Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Homogenization algebra.

Zeitschriftenartikel zum Thema „Homogenization algebra“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Homogenization algebra" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Heckenberger, István, und Volkmar Welker. „A Deformation of the Orlik-Solomon Algebra“. MATHEMATICA SCANDINAVICA 118, Nr. 2 (09.06.2016): 183. http://dx.doi.org/10.7146/math.scand.a-23686.

Der volle Inhalt der Quelle
Annotation:
A deformation of the Orlik-Solomon algebra of a matroid $\mathfrak{M}$ is defined as a quotient of the free associative algebra over a commutative ring $R$ with $1$. It is shown that the given generators form a Gröbner basis and that after suitable homogenization the deformation and the Orlik-Solomon have the same Hilbert series as $R$-algebras. For supersolvable matroids, equivalently fiber type arrangements, there is a quadratic Gröbner basis and hence the algebra is Koszul.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ballico, E., B. Callander und E. Gasparim. „Compactifications of adjoint orbits and their Hodge diamonds“. Journal of Algebra and Its Applications 17, Nr. 06 (23.05.2018): 1850099. http://dx.doi.org/10.1142/s0219498818500998.

Der volle Inhalt der Quelle
Annotation:
A recent theorem of [E. Gasparim, L. Grama and L. A. B. San Martin, Lefschetz fibrations on adjoint orbits, Forum Math. 28(5) (2016) 967–980.] showed that adjoint orbits of semisimple Lie algebras have the structure of symplectic Lefschetz fibrations. We investigate the behavior of their fiberwise compactifications. Expressing adjoint orbits and fibers as affine varieties in their Lie algebra, we compactify them to projective varieties via homogenization of the defining ideals. We find that their Hodge diamonds vary wildly according to the choice of homogenization, and that extensions of the potential to the compactification must acquire degenerate singularities.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

MARTÍNEZ-VILLA, ROBERTO. „ON THE HOMOGENIZED ENVELOPING ALGEBRA OF THE LIE ALGEBRA Sℓ(2,ℂ) II“. Glasgow Mathematical Journal 59, Nr. 1 (10.06.2016): 189–219. http://dx.doi.org/10.1017/s0017089516000112.

Der volle Inhalt der Quelle
Annotation:
AbstractIn a previous paper, we studied the homogenized enveloping algebra of the Lie algebrasℓ(2,ℂ) and the homogenized Verma modules. The aim of this paper is to study the homogenization$\mathcal{O}$Bof the Bernstein–Gelfand–Gelfand category$\mathcal{O}$of sℓ(2,ℂ), and to apply the ideas developed jointly with J. Mondragón in our work on Groebner basis algebras, to give the relations between the categories$\mathcal{O}$Band$\mathcal{O}$as well as, between the derived categories$\mathcal{D}$b($\mathcal{O}$B) and$\mathcal{D}$b($\mathcal{O}$).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Woukeng, Jean Louis. „Homogenization in algebras with mean value“. Banach Journal of Mathematical Analysis 9, Nr. 2 (2015): 142–82. http://dx.doi.org/10.15352/bjma/09-2-12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zhikov, V. V. „Connectedness and homogenization. Examples of fractal conductivity“. Sbornik: Mathematics 187, Nr. 8 (31.08.1996): 1109–47. http://dx.doi.org/10.1070/sm1996v187n08abeh000150.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Sandrakov, G. V. „Homogenization of variational inequalities for obstacle problems“. Sbornik: Mathematics 196, Nr. 4 (30.04.2005): 541–60. http://dx.doi.org/10.1070/sm2005v196n04abeh000891.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Gadyl'shin, R. R. „Analogues of the Helmholtz resonator in homogenization theory“. Sbornik: Mathematics 193, Nr. 11 (31.12.2002): 1611–38. http://dx.doi.org/10.1070/sm2002v193n11abeh000691.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Pastukhova, S. E. „Homogenization of elasticity problems on periodic composite structures“. Sbornik: Mathematics 196, Nr. 7 (31.08.2005): 1033–73. http://dx.doi.org/10.1070/sm2005v196n07abeh000947.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Sirazhudinov, M. M. „G-convergence and homogenization of generalized Beltrami operators“. Sbornik: Mathematics 199, Nr. 5 (30.06.2008): 755–86. http://dx.doi.org/10.1070/sm2008v199n05abeh003941.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Zhikov, V. V., und S. E. Pastukhova. „Homogenization for elasticity problems on periodic networks of critical thickness“. Sbornik: Mathematics 194, Nr. 5 (30.06.2003): 697–732. http://dx.doi.org/10.1070/sm2003v194n05abeh000735.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Sandrakov, G. V. „Homogenization of variational inequalities and equations defined by pseudomonotone operators“. Sbornik: Mathematics 199, Nr. 1 (28.02.2008): 67–98. http://dx.doi.org/10.1070/sm2008v199n01abeh003911.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Nguetseng, Gabriel, Hubert Nnang und Nils Svanstedt. „G-convergence and homogenization of monotone damped hyperbolic equations“. Banach Journal of Mathematical Analysis 4, Nr. 1 (2010): 100–115. http://dx.doi.org/10.15352/bjma/1272374674.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Waurick, Marcus. „On the homogenization of partial integro-differential-algebraic equations“. Operators and Matrices, Nr. 2 (2016): 247–83. http://dx.doi.org/10.7153/oam-10-15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Redman, Irmgard T. „The homogenization of the three dimensional skew polynomial algebras of type I“. Communications in Algebra 27, Nr. 11 (Januar 1999): 5587–602. http://dx.doi.org/10.1080/00927879908826775.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Vasilevskaya, E. S. „A periodic parabolic Cauchy problem: Homogenization with corrector“. St. Petersburg Mathematical Journal 21, Nr. 1 (04.11.2009): 1–41. http://dx.doi.org/10.1090/s1061-0022-09-01083-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Veniaminov, N. „Homogenization of periodic differential operators of high order“. St. Petersburg Mathematical Journal 22, Nr. 5 (01.10.2011): 751–75. http://dx.doi.org/10.1090/s1061-0022-2011-01166-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

