Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Host-Guest moleculars“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Host-Guest moleculars" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Host-Guest moleculars"
Malinska, Maura. „Insights into molecular recognition from the crystal structures of p-tert-butylcalix[6]arene complexed with different solvents“. IUCrJ 9, Nr. 1 (16.11.2021): 55–64. http://dx.doi.org/10.1107/s2052252521010678.
Der volle Inhalt der QuelleChen, Kaifei, Seyed Hesam Mousavi, Ranjeet Singh, Randall Q. Snurr, Gang Li und Paul A. Webley. „Gating effect for gas adsorption in microporous materials—mechanisms and applications“. Chemical Society Reviews 51, Nr. 3 (2022): 1139–66. http://dx.doi.org/10.1039/d1cs00822f.
Der volle Inhalt der QuelleLebedinskiy, Konstantin, Ivan Barvík, Zdeněk Tošner, Ivana Císařová, Jindřich Jindřich und Radim Hrdina. „Spatial arrangements of cyclodextrin host–guest complexes in solution studied by 13C NMR and molecular modelling“. Beilstein Journal of Organic Chemistry 20 (20.02.2024): 331–35. http://dx.doi.org/10.3762/bjoc.20.33.
Der volle Inhalt der QuelleElemans, Johannes A. A. W., Roeland J. M. Nolte und Alan E. Rowan. „Hierarchical self-assembly of a host-guest porphyrin array“. Journal of Porphyrins and Phthalocyanines 07, Nr. 04 (April 2003): 249–54. http://dx.doi.org/10.1142/s1088424603000331.
Der volle Inhalt der QuelleLiang, Guodong, Jacky W. Y. Lam, Wei Qin, Jie Li, Ni Xie und Ben Zhong Tang. „Molecular luminogens based on restriction of intramolecular motions through host–guest inclusion for cell imaging“. Chem. Commun. 50, Nr. 14 (2014): 1725–27. http://dx.doi.org/10.1039/c3cc48625g.
Der volle Inhalt der QuelleSuzuki, Akira, Yuya Miyake, Ryoga Shibata und Kazuyuki Takai. „Spin and charge interactions between nanographene host and ferrocene“. Beilstein Journal of Organic Chemistry 20 (02.05.2024): 1011–19. http://dx.doi.org/10.3762/bjoc.20.89.
Der volle Inhalt der QuelleSun, Zhaoxi, Qiaole He, Zhihao Gong, Payam Kalhor, Zhe Huai und Zhirong Liu. „A General Picture of Cucurbit[8]uril Host–Guest Binding: Recalibrating Bonded Interactions“. Molecules 28, Nr. 7 (31.03.2023): 3124. http://dx.doi.org/10.3390/molecules28073124.
Der volle Inhalt der QuelleYoshida, Hiroaki, Ken Kikuta und Toshiyuki Kida. „Fabrication of supramolecular cyclodextrin–fullerene nonwovens by electrospinning“. Beilstein Journal of Organic Chemistry 15 (09.01.2019): 89–95. http://dx.doi.org/10.3762/bjoc.15.10.
Der volle Inhalt der QuelleArchana Sumohan Pillai, Sivaraj Ramasamy, Varnitha Manikandan, Aleyamma Alexander und Israel V.M.V. Enoch. „Anticancer Activity of the Host-Guest Complex of Camptothecin with β-Cyclodextrin-Folate Conjugate. Encapsulation and Efficacy“. International Journal of Research in Pharmaceutical Sciences 11, SPL4 (21.12.2020): 1286–91. http://dx.doi.org/10.26452/ijrps.v11ispl4.4294.
Der volle Inhalt der QuelleWen, Huimin, Wengang Li, Jiewei Chen, Gen He, Longhua Li, Mark A. Olson, Andrew C. H. Sue, J. Fraser Stoddart und Xuefeng Guo. „Complex formation dynamics in a single-molecule electronic device“. Science Advances 2, Nr. 11 (November 2016): e1601113. http://dx.doi.org/10.1126/sciadv.1601113.
Der volle Inhalt der QuelleDissertationen zum Thema "Host-Guest moleculars"
Moncelsi, Giulia. „Stimuli-responsive host-guest systems decorated with hemithioindigo and spiropyran units“. Doctoral thesis, Universitat Rovira i Virgili, 2019. http://hdl.handle.net/10803/668163.
