Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Homeobox protein engrailed2“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Homeobox protein engrailed2" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Homeobox protein engrailed2"
Hanks, M. C., C. A. Loomis, E. Harris, C. X. Tong, L. Anson-Cartwright, A. Auerbach und A. Joyner. „Drosophila engrailed can substitute for mouse Engrailed1 function in mid-hindbrain, but not limb development“. Development 125, Nr. 22 (15.11.1998): 4521–30. http://dx.doi.org/10.1242/dev.125.22.4521.
Der volle Inhalt der Quellevan den Heuvel, Marcel, John Klingensmith, Norbert Perrimon und Roel Nusse. „Cell patterning in the Drosophila segment: engrailed and wingless antigen distributions in segment polarity mutant embryos“. Development 119, Supplement (01.12.1993): 105–14. http://dx.doi.org/10.1242/dev.119.supplement.105.
Der volle Inhalt der QuelleHemmati-Brivanlou, A., J. R. de la Torre, C. Holt und R. M. Harland. „Cephalic expression and molecular characterization of Xenopus En-2“. Development 111, Nr. 3 (01.03.1991): 715–24. http://dx.doi.org/10.1242/dev.111.3.715.
Der volle Inhalt der QuellePeel, Andrew D., Maximilian J. Telford und Michael Akam. „The evolution of hexapod engrailed-family genes: evidence for conservation and concerted evolution“. Proceedings of the Royal Society B: Biological Sciences 273, Nr. 1595 (05.04.2006): 1733–42. http://dx.doi.org/10.1098/rspb.2006.3497.
Der volle Inhalt der QuelleMatsuzaki, M., und K. Saigo. „hedgehog signaling independent of engrailed and wingless required for post-S1 neuroblast formation in Drosophila CNS“. Development 122, Nr. 11 (01.11.1996): 3567–75. http://dx.doi.org/10.1242/dev.122.11.3567.
Der volle Inhalt der QuelleDesjobert, Cecile, Peter Noy, Tracey Swingler, Hannah Williams, Kevin Gaston und Padma-Sheela Jayaraman. „The PRH/Hex repressor protein causes nuclear retention of Groucho/TLE co-repressors“. Biochemical Journal 417, Nr. 1 (12.12.2008): 121–32. http://dx.doi.org/10.1042/bj20080872.
Der volle Inhalt der QuelleRoyet, J., und R. Finkelstein. „Pattern formation in Drosophila head development: the role of the orthodenticle homeobox gene“. Development 121, Nr. 11 (01.11.1995): 3561–72. http://dx.doi.org/10.1242/dev.121.11.3561.
Der volle Inhalt der QuelleVillanueva, Sandra, Carlos Cespedes, Alexis Gonzalez und Carlos P. Vio. „bFGF induces an earlier expression of nephrogenic proteins after ischemic acute renal failure“. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 291, Nr. 6 (Dezember 2006): R1677—R1687. http://dx.doi.org/10.1152/ajpregu.00023.2006.
Der volle Inhalt der QuelleMontross, W. T., H. Ji und P. D. McCrea. „A beta-catenin/engrailed chimera selectively suppresses Wnt signaling“. Journal of Cell Science 113, Nr. 10 (15.05.2000): 1759–70. http://dx.doi.org/10.1242/jcs.113.10.1759.
Der volle Inhalt der QuelleDibner, Charna, Sarah Elias und Dale Frank. „XMeis3 protein activity is required for proper hindbrain patterning in Xenopus laevis embryos“. Development 128, Nr. 18 (15.09.2001): 3415–26. http://dx.doi.org/10.1242/dev.128.18.3415.
Der volle Inhalt der QuelleDissertationen zum Thema "Homeobox protein engrailed2"
Amblard, Irène. „Régulation du transfert intercellulaire des homéoprotéines“. Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS085.
Der volle Inhalt der QuelleHomeoproteins (HP) constitute a large family of transcription factors endowed with both autocrine and paracrine activities. Homeoprotein paracrine action controls patterning processes, including axonal guidance and boundary formation. Internalization and secretion, the steps of intercellular transfer, rely on unconventional mechanisms, which still need to be fully characterized. We have deciphered the mechanism of HP transfer, responsible for their paracrine activity, using Engrailed (EN2) as a paradigm. First, I have developed tools to quantify EN2 uptake and secretion. This original strategy allowed us to demonstrate EN2 bidirectional transfer through direct plasma membrane translocation. Then, I identified the molecular requirements for EN2 transfer, highlighting the pivotal role of PIP2, cholesterol, and proteoglycans. This work illustrates how soluble protein are able to cross the plasma membrane, giving new clues to the study of cell-penetrating peptides derived from HP but also to other unconventionnally secreted proteins. Next, I have addressed the contribution of redox signaling in EN2 transfer, and demonstrated that EN2 and H2O2 act in synergy to shape the optic tectum in the zebrafish. Finally, I have extended this study to conventional morphogens and showed that H2O2 regulates the traffic of Sonic Hedgehog. If this regulation of protein trafficking can be generalized to other HPs and morphogens remains unknown, but if so, it would provide an understanding for how tissue morphogenesis and cell metabolism influence each other during development