CAPRIZ, G., und G. MAZZINI. „A σ-ALGEBRA AND A CONCEPT OF LIMIT FOR BODIES“. Mathematical Models and Methods in Applied Sciences 10, Nr. 06 (August 2000): 801–13. http://dx.doi.org/10.1142/s0218202500000410.

Der volle Inhalt der Quelle
Annotation:
Recent developments in mechanics of continua (the search for optimal shapes of bodies, homogenization theory, the study of the trabecular structure of bones, the dynamics of immiscible mixtures, etc.) render some of the introductory axioms of continuum mechanics inadequate. Not only does one need to give meaning to the join and meet of two bodies, but also to extend the consequent algebra so as to encompass the result of a countable sequence of operations of join or meet; and one should also be able to define the limit of a sequence of bodies. To achieve this goal we propose here to define a body ab initio through the assignment of a probability measure dπ. We realize that π leaves, generally, too much of the texture of the body unspecified; to make up for this deficiency, we suggest the use of appropriate texture measures, reminescent of Tartar's H-measures.9
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Skrypnik, I. V. „Homogenization of non-linear Dirichlet problems in perforated domains of general type“. Sbornik: Mathematics 187, Nr. 8 (31.08.1996): 1229–60. http://dx.doi.org/10.1070/sm1996v187n08abeh000154.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Nazarov, Sergei A., Guido H. Sweers und Andrey S. Slutskij. „Homogenization of a thin plate reinforced with periodic families of rigid rods“. Sbornik: Mathematics 202, Nr. 8 (31.08.2011): 1127–68. http://dx.doi.org/10.1070/sm2011v202n08abeh004181.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Suslina, T. A. „Homogenization with corrector for a stationary periodic Maxwell system“. St. Petersburg Mathematical Journal 19, Nr. 3 (21.03.2008): 455–95. http://dx.doi.org/10.1090/s1061-0022-08-01006-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Pastukhova, S. E. „The Neumann problem for elliptic equations with multiscale coefficients: operator estimates for homogenization“. Sbornik: Mathematics 207, Nr. 3 (31.03.2016): 418–43. http://dx.doi.org/10.1070/sm8486.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Monzner, Alexandra, Nicolas Vichery und Frol Zapolsky. „Partial quasimorphisms and quasistates on cotangent bundles, and symplectic homogenization“. Journal of Modern Dynamics 6, Nr. 2 (2012): 205–49. http://dx.doi.org/10.3934/jmd.2012.6.205.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Dorodnyĭ, M. A. „Homogenization of periodic Schrödinger-type equations, with lower order terms“. St. Petersburg Mathematical Journal 31, Nr. 6 (27.10.2020): 1001–54. http://dx.doi.org/10.1090/spmj/1632.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Sakamoto, Kunimochi. „Spatial homogenization and internal layers in a reaction-diffusion system“. Hiroshima Mathematical Journal 30, Nr. 3 (2000): 377–402. http://dx.doi.org/10.32917/hmj/1206124605.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Ming, Pingbing, und Pingwen Zhang. „Analysis of the heterogeneous multiscale method for parabolic homogenization problems“. Mathematics of Computation 76, Nr. 257 (01.01.2007): 153–78. http://dx.doi.org/10.1090/s0025-5718-06-01909-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Birman, M. Sh, und T. A. Suslina. „Operator error estimates in the homogenization problem for nonstationary periodic equations“. St. Petersburg Mathematical Journal 20, Nr. 6 (01.10.2009): 873–928. http://dx.doi.org/10.1090/s1061-0022-09-01077-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

