Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Homogenization structure“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Homogenization structure" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Homogenization structure"
Krejčí, Tomáš, Aleš Jíra, Luboš Řehounek, Michal Šejnoha, Jaroslav Kruis und Tomáš Koudelka. „Homogenization of trabecular structures“. MATEC Web of Conferences 310 (2020): 00041. http://dx.doi.org/10.1051/matecconf/202031000041.
Der volle Inhalt der QuelleChen, Wei, Pi Zhi Zhao, Yu Li Zhou und Yan Feng Pan. „Effects of Homogenization Conditions on the Microstructures of Twin-Roll Cast Foil Stock of AA8021 Aluminum Alloy“. Materials Science Forum 877 (November 2016): 296–302. http://dx.doi.org/10.4028/www.scientific.net/msf.877.296.
Der volle Inhalt der QuelleBRAIDES, ANDREA, und DAG LUKKASSEN. „REITERATED HOMOGENIZATION OF INTEGRAL FUNCTIONALS“. Mathematical Models and Methods in Applied Sciences 10, Nr. 01 (Februar 2000): 47–71. http://dx.doi.org/10.1142/s0218202500000057.
Der volle Inhalt der QuelleAftandiliants, Ye G. „Modelling of structure forming in structural steels“. Naukovij žurnal «Tehnìka ta energetika» 11, Nr. 4 (10.09.2020): 13–22. http://dx.doi.org/10.31548/machenergy2020.04.013.
Der volle Inhalt der QuelleGriso, Georges, Larysa Khilkova, Julia Orlik und Olena Sivak. „Homogenization of Perforated Elastic Structures“. Journal of Elasticity 141, Nr. 2 (05.06.2020): 181–225. http://dx.doi.org/10.1007/s10659-020-09781-w.
Der volle Inhalt der QuelleMarsan, A. L., und D. Dutta. „Construction of a Surface Model and Layered Manufacturing Data From 3D Homogenization Output“. Journal of Mechanical Design 118, Nr. 3 (01.09.1996): 412–18. http://dx.doi.org/10.1115/1.2826901.
Der volle Inhalt der QuelleArmstrong, Scott, Tuomo Kuusi und Jean-Christophe Mourrat. „The additive structure of elliptic homogenization“. Inventiones mathematicae 208, Nr. 3 (17.11.2016): 999–1154. http://dx.doi.org/10.1007/s00222-016-0702-4.
Der volle Inhalt der QuelleTsalis, Dimitrios, Nicolas Charalambakis, Kevin Bonnay und George Chatzigeorgiou. „Effective properties of multiphase composites made of elastic materials with hierarchical structure“. Mathematics and Mechanics of Solids 22, Nr. 4 (07.12.2015): 751–70. http://dx.doi.org/10.1177/1081286515612142.
Der volle Inhalt der QuelleJin, Ji-Won, Byung-Wook Jeon, Chan-Woong Choi und Ki-Weon Kang. „Multi-Scale Probabilistic Analysis for the Mechanical Properties of Plain Weave Carbon/Epoxy Composites Using the Homogenization Technique“. Applied Sciences 10, Nr. 18 (18.09.2020): 6542. http://dx.doi.org/10.3390/app10186542.
Der volle Inhalt der QuelleSherniyozov, A., und Sh Payziyev. „FOCAL SPOT STRUCTURE OF FRESNEL LENS AND ITS HOMOGENIZATION“. «Узбекский физический журнал» 21, Nr. 4 (21.08.2019): 245–49. http://dx.doi.org/10.52304/.v21i4.113.
Der volle Inhalt der QuelleDissertationen zum Thema "Homogenization structure"
Sun, Xiangkun. „Elastic wave propagation in periodic structures through numerical and analytical homogenization techniques“. Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEC041/document.