Der volle Inhalt der QuelleEl objetivo del trabajo de investigación incluido en esta tesis es el diseño y síntesis de sistemas receptor-huésped capaces de responder a estímulos externos. Estos sistemas cuentan con interruptores moleculares fotosensibles unidos covalentemente al receptor o al huésped. Los interruptores moleculares presentados son hemitioindigos y espiropiranos, mientras que las estructuras macrocíclicas están basadas en calix[4]arenos y calix[4]pirroles. Se estudió cómo la irradiación con luz y el tratamiento acido-base inducen la isomerización del interruptor molecular, así como el efecto que este proceso tiene en la afinidad de enlace y las propiedades de encapsulación de los receptores unimoleculares y las cápsulas supramoleculares. Se describe la síntesis de dos hemitioindigo N-oxidos. Se investigó su fotoisomerización reversible Z/E con luz visible (λ = 450 nm) al mismo tiempo que se realizó un estudio detallado de la interacción 1:1 y su efecto en la isomerización Z- y E-HTI en la cavidad aromática polar de un calix[4]pirrol super aril-extendido en disolvente orgánico. A continuación, se diseñaron y sintetizaron dos calix[4]arenos tetraurea decorados con cuatro hemitioindigos en su parte superior. Se describen los intentos de sintetizar dichos receptores y su dimerización en una variedad de disolventes orgánicos apolares y en presencia de tetrametil fosfonio. También se describe la fotoisomerización de las tetraureas en su estado monomérico y formando agregados. Finalmente, se sintetizó un calix[4]areno con unidades tetraurea capaz de responder a estímulos externos que cuenta con cuatro espiropiranos en su parte superior. Este receptor se auto ensambla formando capsulas homo- y heterodiméricas, esta última en presencia de un calix[4]pirrol similar y un N-oxido adecuado. Se discuten los estudios de auto-ensamblaje, “self-sorting”, foto- y acidocrómicos de dichos sistemas capsulares en disolventes clorados. Los resultados apuntan a que el tratamiento acido-base es reversible y predicen un buen comportamiento para su uso como transportadores y liberación de moléculas.
The aim of the research work included in this doctoral thesis is the design and synthesis of stimuli-responsive host-guest systems in which photoswitchable units are covalently incorporated into either the receptor’s or the guest’s scaffold. We use two photoswitches with distinct properties, hemithioindigos and spiropyrans, and two types of macrocyclic scaffolds based on calix[4]arene and calix[4]pyrrole. We study how light-irradiation and acid-base treatments induce the isomerization of the molecular switch. We were especially interested in coupling the isomerization processes with the binding affinity and the encapsulation properties of unimolecular receptors and supramolecular capsules, respectively. First, we describe the synthesis and photochemical characterization of two hemithioindigos featuring a terminal N-oxide moiety. We probe their Z/E reversible photoisomerization with visible light (λ = 450 nm) and we provide a detailed study of the 1:1 binding and its effect on the switching of the Z- and E-HTI isomers into the polar aromatic cavity of a super aryl-extended calix[4]pyrrole receptor in organic solvent. Next, we design and synthesize two tetraurea calix[4]arenes decorated with four hemithioindigo units at the upper rim. We describe the synthetic efforts to obtain these receptors and we investigate their dimerization in a variety of non-polar organic solvents and in the presence of tetramethyl phosphonium salts. We also report the tentative photoisomerization of the tetraureas in the monomeric state and involved in aggregates. Finally, we synthesize a stimuli-responsive tetraurea calix[4]arene featuring four appended spiropyran groups at its upper rim, which self-assembles into a homo- or heterodimeric capsule, the latter in the presence of a calix[4]pyrrole counterpart and a suitable N-oxide templating guest. The self-assembly, self-sorting, photo- and acidochromic studies of the capsular systems in chlorinated solvents are discussed. Our results suggest that the acid-base treatments are reversible and augur well for the transport and release of molecular cargo.
Bouanga, Boudiombo Jacky Sorrel. „Molecular selectivity by host-guest methods“. Doctoral thesis, Faculty of Science, 2021. http://hdl.handle.net/11427/33667.
Der volle Inhalt der QuelleBezuidenhout, Charl Xavier. „Polar ordering of guest molecules in host-guest inclusion complexes“. Thesis, Stellenbosch : Stellenbosch University, 2011. http://hdl.handle.net/10019.1/18107.