KRONE, ROBERT. „NUMERICAL ALGORITHMS FOR DUAL BASES OF POSITIVE-DIMENSIONAL IDEALS“. Journal of Algebra and Its Applications 12, Nr. 06 (09.05.2013): 1350018. http://dx.doi.org/10.1142/s0219498813500187.

Der volle Inhalt der Quelle
Annotation:
An ideal of a local polynomial ring can be described by calculating a standard basis with respect to a local monomial ordering. However the usual standard basis algorithms are not numerically stable. A numerically stable approach to describing the ideal is by finding the space of dual functionals that annihilate it, which reduces the problem to one of linear algebra. There are several known algorithms for finding the truncated dual up to any specified degree, which is useful for describing zero-dimensional ideals. We present a stopping criterion for positive-dimensional cases based on homogenization that guarantees all generators of the initial monomial ideal are found. This has applications for calculating Hilbert functions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Pastukhova, S. E., und R. N. Tikhomirov. „On operator-type homogenization estimates for elliptic equations with lower order terms“. St. Petersburg Mathematical Journal 29, Nr. 5 (26.07.2018): 841–61. http://dx.doi.org/10.1090/spmj/1518.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Sango, M. „Homogenization of singular numbers for a non self-adjoint elliptic problem in a perforated domain“. Integral Equations and Operator Theory 43, Nr. 2 (Juni 2002): 177–88. http://dx.doi.org/10.1007/bf01200252.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Zhikov, V. V. „Estimates of Nash-Aronson type for a diffusion equation with asymmetric matrix and their applications to homogenization“. Sbornik: Mathematics 197, Nr. 12 (31.12.2006): 1775–804. http://dx.doi.org/10.1070/sm2006v197n12abeh003822.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

HORIE, Kazuo, und Hitoshi ISHII. „Simultaneous Effects of Homogenization and Vanishing Viscosity in Fully Nonlinear Elliptic Equations“. Funkcialaj Ekvacioj 46, Nr. 1 (2003): 63–88. http://dx.doi.org/10.1619/fesi.46.63.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Senik, N. N. „Homogenization for a periodic elliptic operator in a strip with various boundary conditions“. St. Petersburg Mathematical Journal 25, Nr. 4 (05.06.2014): 647–97. http://dx.doi.org/10.1090/s1061-0022-2014-01311-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Zhikov, V. V., und S. E. Pastukhova. „Homogenization and two-scale convergence in the Sobolev space with an oscillating exponent“. St. Petersburg Mathematical Journal 30, Nr. 2 (14.02.2019): 231–51. http://dx.doi.org/10.1090/spmj/1540.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Pakhnin, M. A., und T. A. Suslina. „Operator error estimates for homogenization of the elliptic Dirichlet problem in a bounded domain“. St. Petersburg Mathematical Journal 24, Nr. 6 (23.09.2013): 949–76. http://dx.doi.org/10.1090/s1061-0022-2013-01274-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Meshkova, Yu M., und T. A. Suslina. „Homogenization of the first initial boundary-value problem for parabolic systems: operator error estimates“. St. Petersburg Mathematical Journal 29, Nr. 6 (04.09.2018): 935–78. http://dx.doi.org/10.1090/spmj/1521.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Dorodnyi, M., und T. Suslina. „Homogenization of hyperbolic equations with periodic coefficients in ℝ^{𝕕}: Sharpness of the results“. St. Petersburg Mathematical Journal 32, Nr. 4 (09.07.2021): 605–703. http://dx.doi.org/10.1090/spmj/1664.