Der volle Inhalt der QuelleIn this work, the multi-scale homogenization method, as well as various non homogenization methods, will be presented to study the dynamic behaviour of periodic structures. The multi-scale method starts with the scale-separation, which indicates a micro-scale to describe the local behaviour and a macro-scale to describe the global behaviour. According to the homogenization theory, the long-wave assumption is used, and the unit cell length should be much smaller than the characteristic length of the structure. Thus, the valid frequency range of homogenization is limited to the first propagating zone. The traditional homogenization model makes use of material properties mean values, but the practical validity range is far less than the first Bragg band gap. This deficiency motivated the development of new enriched homogenized models. Compared to traditional homogenization model, higher order homogenized wave equations are proposed to provide more accuracy homogenized models. Two multi-scale methods are introduced: the asymptotic expansion method, and the homogenization of periodic discrete media method (HPDM). These methods will be applied sequentially in longitudinal wave cases in bi-periodic rods and flexural wave cases in bi-periodic beams. Same higher order models are obtained by the two methods in both cases. Then, the proposed models are validated by investigating the dispersion relation and the frequency response function. Analytical solutions and wave finite element method (WFEM) are used as references. Parametric studies are carried out in the infinite case while two different boundary conditions are considered in the finite case. Afterwards, the HPDM and the CWFEM are employed to study the longitudinal and transverse vibrations of framed structures in 1D case and 2D case. The valid frequency range of the HPDM is re-evaluated using the wave propagation feature identified by the CWFEM. The relative error of the wavenumber by HPDM compared to CWFEM is illustrated in the function of frequency and scale ratio. Parametric studies on the thickness of the structure is carried out through the dispersion relation. The dynamics of finite structures are also investigated using the HPDM and CWFEM
Machovičová, Tatiana. „Banachovy algebry“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445456.
Der volle Inhalt der QuelleRussell, Brandon C. „HOMOGENIZATION IN PERFORATED DOMAINS AND WITH SOFT INCLUSIONS“. UKnowledge, 2018. https://uknowledge.uky.edu/math_etds/55.
Der volle Inhalt der QuelleZafra-Camón, Guillermo. „Calculation of global properties of a multi-layered solid wood structure using Finite Element Analysis“. Thesis, Uppsala universitet, Tillämpad mekanik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-298677.
Der volle Inhalt der QuelleXavier, Rodrigo Yokoyama [UNESP]. „Influência da deformação plástica no tratamento térmico de homogeneização de um aço ferramenta para trabalho a frio“. Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/148843.
Der volle Inhalt der QuelleApproved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2017-02-22T17:27:06Z (GMT) No. of bitstreams: 1 xavier_ry_me_guara.pdf: 6767206 bytes, checksum: 36a0ac2db721a2114f623ea26fe9f582 (MD5)
Made available in DSpace on 2017-02-22T17:27:06Z (GMT). No. of bitstreams: 1 xavier_ry_me_guara.pdf: 6767206 bytes, checksum: 36a0ac2db721a2114f623ea26fe9f582 (MD5) Previous issue date: 2017-01-30
O nível de qualidade de peças produzidas a partir de grandes lingotes está intimamente relacionado à qualidade dos lingotes em si. Dentre os diversos defeitos inerentes ao processo de solidificação, destacam-se as microssegregações de elementos de liga, que causam uma deterioração nas propriedades do produto final. Uma maneira de reduzir o dano causado pela microssegregação é através do Tratamento Térmico de Homogeneização, este por sua vez demanda elevados tempos de processo, elevando custos e tempos de fabricação. Uma das formas de reduzir os tempos de homogeneização, uma vez que este apresenta caráter difusional, é através da redução do espaçamento interdendrítico. Neste trabalho foi analisada a influência da deformação plástica como forma de reduzir o espaçamento entre dendritas no tratamento térmico de homogeneização. Para tal fim, utilizou-se um lingote fundido em aço ferramenta de composição química similar ao AISI A2. As amostras foram retiradas do núcleo do lingote no estado bruto de solidificação e sofreram deformações de 0,6 e 1,3 através do processo de laminação a quente, sendo temperadas em água na sequência. Após laminadas as amostras passaram por um tratamento térmico de homogeneização na temperatura de 1200°C por 8h ou 16h e foram novamente temperadas em água. As análises foram feitas através de Microscopia Óptica, Dureza Vickers, Difratometria de Raios-X e Microscopia Eletrônica de Varredura. Foi observado em todas as amostras a presença de microrechupes, e uma microestrutura composta predominantemente por dendritas oriundas da solidificação, identificadas pela fase martensítica, envoltas por uma matriz formada de austenita retida, contendo carbonetos e sulfetos. Com a deformação plástica foi possível quebrar a estrutura dendrítica a aproximar as regiões segregadas das não segregadas. O tratamento térmico por um tempo de 8h não foi suficiente para homogeneizar a microestrutura e reduzir as microssegregações, independentemente do estado de deformação das amostras. O tratamento térmico por 16h apresentou os melhores resultados em relação à homogeneidade química, sendo tanto melhor o resultado quanto maior a deformação imposta às amostras.
The quality of pieces produced from large ingots is closely related to the quality of ingots itself. Among the various defects inherent to the solidification process, there is the microsegregation of alloying elements, causing a deterioration in the properties of the final product. One way to reduce the damage caused by microsegregation is through the homogenization heat treatment, this in turn demands long time of process, increasing costs and lead-times for manufacture. One way to reduce the homogenization time, since it has a diffusive character, is by reducing the interdendritic spacing. In this study was analyzed the influence of plastic deformation as a mean to reduce the spacing between dendrites in the homogenization heat treatment. For this purpose it was used a cast ingot of chemical composition similar to the AISI A2 tool steel. Samples were cut from the ingot center in the as-cast state and suffered deformations of 0.6 and 1.3 through the hot rolling process and quenched in water in the sequence. After rolling the samples passed through a homogenization heat treatment at a temperature of 1200°C for 8h and 16h and again were quenched in water. Analyses were performed by Optical Microscopy, Vickers Hardness, X-Ray Diffractometry and Scanning Electron Microscopy. It was observed in all samples the presence of microcavities, and a microstructure consisting predominantly by solidifications dendrites identified by a martensitic phase, involved by a retained austenite matrix containing carbides and sulfides. The plastic deformation broke the dendritic structure, and approached the segregated regions to the non-segregated regions. The heat treatment for 8h was not sufficient to homogenize the microstructure and reduce the microsegregation, independently of the deformation state of the samples. The heat treatment for 16h presented the best results in relation to the chemical homogeneity, and the better the result as the greater the deformation imposed on the samples.
Nguyen, Tracey Mai T. „The Effects of Microfluidization and Homogenization on the Composition and Structure of Liposomal Aggregates from Whey Buttermilk and Commercial Buttermilk“. DigitalCommons@CalPoly, 2013. https://digitalcommons.calpoly.edu/theses/1075.
Der volle Inhalt der QuelleGazzo, Salvatore. „Characterisation of the mechanical behaviour of networks and woven fabrics with a discrete homogenization model“. Thesis, Lyon, 2019. http://www.theses.fr/2019LYSET006/document.
Der volle Inhalt der QuelleIn the past decades there has been an impressive progress in the development of new materials for mechanical related applications. New generations of composites have been developed, that can offer advantages over the unidirectional fibre-reinforced mats commonly used then materials take the name of woven fabrics. The behaviour of this material is strongly influenced by the micro-structure of the material. In the thesis mechanical models and a numerical scheme able to model the mechanical behaviour of woven fabrics and general network materials have been developed. The model takes in to account the micro-structure by means of a homogenization technique. The fibres in the network have been treated like microbeams, having both extensional and bending stiffness, with different types of connection, according to the pattern and detail of the network. The developed procedure was applied for obtaining the homogenized mechanical models for some types of biaxial and quadriaxial networks of fibres, simulating either fibre nets (in this case rigid connection were assumed among the fibres) or tissues with negligible interaction between the fibre bundles, and with relative sliding prevented (in this case the connections were simulated by means of pivots). Different geometries were analysed, including the cases in which the fibres are not orthogonal. A first gradient medium is usually obtained but, in some cases, the homogenization procedure itself indicates that a higher order continuum is better fit to represent the deformation of the micro-structure. Special results were obtained for the case of fibres connected by pivots. In this cases an orthotropic material with zero shear modulus was obtained. Such a material has a not elliptic constitutive tensor, thus it can lead to strain concentrations. However, it was shown that some considerations about the physical behaviour of such networks indicated that higher order terms had to be included in the expansion of the internal forces and deformations, so that a strain gradient material was obtained. The results obtained can be used for the design of specific materials requiring ad-hoc properties. Although the reference model is a network material, the results obtained can be applied to other similar kinds of microstructures, like pantographic materials, micro devices composed by microbeams etc. They have been limited at the range of linear elasticity, that is small deformation and linear elastic behaviour. Then, numerical simulations were focused on extension tests and bias tests. The obtained deformed configurations are consistent with the literature experimental tests, both for balanced and unbalanced tissues. Moreover, a comparison between first and second gradient numerical predictions was performed. It was observed that second gradient predictions better simulate the experimental evidences
Silva, Uziel Paulo da. „Um estudo do método de homogeneização assimptótica visando aplicações em estruturas ósseas“. Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/82/82131/tde-02092010-094935/.