Der volle Inhalt der QuelleENGLISH ABSTRACT: 2,7-dimethylocta-3,5-diyne-2,7-diol forms inclusion complexes with various guests molecules, where the guest molecules are polar-ordered. A Cambridge Structural Database (CSD) search revealed ten inclusion complexes where the guest molecules were polar-ordered. Using Density Functional Theory (DFT) computational methods (in the absence of the host), we evaluated the intra-channel and lateral guest-guest interactions between the guest molecules. Two polar-ordered inclusion complexes ((1,4,7-cyclohexane-1,2,4,5,7,8-hexaoxonane)·CHCl3 and (2,4,6-(endolongifolyl)-1,3,5-trioxane)·CDCl3) were singled out in the CSD search for further studies along with 2,7-dimethylocta-3,5-diyne-2,7-diol. Synthesis of any 1,2,4,5,7,8-hexaoxonane and 1,3,5-trioxane derivatives was attempted to establish whether the polar-ordering ability extends into the family of compounds. We managed to produce three new polar-ordered inclusion complexes with 2,7-dimethylocta-3,5-diyne-2,7-diol (ClC(CH3)3, BrC(CH3)3 and IC(CH3)3), thus extending the series to six guest polar-ordered systems. We were only able to synthesise 1,4,7-cyclohexane-1,2,4,5,7,8-hexaoxonane and produce the CHCl3 inclusion complex and one new polar-ordered inclusion complex (CHBr3). Three 1,3,5-trioxanes was synthesised (the cyclohexyl, cyclohex-3-en-1-yl and cyclopentyl derivatives), which did not include any solvents. However, these 1,3,5-trioxanes also form polar-ordered crystals. These compounds and inclusion complexes were analysed by means of single crystal X-ray diffraction to determine their crystal structures. All the crystal structures could be solved and refined to adequate accuracy (except for 2,4,6-tri(cyclopentyl)-1,3,5-trioxane) with no disorder of the guest molecules (where applicable) and their polar-ordering property investigated. Due to their vast molecular differences, these compounds were studied separately by means of visual crystal structure analysis and computational modelling techniques (Density functional theory, molecular mechanics, molecular dynamics and molecular quench dynamics).
AFRIKAANSE OPSOMMING: 2,7-dimetielokta-3,5-diyn-2,7-diol vorm insluitingskomplekse met verskeie molekules as gaste, waar die gas-molekules polêr georden is. 'n Cambridge Struktuur Databasis (CSD) soektog lewer tien insluitings komplekse waarvan die gas-molekules polêr georden is. Deur gebruik te maak van Digtheidsfunksionele teorie (DFT) berekeninge (in die afwesigheid van die gasheer) het ons die inter-kanaal en wedersydse gas-gas interaksies tussen die gas molekules geëvalueer. Twee polêr geordende insluitingskomplekse ((1,4,7-sikloheksaan-1,2,4,5,7,8-heksaoksonaan)·CHCl3 en (2,4,6-(endolongifolyl)-1,3,5-trioksaan)·CDCl3) is uitgesonder uit die CSD soektog vir verdere studies saam met 2,7-dimetielokta-3,5-diyn-2,7-diol. Aanslag was gemaak om enige 1,2,4,5,7,8-heksaoksonaan en 1,3,5-trioksaan derivate te sintetiseer en vas te stel of die polêre ordensvermoë oor die familie van verbindings strek. Ons het daarin geslaag om drie nuwe polêr geordende insluitingskomplekse op te lewer met 2,7-dimetielokta-3,5-diyn-2,7-diol (Cl(CH3)3, BrC(CH3)3 en I(CH3)3), en sodoende die reeks uitgebrei na ses gaste wat polêr geordende insluitingskomplekse vorm. Net 1,4,7-sikloheksaan-1,2,4,5,7,8-heksaoksonaan kon gesintetiseer word en dit lewer twee polêr geordende insluitingskomplekse (CHCl3 en CHBr3 (nuut)). Drie 1,3,5-trioksane is gesintetiseer (die sikloheksiel, sikloheks-3-een-1-iel en siklopentiel derivate) en het nie enige oplosmiddels (gaste) ingesluit nie. Nietemin vorm hiedie 1,3,5-trioksane ook polêr geordende kristalle. Hierdie verbindings en insluitingskomplekse is geanaliseer deur middel van enkelkristal X-straal diffraksie om hul kristalstrukture te bepaal. Alle kristalstrukture was opgelos en verwerk tot voldoende akkuraatheid (behalwe vir 2,4,6-tri(siklopentiel)-1,3,5-trioxane) met geen wanorde in die gas molekuul posisies nie (waar van toepassing) en hul polêre ordensvermoë is ondersoek. As gevolg van groot verskille in hul molekulêre strukture, is hierdie verbindings afsonderlik bestudeer deur middel van molekulêre modellerings metodes (Digtheidsfunksionele teorie, molekulêre meganika, molekulêre dinamika en molekulêre stakings dinamika).
Grotzfeld, Robert M. (Robert Martin). „Studies in molecular recognition : self-assembling molecular host-guest sytems“. Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/10865.
Der volle Inhalt der QuelleHOUSE, BRIAN EDWARD. „HOST-[2] ROTAXANES: GUEST RECOGNITION AND CELLULAR TRANSPORT“. University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1155826127.
Der volle Inhalt der QuelleMontalvo, Acosta Joel José. „Computational approaches to molecular recognition : from host-guest to protein-ligand binding“. Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAF051/document.
Der volle Inhalt der QuelleMolecular recognition is a very interesting problem, and foremost, a current challenge for biophysical chemistry. Having reliable predictions on the specific recognition between molecules is highly priority as it will provide an insight of fundamental problems and will raise relevant technological applications. The dissertation presented here is centered on a quantitative analysis of molecular recognition in solution for host-guest, protein-ligand binding and catalysis. The statistical mechanics framework used to describe the state-of-the-art for receptor-ligand binding is an inflection point for the developing of new improved and methods. In fact, a highly performanced and accurate model was obtained for the analysis of host-guest binding. Finally, the presented models were used as a reliable predictive tools for discovering new chemical entities for enhance catalysis in solution
MacGillivray, Leonard R. „Self-assembly for the construction of discrete and infinite host-guest architecture /“. free to MU campus, to others for purchase, 1998. http://wwwlib.umi.com/cr/mo/fullcit?p9924903.
Der volle Inhalt der QuelleSMUKSTE, INESE. „ARTIFICIAL RECEPTORS FOR MOLECULAR RECOGNITION OF AMINO ACIDS, PEPTIDES AND CARBOHYDRATES“. University of Cincinnati / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1029757614.
Der volle Inhalt der QuelleGarcía, Simón Cristina. „Synthesis of molecular nanocapsules for supramolecular host-guest chemistry and enzyme-like catalysis“. Doctoral thesis, Universitat de Girona, 2015. http://hdl.handle.net/10803/289567.
Der volle Inhalt der QuelleLa química d’autoacoblament dirigida per enllaços de coordinació ha facilitat l’obtenció d’una gran varietat d’estructures químiques molt sofisticades, la complexitat de les quals hagués estat molt difícil d’aconseguir mitjançant la convencional química covalent. La síntesis de càpsules de coordinació tridimensionals rep un interès especial degut a la multitud d’aplicacions que aquestes ofereixen, destacant la seva aplicació en el reconeixement selectiu de molècules (química receptor-substrat), modulació de la reactivitat (nanoreactors), sensors moleculars o les seves aplicacions biològiques. El principal objectiu d’aquesta tesi doctoral, que ha estat realitzada al grup QBIS-CAT de la Universitat de Girona, és la preparació de nanocàpsules de coordinació de diferents mides (1 i 2), i la seva aplicació en el reconeixement selectiu de substrats moleculars específics. Per una banda, la nanocàpsula més petita (1) és altament selectiva per substrats plans, aniònics amb sistemes . Per altra banda, la nanocàpsula de majors dimensions (2) pot encapsular ful·lerens de manera ràpida i a temperatura ambient, simplement amarant una mostra sòlida de la nanocàpsula en una dissolució de ful·lerens. A més, la nanocàpsula més gran es va emprar amb èxit en la separació selectiva de C60 d’una barreja de ful·lerens utilitzant un senzill protocol experimental basats en rentats del sistema nanocàpsula-ful·lerè en estat sòlid. Actualment, les aplicacions dels ful·lerens (ex. en cel·les solars o en medecina) es veuen limitades per la purificació d’aquestes molècules, que generalment s’aconsegueix mitjançant processos tediosos i costos. Els resultats d’aquesta investigació podrien facilitar el desenvolupament de noves metodologies per la purificació de barreges de ful·lerens. Finalment, la cavitat interior de la nanocàpsula de majors dimensions, 2, es va utilitzar per encapsular un catalitzador de rodi quiral que va donar alts valors de selectivitat, dels més alts que s’han observat per a un catalitzador de rodi monolligat. Els resultats obtinguts demostren que l’encapsulació del catalitzador incrementa notablement l’estereoselectivitat de la reacció, i indiquen que el confinament del catalitzador dins la caixa causa un efecte d’inducció de la selectivitat similar al que té lloc en els centres catalítics dels enzims.
Norrehed, Sara. „Modulation of Molecular Properties : Host–Guest Interactions for Structural Analysis and Chemical Reactions“. Doctoral thesis, Uppsala universitet, Syntetisk organisk kemi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-207138.
Der volle Inhalt der QuelleBücher zum Thema "Host-Guest moleculars"
Symposium on Host-Guest Molecular Interactions: from Chemistry to Biology (1990 : Ciba Foundation), Hrsg. Host-guest molecular interactions: From chemistry to biology. Chichester: Wiley, 1991.
Den vollen Inhalt der Quelle findenFranco, Laeri, Hrsg. Host-guest-systems based on nanoporous crystals. Weinheim: Wiley-VCH, 2003.
Den vollen Inhalt der Quelle findenChadwick, Derek J., und Kate Widdows, Hrsg. Ciba Foundation Symposium 158 - Host-Guest Molecular Interactions: From Chemistry to Biology. Chichester, UK: John Wiley & Sons, Ltd., 1991. http://dx.doi.org/10.1002/9780470514085.
Der volle Inhalt der QuelleCrowe, Declan Brendan. Macrocyclic host molecules designed to selectively bind and transport ammonium and primary ammonium guest cations. Birmingham: University of Birmingham, 1991.
Den vollen Inhalt der Quelle findenTite, Elizabeth Louise. The study of preorganised redox-active host molecules designed to bind neutral and cationic guest species. Birmingham: University of Birmingham, 1989.
Den vollen Inhalt der Quelle findenSymposium, CIBA Foundation, Derek J. Chadwick und Kate Widdows. Host-Guest Molecular Interactions: From Chemistry to Biology. Wiley & Sons, Limited, John, 2007.
Den vollen Inhalt der Quelle findenChadwick, Derek J., und Kate Widdows. Host-Guest Molecular Interactions: From Chemistry to Biology. Wiley & Sons, Incorporated, John, 2008.
Den vollen Inhalt der Quelle findenMcGuiness, C. L., R. K. Smith, M. E. Anderson, P. S. Weiss und D. L. Allara. Nanolithography using molecular films and processing. Herausgegeben von A. V. Narlikar und Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.23.
Der volle Inhalt der QuelleSymposium, CIBA Foundation. Host-Guest Molecular Interactions: From Chemistry to Biology - No. 158 (CIBA Foundation Symposia Series). John Wiley & Sons, 1991.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Host-Guest moleculars"
Cram, D. J. „Designed Host-Guest Relationships“. In Design and Synthesis of Organic Molecules Based on Molecular Recognition, 153–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-70926-5_13.
Der volle Inhalt der QuelleBlaschke, G. „Stereoselective Guest-Host Relationships“. In Design and Synthesis of Organic Molecules Based on Molecular Recognition, 227–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-70926-5_18.
Der volle Inhalt der QuelleShinkai, Seiji. „Molecular Recognition of Calixarene-Based Host Molecules“. In United States-Japan Seminar on Host-Guest Chemistry, 193–201. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0969-4_22.
Der volle Inhalt der QuelleVögtle, Fritz, Heinz Sieger und Walter Manfred Müller. „Complexation of Uncharged Molecules and Anions by Crown-Type Host Molecules“. In Host Guest Complex Chemistry / Macrocycles, 319–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70108-5_8.
Der volle Inhalt der QuelleDearden, David V. „Host-Guest Molecular Recognition Without Solvents“. In Physical Supramolecular Chemistry, 229–47. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0317-3_15.
Der volle Inhalt der QuelleBaars, Maurice W. P. L., und E. W. Meijer. „Host-Guest Chemistry of Dendritic Molecules“. In Dendrimers II, 131–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-46577-4_3.
Der volle Inhalt der QuelleCheetham, A. K., und B. K. Peterson. „Computer Simulations of Host-Guest Complexes“. In Inclusion Phenomena and Molecular Recognition, 277–87. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0603-0_29.
Der volle Inhalt der QuelleSutherland, Ian O. „Molecular Recognition by Macropolycyclic Hosts“. In United States-Japan Seminar on Host-Guest Chemistry, 213–26. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0969-4_24.
Der volle Inhalt der QuelleGandour, Richard D. „Molecular Recognition in Carnitine Acyltransferases“. In United States-Japan Seminar on Host-Guest Chemistry, 39–51. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0969-4_6.
Der volle Inhalt der QuelleVinter, J. G., und M. R. Saunders. „Molecular Modelling Approaches to Host-Guest Complexes“. In Novartis Foundation Symposia, 249–65. Chichester, UK: John Wiley & Sons, Ltd., 2007. http://dx.doi.org/10.1002/9780470514085.ch16.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Host-Guest moleculars"
Singer, Kenneth D. „Optical Nonlinearities of Guest-Host-Polymer Structures“. In Nonlinear Optical Properties of Materials. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/nlopm.1988.mb4.
Der volle Inhalt der QuelleMolis, Steven E., und Robert J. Twieg. „Fourier-transform IR characterization of molecular orientation in poled polymer glasses“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.the2.
Der volle Inhalt der QuelleIkeda, Tomiki, und Osamu Tsutsumi. „Liquid Crystalline Materials for Photonics: Optical Switching by Means of Photochemical Phase Transition of Liquid-Crystalline Azobenzene Films“. In Spectral Hole-Burning and Related Spectroscopies: Science and Applications. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/shbs.1994.wd63.
Der volle Inhalt der QuelleYagyu, Eiji, Tetsuya Nishltnura und Motomu Yoshimura. „Quantitative and Theoretical Analysis of PHB-Hole Feature under Applying Electric Field.“ In Spectral Hole-Burning and Luminescence Line Narrowing: Science and Applications. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/shbl.1992.pd2.
Der volle Inhalt der QuelleSanta María, Dolores, R. Claramunt, M. García und M. Farrán. „Molecular Modeling:Prediction of the structure of Host-Guest complexes“. In The 14th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2010. http://dx.doi.org/10.3390/ecsoc-14-00407.
Der volle Inhalt der QuelleWu, J. W., J. F. Valley, M. Stiller, S. Ermer, E. S. Binkley, J. T. Kenney, G. F. Lipscomb und R. Lytel. „Poled polyimides for thermally stable electrooptic material“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.fq4.
Der volle Inhalt der QuelleDeeg, F. W., M. Ehrl und C. Bräuchle. „Dynamics and Guest-host Interactions of Chromophores in Inorganic Cage Structures“. In Spectral Hole-Burning and Luminescence Line Narrowing: Science and Applications. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/shbl.1992.tub5.
Der volle Inhalt der QuelleDogariu, Arthur, Rahul Gupta, Alan J. Heeger, Hailiang Wang, Hideyuki Murata und Zakya H. Kafafi. „Time-resolved Foerster energy transfer in molecular and polymeric guest-host systems“. In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, herausgegeben von Zakya H. Kafafi. SPIE, 1999. http://dx.doi.org/10.1117/12.372724.
Der volle Inhalt der QuelleSarkas, Harry W., Charles D. Merritt und Zakya H. Kafafi. „Preparation, Optical Spectroscopy, and Fluorescence of Molecular Organic Composites for Light-Emitting Diodes“. In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/otfa.1995.md.35.
Der volle Inhalt der QuelleIchino, Y., Y. Kanematsu und T. Kushida. „Site-Selective Excitation Spectroscopy of Dye-doped Inorganic Amorphous Hosts Prepared by Sol-Gel Method“. In Spectral Hole-Burning and Related Spectroscopies: Science and Applications. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/shbs.1994.wd11.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Host-Guest moleculars"
Lawandy, Nabil M. (AASERT) Superconductors and Nonlinear Optical Materials Based on Molecular Guest-Host Systems. Fort Belvoir, VA: Defense Technical Information Center, September 1995. http://dx.doi.org/10.21236/ada299480.
Der volle Inhalt der Quelle