Der volle Inhalt der Quelle
Annotation:
In L 2 ( R d ; C n ) L_2(\mathbb {R}^d;\mathbb {C}^n) , a selfadjoint strongly elliptic second order differential operator A ε \mathcal {A}_\varepsilon is considered. It is assumed that the coefficients of A ε \mathcal {A}_\varepsilon are periodic and depend on x / ε \mathbf {x}/\varepsilon , where ε > 0 \varepsilon >0 is a small parameter. We find approximations for the operators cos ⁡ ( A ε 1 / 2 τ ) \cos (\mathcal {A}_\varepsilon ^{1/2}\tau ) and A ε − 1 / 2 sin ⁡ ( A ε 1 / 2 τ ) \mathcal {A}_\varepsilon ^{-1/2}\sin (\mathcal {A}_\varepsilon ^{1/2}\tau ) in the norm of operators acting from the Sobolev space H s ( R d ) H^s(\mathbb {R}^d) to L 2 ( R d ) L_2(\mathbb {R}^d) (with suitable s s ). We also find approximation with corrector for the operator A ε − 1 / 2 sin ⁡ ( A ε 1 / 2 τ ) \mathcal {A}_\varepsilon ^{-1/2}\sin (\mathcal {A}_\varepsilon ^{1/2}\tau ) in the ( H s → H 1 ) (H^s \to H^1) -norm. The question about the sharpness of the results with respect to the type of the operator norm and with respect to the dependence of estimates on τ \tau is studied. The results are applied to study the behavior of the solutions of the Cauchy problem for the hyperbolic equation ∂ τ 2 u ε = − A ε u ε + F \partial _\tau ^2 \mathbf {u}_\varepsilon = -\mathcal {A}_\varepsilon \mathbf {u}_\varepsilon + \mathbf {F} .
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Belyaev, A. G., und G. A. Chechkin. „Homogenization of a mixed boundary-value problem for the Laplace operator in the case of an insoluble 'limit' problem“. Sbornik: Mathematics 186, Nr. 4 (30.04.1995): 511–25. http://dx.doi.org/10.1070/sm1995v186n04abeh000029.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Nazarov, S. A. „Homogenization of Kirchhoff plates joined by rivets which are modeled by the Sobolev point conditions“. St. Petersburg Mathematical Journal 32, Nr. 2 (02.03.2021): 307–48. http://dx.doi.org/10.1090/spmj/1649.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Bertone, Cristina, Francesca Cioffi und Margherita Roggero. „Macaulay-like marked bases“. Journal of Algebra and Its Applications 16, Nr. 05 (12.04.2017): 1750100. http://dx.doi.org/10.1142/s0219498817501006.

Der volle Inhalt der Quelle
Annotation:
We define marked sets and bases over a quasi-stable ideal [Formula: see text] in a polynomial ring on a Noetherian [Formula: see text]-algebra, with [Formula: see text] a field of any characteristic. The involved polynomials may be non-homogeneous, but their degree is bounded from above by the maximum among the degrees of the terms in the Pommaret basis of [Formula: see text] and a given integer [Formula: see text]. Due to the combinatorial properties of quasi-stable ideals, these bases behave well with respect to homogenization, similarly to Macaulay bases. We prove that the family of marked bases over a given quasi-stable ideal has an affine scheme structure, is flat and, for large enough [Formula: see text], is an open subset of a Hilbert scheme. Our main results lead to algorithms that explicitly construct such a family. We compare our method with similar ones and give some complexity results.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Cardone, G., A. Corbo Esposito und S. A. Nazarov. „Homogenization of the mixed boundary-value problem for a formally selfadjoint elliptic system in a periodically punched domain“. St. Petersburg Mathematical Journal 21, Nr. 4 (20.05.2010): 601–34. http://dx.doi.org/10.1090/s1061-0022-2010-01108-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Meshkova, Yu M. „Homogenization of periodic parabolic systems in the $L_2(\mathbb {R}^d)$-norm with the corrector taken into account“. St. Petersburg Mathematical Journal 31, Nr. 4 (11.06.2020): 675–718. http://dx.doi.org/10.1090/spmj/1619.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Sokołowski, Damian, Marcin Kamiński und Artur Wirowski. „Energy Fluctuations in the Homogenized Hyper-Elastic Particulate Composites with Stochastic Interface Defects“. Energies 13, Nr. 8 (17.04.2020): 2011. http://dx.doi.org/10.3390/en13082011.