Der volle Inhalt der QuelleThe bone is a heterogeneous solid with a highly complex structure that requires a multiple scale type of analysis. To analyze the electromechanical behavior of the bone structure, methods of classical mechanics, finite element methods, and methods of homogenization are being used. This analysis describes mathematically the relationship between the electromechanical behavior of the bone structure and its effective, or, global, properties. Thus, many efforts have been spent to develop rigorous analytical models capable of predicting the global and local effective properties of bone structures. The purpose of this work is to study the Asymptotic Homogenization Method (AHM) in order to determine the electromechanical effective properties of heterogeneous structures, such as the bone structure. The analysis of heat conduction and elastic problem using AHM shows that these problems are related to each other. Furthermore, an application of the AHM in cortical bone is presented and the results are shown to be in very good agreement with results found in the literature. Finally, this work shows great promise in the application of the AHM to determine the effective properties of a bone structure whose constituent material belongs to the crystal class 622.
Rastkar, Siavash. „Characterization of Homogenized Mechanical Properties of Porous Ceramic Materials Based on Their Realistic Microstructure“. FIU Digital Commons, 2016. http://digitalcommons.fiu.edu/etd/2478.
Der volle Inhalt der QuelleGriso, Georges. „Etudes asymptotiques de structures réticulées minces“. Paris 6, 1995. http://www.theses.fr/1995PA066338.
Der volle Inhalt der QuelleBücher zum Thema "Homogenization structure"
Bensoussan, Alain. Asymptotic analysis for periodic structures. Providence, R.I: American Mathematical Society, 2011.
Den vollen Inhalt der Quelle findenCioranescu, D. Homogenization of reticulated structures. New York: Springer, 1999.
Den vollen Inhalt der Quelle findenCioranescu, Doina, und Jeannine Saint Jean Paulin. Homogenization of Reticulated Structures. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-2158-6.
Der volle Inhalt der QuelleHassani, Behrooz, und Ernest Hinton. Homogenization and Structural Topology Optimization. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-0891-7.
Der volle Inhalt der QuelleShape optimization by the homogenization method. New York: Springer, 2002.
Den vollen Inhalt der Quelle findenE, Hinton, Hrsg. Homogenization and structural topology optimization: Theory, practice, and software. London: Springer, 1999.
Den vollen Inhalt der Quelle findenHassani, Behrooz. Homogenization and structural topology optimization: Theory, practice and software. Berlin [u.a.]: Springer, 2012.
Den vollen Inhalt der Quelle findenUrbański, Aleksander. The unified finite element formulation of homogenization of structural members with a periodic microstructure. Kraków: Wydawn. PK., 2005.
Den vollen Inhalt der Quelle findenManevich, L. I. Mechanics of periodically heterogeneous structures. Berlin: Springer, 2002.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Materials with periodic internal structure: Computation based on homogenization and comparison with experiment. [Washington, D.C.]: National Aeronautics and Space Administration, 1990.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Homogenization structure"
Kikuchi, Noboru, und Katsuyuki Suzuki. „Structural Optimization of a Linearly Elastic Structure using the Homogenization Method“. In Composite Media and Homogenization Theory, 183–203. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4684-6787-1_11.
Der volle Inhalt der QuelleHassani, Behrooz, und Ernest Hinton. „Homogenization Theory for Media with Periodic Structure“. In Homogenization and Structural Topology Optimization, 11–30. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-0891-7_2.
Der volle Inhalt der QuelleJeulin, D. „Random Structure Models for Homogenization and Fracture Statistics“. In Mechanics of Random and Multiscale Microstructures, 33–91. Vienna: Springer Vienna, 2001. http://dx.doi.org/10.1007/978-3-7091-2780-3_2.
Der volle Inhalt der QuelleMillet, Olivier, Khaled Bourbatache und Abdelkarim Aït-Mokhtar. „Homogenization Methods for Ionic Transfers in Saturated Heterogeneous Materials“. In Structure Design and Degradation Mechanisms in Coastal Environments, 117–60. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119006046.ch3.
Der volle Inhalt der QuelleCaffarelli, Luis, und Luis Silvestre. „Issues in Homogenization for Problems with Non Divergence Structure“. In Calculus of Variations and Nonlinear Partial Differential Equations, 43–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75914-0_2.
Der volle Inhalt der QuellePanasenko, G., I. Pankratova und A. Piatnitski. „Homogenization of a Convection–Diffusion Equation in a Thin Rod Structure“. In Integral Methods in Science and Engineering, Volume 1, 279–90. Boston: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4899-2_26.
Der volle Inhalt der QuelleGerasimenko, T. E., N. V. Kurbatova, D. K. Nadolin, A. V. Nasedkin, A. A. Nasedkina, P. A. Oganesyan, A. S. Skaliukh und A. N. Soloviev. „Homogenization of Piezoelectric Composites with Internal Structure and Inhomogeneous Polarization in ACELAN-COMPOS Finite Element Package“. In Advanced Structured Materials, 113–31. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17470-5_8.
Der volle Inhalt der QuelleGoda, Ibrahim, Mohamed Assidi und Jean-Francois Ganghoffer. „Cosserat Anisotropic Models of Trabecular Bone from the Homogenization of the Trabecular Structure: 2D and 3D Frameworks“. In Advanced Structured Materials, 111–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36394-8_7.
Der volle Inhalt der QuellePettersen, Tanja, Yan Jun Li, Trond Furu und Knut Marthinsen. „Effect of Changing Homogenization Treatment on the Particle Structure in Mn-Containing Aluminium Alloys“. In Materials Science Forum, 301–6. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-443-x.301.
Der volle Inhalt der QuelleCioranescu, Doina, und Jeannine Saint Jean Paulin. „Lattice-Type Structures“. In Homogenization of Reticulated Structures, 71–142. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-2158-6_2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Homogenization structure"
Broc, Daniel, und Jean-Franc¸ois Sigrist. „Fluid-Structure Interaction: Numerical Validation of an Homogenization Method“. In ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/pvp2006-icpvt-11-93156.
Der volle Inhalt der QuelleBuryachenko, Valeriy A. „Computational Homogenization in Peristatics of Periodic Structure Composites“. In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86517.
Der volle Inhalt der QuelleMarsan, Anne L., und Deba Dutta. „Construction of a CAD Model From 3D Homogenization Output“. In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0018.
Der volle Inhalt der QuelleGonella, Stefano, und Massimo Ruzzene. „Homogenization of Vibrating Periodic Lattice Structures“. In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84428.
Der volle Inhalt der QuelleBroc, Daniel, und Gianluca Artini. „Fluid Structure Interaction for Tubes Bundles: Different Homogenization Methods“. In ASME 2017 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/pvp2017-65727.
Der volle Inhalt der QuellePark, Sang-In, David W. Rosen, Seung-kyum Choi und Chad E. Duty. „Effective Mechanical Properties of Lattice Material Fabricated by Material Extrusion Additive Manufacturing“. In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34683.
Der volle Inhalt der QuelleFilippov, A. A., und V. M. Fomin. „Determination of nanoparticles elasticity moduli in the epoxy composite using homogenization models“. In PROCEEDINGS OF THE ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES. Author(s), 2018. http://dx.doi.org/10.1063/1.5083328.
Der volle Inhalt der QuelleArtini, Gianluca, und Daniel Broc. „Fluid Structure Interaction Homogenization for Tube Bundles: Significant Dissipative Effects“. In ASME 2018 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/pvp2018-84344.
Der volle Inhalt der QuelleWang, Jianhua, Wenxiu Tao, Zhifeng Liu und Congbin Yang. „Topological Optimization of R- Robot Structure Based on Homogenization Method“. In 2017 5th International Conference on Frontiers of Manufacturing Science and Measuring Technology (FMSMT 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/fmsmt-17.2017.226.
Der volle Inhalt der QuelleSigrist, Jean-Franc¸ois, und Daniel Broc. „A Homogenization Method for the Modal Analysis of a Nuclear Reactor With Fluid-Structure Interaction“. In ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/pvp2006-icpvt-11-93013.
Der volle Inhalt der Quelle