows getting quasi-Fermi levels splitting and temperature of emission, both thermodynamic quantities characteristic of the performance of the absorbers. In this study, absorbers based on InGaAsP multiquantum wells on InP substrate were used. The thermodynamic quantities are determined and allow to access at quantities such as thermalisation rate but also a thermoelectric coefficient, so-called Photo-Seebeck. The quantitative analysis of the hot carriers regime, in relevant conditions for photovoltaic is a first: the analysed device indicates a potential photovoltaic conversion over the Schockley-Queisser limit. At last, as the device is supplied with electrical contacts, electrical characterization are made and compared to optical measurements. A first simulation is proposed to better understand the thermodynamic quantities evolution as a function of the electrical bias
Jiang, Chu-Wei School of Photovoltaic Engineering UNSW. „Theoretical and experimental study of energy selective contacts for hot carrier solar cells and extensions to tandem cells“. Awarded by:University of New South Wales. School of Photovoltaic Engineering, 2005. http://handle.unsw.edu.au/1959.4/23065.
Der volle Inhalt der QuelleZhang, Qingrong. „Hot Carriers in Thin-film Absorbers“. Thesis, KTH, Skolan för industriell teknik och management (ITM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-303146.
Der volle Inhalt der QuelleSolenergi är en av de mest lovande källorna för att konfrontera energikrisen. Och heta bärsolceller kan vara framtiden för att öka solcellernas effektivitet till att överskrida den teoretiska effektivitetsgränsen, Shockley-Queisser-gränsen. Efter teoretisk förståelse av några väsentliga aspekter av varmbärarsolceller, för att bättre förstå egenskaperna hos heta bärare och termismeringsmekanismerna bakom den, utförs analys baserad på fotoluminescensspektra för GaAs tunnfilmsabsorberprover med olika tjocklekar. Enligt resultaten av analysen kommer information om egenskaperna hos heta bärare i tunnfilmiga GaA-absorberare att extraheras, liksom en slutsats baserad på dessa resultat.
Behaghel, Benoît. „Fabrication and investigation of III-V quantum structured solar cells with Fabry-Pérot cavity and nanophotonics in order to explore high-efficiency photovoltaic concepts : towards an intermediate band assisted hot carrier solar cell“. Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066729/document.
Der volle Inhalt der QuelleIn the past decade, photovoltaics (PV) has become a key player for the future of worldwide energy generation. Innovation in PV is likely to rely on high efficiency PV with flexible and lightweight thin films to enable PV deployement for mobile applications. In the framework of the Japanese-French laboratory “NextPV”, this thesis investigates the development of III-V quantum structured solar cells to explore high-efficiency photovoltaic concepts especially intermediate band solar cells (IBSC). Quantum structured IBSC have proven to be limited by thermal escape at room temperature and by low subbandgap light absorption. Following a consistent approach, we evaluate the topology, thermal escape mechanism, quantum structure and optical absorption of In(Ga)As quantum dots in a wide gap Al0.2GaAs host material. We also characterize quantitatively the device operation and improve the optical design. For a high irradiation, we evidence a hot carrier population in the quantum dots. At the same time, sequential two-photon absorption (S-TPA) is demonstrated both optically and electrically. We also show that S-TPA for both subbandgap transitions can be enhanced by a factor x5-10 with light management techniques, for example by implementation of Fabry-Perot cavities with the different epitaxial transfer methods that we developed. More advanced periodical nanostructures were also fabricated in the case of multi-quantum well solar cells using nanoimprint lithography techniques. Overall we discuss the possibility of realizing intermediate-band-assisted hotcarrier solar cells with light management to open the path for high-efficiency quantum structured IBSC
Behaghel, Benoît. „Fabrication and investigation of III-V quantum structured solar cells with Fabry-Pérot cavity and nanophotonics in order to explore high-efficiency photovoltaic concepts : towards an intermediate band assisted hot carrier solar cell“. Electronic Thesis or Diss., Paris 6, 2017. http://www.theses.fr/2017PA066729.
Der volle Inhalt der QuelleIn the past decade, photovoltaics (PV) has become a key player for the future of worldwide energy generation. Innovation in PV is likely to rely on high efficiency PV with flexible and lightweight thin films to enable PV deployement for mobile applications. In the framework of the Japanese-French laboratory “NextPV”, this thesis investigates the development of III-V quantum structured solar cells to explore high-efficiency photovoltaic concepts especially intermediate band solar cells (IBSC). Quantum structured IBSC have proven to be limited by thermal escape at room temperature and by low subbandgap light absorption. Following a consistent approach, we evaluate the topology, thermal escape mechanism, quantum structure and optical absorption of In(Ga)As quantum dots in a wide gap Al0.2GaAs host material. We also characterize quantitatively the device operation and improve the optical design. For a high irradiation, we evidence a hot carrier population in the quantum dots. At the same time, sequential two-photon absorption (S-TPA) is demonstrated both optically and electrically. We also show that S-TPA for both subbandgap transitions can be enhanced by a factor x5-10 with light management techniques, for example by implementation of Fabry-Perot cavities with the different epitaxial transfer methods that we developed. More advanced periodical nanostructures were also fabricated in the case of multi-quantum well solar cells using nanoimprint lithography techniques. Overall we discuss the possibility of realizing intermediate-band-assisted hotcarrier solar cells with light management to open the path for high-efficiency quantum structured IBSC
Hirst, Louise. „A spectroscopic study of strain-balanced InGaAs/GaAsP quantum well structures as absorber materials for hot carrier solar cells“. Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/10474.
Der volle Inhalt der QuelleLe, bris Arthur. „Etude de faisabilité d'un dispositif photovoltaïque à porteurs chauds“. Phd thesis, Ecole Centrale Paris, 2011. http://tel.archives-ouvertes.fr/tel-00646713.
Der volle Inhalt der QuelleHo, Carr Hoi Yi. „Toward better performing organic solar cells: impact of charge carrier transport and electronic interactions in bulk heterojunction blends /Ho Hoi Yi, Carr“. HKBU Institutional Repository, 2017. https://repository.hkbu.edu.hk/etd_oa/359.
Der volle Inhalt der QuelleBücher zum Thema "Hot carrier solar cell"
United States. National Aeronautics and Space Administration., Hrsg. Investigation of the basic physics of high efficiency semiconductor hot carrier solar cell: Annual status report for NASA grant #NAG 3-1490. [Washington, DC: National Aeronautics and Space Administration, 1995.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Hot carrier solar cell"
Takeda, Yasuhiko. „Requisites for Highly Efficient Hot-Carrier Solar Cells“. In Lecture Notes in Nanoscale Science and Technology, 187–232. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8148-5_8.
Der volle Inhalt der QuelleKita, Takashi, Yukihiro Harada und Shigeo Asahi. „Influences of Carrier Generation and Recombination on the Solar Cell Conversion Efficiency“. In Energy Conversion Efficiency of Solar Cells, 43–54. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9089-0_4.
Der volle Inhalt der QuelleSah, Santosh Prasad, und Atsushi Nishikata. „Enhancing Corrosion Resistance of Stainless Steel by Hot-Dip Aluminizing for High-Temperature Solar Thermal Application“. In CO2 Free Ammonia as an Energy Carrier, 99–118. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4767-4_7.
Der volle Inhalt der QuelleVitanov, P., K. Ivanova, D. Velkov, Y. G. Kuddan und N. Tyutyundzhiev. „The Behavior Of Pv Module Parameters As A Function Of Solar Cell Temperature In Hot Climates“. In Photovoltaic and Photoactive Materials — Properties, Technology and Applications, 325–28. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0632-3_32.
Der volle Inhalt der QuelleGibelli, François, Laurent Lombez und Jean-François Guillemoles. „Hot-Carrier Solar Cells: Modeling Carrier Transport“. In Advanced Micro- and Nanomaterials for Photovoltaics, 53–92. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-814501-2.00004-9.
Der volle Inhalt der QuelleIgor, Vurgaftman. „Solar Cells, Thermophotovoltaics, and Nonlinear Devices Based on Quantum Wells“. In Bands and Photons in III-V Semiconductor Quantum Structures, 585–616. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198767275.003.0015.
Der volle Inhalt der QuelleGhasemzadeh, Farzaneh, und Mostafa Esmaeili Shayan. „Nanotechnology in the Service of Solar Energy Systems“. In Nanotechnology and the Environment. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.93014.
Der volle Inhalt der QuelleAïssa, Brahim, Fahhad Alharbi und Nouar Tabet. „Solar cell fundamentals“. In Photovoltaic Technology for Hot and Arid Environments, 23–38. Institution of Engineering and Technology, 2023. http://dx.doi.org/10.1049/pbpo144e_ch2.
Der volle Inhalt der QuelleAïssa, Brahim, Marie Buffiere und Mohammad I. Hossain. „Solar cell technologies“. In Photovoltaic Technology for Hot and Arid Environments, 59–109. Institution of Engineering and Technology, 2023. http://dx.doi.org/10.1049/pbpo144e_ch4.
Der volle Inhalt der QuelleShrestha, Santosh, Gavin Conibeer und Shujuan Huang. „Solar Cells Based on Hot Carriers and Quantum Dots“. In Advanced Nanomaterials for Solar Cells and Light Emitting Diodes, 175–213. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-813647-8.00006-0.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Hot carrier solar cell"
Legrand, Marie, Maxime Giteau, Daniel Suchet, Jean-Francois Guillemoles, Meita Asami, Kentaroh Watanabe, Takaya Kubo, Hiroshi Segawa und Yoshitaka Okada. „Bridging the Gap Between Steady-State and Transient Characterization of Carrier Cooling for Hot-Carrier Solar Cells“. In 2024 IEEE 52nd Photovoltaic Specialist Conference (PVSC), 1270–72. IEEE, 2024. http://dx.doi.org/10.1109/pvsc57443.2024.10748812.
Der volle Inhalt der QuelleCavassilas, Nicolas, Fabienne Michelini, Marc Bescond und Thibault Joie. „Hot-carrier solar cell NEGF-based simulations“. In SPIE OPTO, herausgegeben von Alexandre Freundlich, Laurent Lombez und Masakazu Sugiyama. SPIE, 2016. http://dx.doi.org/10.1117/12.2212612.
Der volle Inhalt der QuelleConibeer, Gavin, Santosh Shrestha, Shujuan Huang, Robert Patterson, Hongze Xia, Yu Feng, Pengfei Zhang et al. „Hot carrier solar cell absorbers: materials, mechanisms and nanostructures“. In SPIE Solar Energy + Technology, herausgegeben von Oleg V. Sulima und Gavin Conibeer. SPIE, 2014. http://dx.doi.org/10.1117/12.2067926.
Der volle Inhalt der QuelleHanna, Mark C., Zhenghao Lu und Arthur J. Nozik. „Hot carrier solar cells“. In Future generation photovoltaic technologies. AIP, 1997. http://dx.doi.org/10.1063/1.53477.
Der volle Inhalt der QuelleHirst, Louise C., Matthew P. Lumb, Raymond Hoheisel, Simon P. Philipps, Andreas W. Bett und Robert J. Walters. „Hot-carrier solar cell spectral insensitivity: Why develop the hot-carrier solar cell when we have multi-junction devices?“ In SPIE OPTO, herausgegeben von Alexandre Freundlich und Jean-François Guillemoles. SPIE, 2014. http://dx.doi.org/10.1117/12.2040698.
Der volle Inhalt der QuelleBasu, Indranil, Amit Kumar Mandali, Pijus Kanti Samanta, Vishal Kumar, Md Afsar Hussain, Abhilash, Akshay Kumar, Shivam Shashank, Suraj Kumar Singh und Kumar Anubhav. „Hot carrier solar cell (HCSC): A new generation nano-structured solar cell“. In 2017 8th Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON). IEEE, 2017. http://dx.doi.org/10.1109/iemecon.2017.8079608.
Der volle Inhalt der QuellePusch, Andreas, Milos Dubajic, Nicholas J. Ekins-Daukes und Stephen Bremner. „Fundamental Aspects of Hot Carrier Solar Cell Operation“. In 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC). IEEE, 2020. http://dx.doi.org/10.1109/pvsc45281.2020.9300536.
Der volle Inhalt der QuelleYang, Liu, Mengzhu Hu und Sailing He. „Hot-carrier solar cell based on plasmonic nanofocusing“. In 2016 Progress in Electromagnetic Research Symposium (PIERS). IEEE, 2016. http://dx.doi.org/10.1109/piers.2016.7735705.
Der volle Inhalt der QuelleTaylor, P. C., J. D. Fields und R. T. Collins. „On the road toward a hot carrier solar cell“. In SPIE Optics + Photonics for Sustainable Energy, herausgegeben von Oleg V. Sulima und Gavin Conibeer. SPIE, 2015. http://dx.doi.org/10.1117/12.2190910.
Der volle Inhalt der QuelleConibeer, Gavin, Milos Dubajic, Santosh Shrestha, Stephen Bremner, Robert Patterson und Bharat Thapa. „Investigation of materials for hot carrier solar cell absorbers“. In 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC). IEEE, 2019. http://dx.doi.org/10.1109/pvsc40753.2019.8980765.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Hot carrier solar cell"
Hardin, Brian, Craig Peters und Edward Barnard. Three-dimensional minority carrier lifetime mapping of thin film semiconductors for solar cell applications. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1411710.
Der volle Inhalt der Quelle