Der volle Inhalt der Quelle
Annotation:
The principle aim of this study is to analyze deformation energy of hyper-elastic particulate composites, which is the basis for their further probabilistic homogenization. These composites have some uncertain interface defects, which are modelled as small semi-spheres with random radius and with bases positioned on the particle-matrix interface. These defects are smeared into thin layer of the interphase surrounding the reinforcing particle introduced as the third component of this composite. Matrix properties are determined from the experimental tests of Laripur LPR 5020 High Density Polyurethane (HDPU). It is strengthened with the Carbon Black particles of spherical shape. The Arruda–Boyce potential has been selected for numerical experiments as fitting the best stress-strain curves for the matrix behavior. A homogenization procedure is numerically implemented using the cubic Representative Volume Element (RVE). Spherical particle is located centrally, and computations of deformation energy probabilistic characteristics are carried out using the Iterative Stochastic Finite Element Method (ISFEM). This ISFEM is implemented in the algebra system MAPLE 2019 as dual approach based upon the stochastic perturbation method and, independently, upon a classical Monte-Carlo simulation, and uniform uniaxial deformations of this RVE are determined in the system ABAQUS and its 20-noded solid hexahedral finite elements. Computational experiments include initial deterministic numerical error analysis and the basic probabilistic characteristics, i.e., expectations, deviations, skewness and kurtosis of the deformation energy. They are performed for various expected values of the defects volume fraction. We analyze numerically (1) if randomness of homogenized deformation energy can correspond to the normal distribution, (2) how variability of the interface defects volume fraction affects the deterministic and stochastic characteristics of composite deformation energy and (3) whether the stochastic perturbation method is efficient in deformation energy computations (and in FEM analysis) of hyper-elastic media.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Suslina, T. A. „Homogenization in the Sobolev class $H^{1}(\mathbb R^{d})$ for second order periodic elliptic operators with the inclusion of first order terms“. St. Petersburg Mathematical Journal 22, Nr. 1 (01.02.2011): 81. http://dx.doi.org/10.1090/s1061-0022-2010-01135-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Rossi, Michele, und Lea Terracini. „Toric varieties and Gröbner bases: the complete $$\mathbb {Q}$$-factorial case“. Applicable Algebra in Engineering, Communication and Computing 31, Nr. 5-6 (22.07.2020): 461–82. http://dx.doi.org/10.1007/s00200-020-00452-w.

Der volle Inhalt der Quelle
Annotation:
Abstract We present two algorithms determining all the complete and simplicial fans admitting a fixed non-degenerate set of vectors V as generators of their 1-skeleton. The interplay of the two algorithms allows us to discerning if the associated toric varieties admit a projective embedding, in principle for any values of dimension and Picard number. The first algorithm is slower than the second one, but it computes all complete and simplicial fans supported by V and lead us to formulate a topological-combinatoric conjecture about the definition of a fan. On the other hand, we adapt the Sturmfels’ arguments on the Gröbner fan of toric ideals to our complete case; we give a characterization of the Gröbner region and show an explicit correspondence between Gröbner cones and chambers of the secondary fan. A homogenization procedure of the toric ideal associated to V allows us to employing GFAN and related software in producing our second algorithm. The latter turns out to be much faster than the former, although it can compute only the projective fans supported by V. We provide examples and a list of open problems. In particular we give examples of rationally parametrized families of $$\mathbb {Q}$$ Q -factorial complete toric varieties behaving in opposite way with respect to the dimensional jump of the nef cone over a special fibre.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Frid, Hermano, und Jean Silva. „Homogenization of Nonlinear PDEs in the Fourier–Stieltjes Algebras“. SIAM Journal on Mathematical Analysis 41, Nr. 4 (Januar 2009): 1589–620. http://dx.doi.org/10.1137/080737022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Gaddis, Jason. „PBW deformations of Artin–Schelter regular algebras“. Journal of Algebra and Its Applications 15, Nr. 04 (19.02.2016): 1650064. http://dx.doi.org/10.1142/s021949881650064x.

Der volle Inhalt der Quelle
Annotation:
We consider properties and extensions of PBW deformations of Artin–Schelter regular algebras. PBW deformations in global dimension two are classified and the geometry associated to the homogenizations of these algebras is exploited to prove that all simple modules are one-dimensional in the non-PI case. It is shown that this property is maintained under tensor products and certain skew polynomial extensions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Frid, Hermano, und Jean Silva. „Homogenization of degenerate porous medium type equations in ergodic algebras“. Advances in Mathematics 246 (Oktober 2013): 303–50. http://dx.doi.org/10.1016/j.aim.2013.07.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Roch, Steffen, und Pedro A. Santos. „Two points, one limit: Homogenization techniques for two-point local algebras“. Journal of Mathematical Analysis and Applications 391, Nr. 2 (Juli 2012): 552–66. http://dx.doi.org/10.1016/j.jmaa.2012.02.054.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Frid, Hermano, Jean Silva und Henrique Versieux. „Homogenization of a generalized Stefan problem in the context of ergodic algebras“. Journal of Functional Analysis 268, Nr. 11 (Juni 2015): 3232–77. http://dx.doi.org/10.1016/j.jfa.2015.03.021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Wang, Juan, und Jie Zhao. „Convergence rates of nonlinear Stokes problems in homogenization“. Boundary Value Problems 2019, Nr. 1 (24.05.2019). http://dx.doi.org/10.1186/s13661-019-1209-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie