Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Holography in medicine“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Holography in medicine" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Holography in medicine"
Nolte, David D. „Cancer Holography for Personalized Medicine“. Optics and Photonics News 32, Nr. 4 (01.04.2021): 42. http://dx.doi.org/10.1364/opn.32.4.000042.
Der volle Inhalt der QuelleShang, Guanyu, Zhuochao Wang, Haoyu Li, Kuang Zhang, Qun Wu, Shah Burokur und Xumin Ding. „Metasurface Holography in the Microwave Regime“. Photonics 8, Nr. 5 (22.04.2021): 135. http://dx.doi.org/10.3390/photonics8050135.
Der volle Inhalt der QuelleHeiss, P., und W. Waters. „Three-Dimensional Imaging in Medicine: Holography“. Nuklearmedizin 25, Nr. 01 (1986): 31–32. http://dx.doi.org/10.1055/s-0038-1624316.
Der volle Inhalt der QuelleJung, Minwoo, Hosung Jeon, Sungjin Lim und Joonku Hahn. „Color Digital Holography Based on Generalized Phase-Shifting Algorithm with Monitoring Phase-Shift“. Photonics 8, Nr. 7 (28.06.2021): 241. http://dx.doi.org/10.3390/photonics8070241.
Der volle Inhalt der QuelleDirtoft, B. I. „Dental Holography—Earlier Investigations and Prospective Possibilities“. Advances in Dental Research 1, Nr. 1 (Dezember 1987): 8–13. http://dx.doi.org/10.1177/08959374870010011701.
Der volle Inhalt der QuelleAOYAMA, K., und Q. RU. „Electron holographic observation for biological specimens: electron holography of bio-specimens“. Journal of Microscopy 182, Nr. 3 (Juni 1996): 177–85. http://dx.doi.org/10.1046/j.1365-2818.1996.133413.x.
Der volle Inhalt der QuelleSchjelderup, Vilhelm. „Holography, Biophysics and Acupuncture“. Acupuncture in Medicine 3, Nr. 1 (Januar 1986): 20–23. http://dx.doi.org/10.1136/aim.3.1.20.
Der volle Inhalt der QuelleMüller, André F., Ilja Rukin, Claas Falldorf und Ralf B. Bergmann. „Multicolor Holographic Display of 3D Scenes Using Referenceless Phase Holography (RELPH)“. Photonics 8, Nr. 7 (30.06.2021): 247. http://dx.doi.org/10.3390/photonics8070247.
Der volle Inhalt der QuelleTahon, Marie, Silvio Montresor und Pascal Picart. „Towards Reduced CNNs for De-Noising Phase Images Corrupted with Speckle Noise“. Photonics 8, Nr. 7 (03.07.2021): 255. http://dx.doi.org/10.3390/photonics8070255.
Der volle Inhalt der QuelleWhite, Nicholas. „Holography-the clear plate syndrome“. Journal of Audiovisual Media in Medicine 10, Nr. 4 (Januar 1987): 135–37. http://dx.doi.org/10.3109/17453058709150470.
Der volle Inhalt der QuelleDissertationen zum Thema "Holography in medicine"
Hillman, Timothy R. „Microstructural information beyond the resolution limit : studies in two coherent, wide-field biomedical imaging systems“. University of Western Australia. School of Electrical, Electronic and Computer Engineering, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0085.
Der volle Inhalt der QuelleLaudereau, Jean-Baptiste. „Acousto-optic imaging : challenges of in vivo imaging“. Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066414/document.
Der volle Inhalt der QuelleBiological tissues are very strong light-scattering media. As a consequence, current medical imaging devices do not allow deep optical imaging unless invasive techniques are used. Acousto-optic (AO) imaging is a light-ultrasound coupling technique that takes advantage of the ballistic propagation of ultrasound in biological tissues to access optical contrast with a millimeter resolution. Coupled to commercial ultrasound (US) scanners, it could add useful information to increase US specificity. Thanks to photorefractive crystals, a bimodal AO/US imaging setup based on wave-front adaptive holography was developed and recently showed promising ex vivo results. In this thesis, the very first ones of them are described such as melanoma metastases in liver samples that were detected through AO imaging despite acoustical contrast was not significant. These results highlighted two major difficulties regarding in vivo imaging that have to be addressed before any clinical applications can be thought of.The first one concerns current AO sequences that take several tens of seconds to form an image, far too slow for clinical imaging. The second issue concerns in vivo speckle decorrelation that occurs over less than 1 ms, too fast for photorefractive crystals. In this thesis, I present a new US sequence that allows increasing the framerate of at least one order of magnitude and an alternative light detection scheme based on spectral holeburning in rare-earth doped crystals that allows overcoming speckle decorrelation as first steps toward in vivo imaging
Nilsson, Daniel. „Development of Next-Generation Optical Tweezers : The New Swiss Army Knife of Biophysical and Biomechanical Research“. Thesis, Umeå universitet, Institutionen för fysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-172362.
Der volle Inhalt der QuelleKriske, Jeffery Edward Jr. „A scalable approach to processing adaptive optics optical coherence tomography data from multiple sensors using multiple graphics processing units“. Thesis, 2014. http://hdl.handle.net/1805/6458.
Der volle Inhalt der QuelleAdaptive optics-optical coherence tomography (AO-OCT) is a non-invasive method of imaging the human retina in vivo. It can be used to visualize microscopic structures, making it incredibly useful for the early detection and diagnosis of retinal disease. The research group at Indiana University has a novel multi-camera AO-OCT system capable of 1 MHz acquisition rates. Until this point, a method has not existed to process data from such a novel system quickly and accurately enough on a CPU, a GPU, or one that can scale to multiple GPUs automatically in an efficient manner. This is a barrier to using a MHz AO-OCT system in a clinical environment. A novel approach to processing AO-OCT data from the unique multi-camera optics system is tested on multiple graphics processing units (GPUs) in parallel with one, two, and four camera combinations. The design and results demonstrate a scalable, reusable, extensible method of computing AO-OCT output. This approach can either achieve real time results with an AO-OCT system capable of 1 MHz acquisition rates or be scaled to a higher accuracy mode with a fast Fourier transform of 16,384 complex values.
Shafer, Brandon Andrew. „Real-time adaptive-optics optical coherence tomography (AOOCT) image reconstruction on a GPU“. Thesis, 2014. http://hdl.handle.net/1805/6105.
Der volle Inhalt der QuelleAdaptive-optics optical coherence tomography (AOOCT) is a technology that has been rapidly advancing in recent years and offers amazing capabilities in scanning the human eye in vivo. In order to bring the ultra-high resolution capabilities to clinical use, however, newer technology needs to be used in the image reconstruction process. General purpose computation on graphics processing units is one such way that this computationally intensive reconstruction can be performed in a desktop computer in real-time. This work shows the process of AOOCT image reconstruction, the basics of how to use NVIDIA's CUDA to write parallel code, and a new AOOCT image reconstruction technology implemented using NVIDIA's CUDA. The results of this work demonstrate that image reconstruction can be done in real-time with high accuracy using a GPU.
Bücher zum Thema "Holography in medicine"
N, Denisi͡u︡k I͡U︡, Wyrowski Frank, European Optical Society und Society of Photo-optical Instrumentation Engineers., Hrsg. Holographics International '92: 23-29 July 1992, Imperial College of Science, Technology and Medicine, London, United Kingdom. Bellingham, Wash., USA: SPIE, 1993.
Den vollen Inhalt der Quelle findenInternational Conference on Optics Within Life Sciences (1st 1990 Garmisch-Partenkirchen, Germany). Optics in medicine, biology, and environmental research: Proceedings of the International Conference on Optics Within Life Sciences (OWLS I), Garmisch-Partenkirchen, Germany, 12-16 August 1990. Herausgegeben von Bally G. von und Khanna Shyam. Amsterdam: Elsevier, 1993.
Den vollen Inhalt der Quelle findenDirtoft, Ingegerd. Holography: A new method for deformation analysis of upper complete dentures in vitro and in vivo. Stockholm, Sweden: Almqvist & Wiksell International, 1985.
Den vollen Inhalt der Quelle findenCynthia, Silkowski, und Odwin Charles S, Hrsg. Emergency medicine sonography: Pocket guide to sonographic anatomy and pathology. Sudbury, Mass: Jones and Bartlett Publishers, 2010.
Den vollen Inhalt der Quelle findenFujimoto, James G. Optical coherence tomography and coherence domain optical methods in biomedicine XV: 24-26 January 2011, San Francisco, United States. Herausgegeben von SPIE (Society). Bellingham, Wash: SPIE, 2011.
Den vollen Inhalt der Quelle findenRene, Benattar, European Physical Society, European Federation for Applied Optics. und Society of Photo-optical Instrumentation Engineers., Hrsg. X-ray instrumentation in medicine and biology, plasma physics, astrophysics, and synchrotron radiation: Proceedings, ECO2, 25-28 April 1989, Paris, France. Bellingham, Wash: SPIE-the International Society for Optical Engineering, 1989.
Den vollen Inhalt der Quelle findenLeitgeb, Rainer A. Optical coherence tomography and coherence techniques V: 24-26 May 2011, Munich, Germany. Bellingham, Wash: SPIE, 2011.
Den vollen Inhalt der Quelle findenU, Wittrock, Hrsg. Adaptive optics for industry and medicine: Proceedings of the 4th international workshop, Münster, Germany, Oct. 19-24, 2003. Berlin: Springer, 2005.
Den vollen Inhalt der Quelle findenFujimoto, James G. Coherence domain optical methods and optical coherence tomography in biomedicine XII: 21-23 January 2008, San Jose, California, USA. Herausgegeben von SPIE (Society). Bellingham, Wash: SPIE, 2008.
Den vollen Inhalt der Quelle findenAndersen, Peter E. Optical coherence tomography and coherence techniques III: 17-19 June 2007, Munich, Germany. Herausgegeben von SPIE (Society), Optical Society of America, European Optical Society, Wissenschaftliche Gesellschaft Lasertechnik und Deutsche Gesellschaft für Lasermedizin. Bellingham, Wash: SPIE, 2007.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Holography in medicine"
Ragai, Jehane. „Holography“. In Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures, 1–10. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-3934-5_8637-2.
Der volle Inhalt der QuelleRagai, Jehane. „Holography“. In Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures, 2180–87. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-007-7747-7_8637.
Der volle Inhalt der QuelleNolte, David D. „Holography of Tissues“. In Optical Interferometry for Biology and Medicine, 307–33. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0890-1_12.
Der volle Inhalt der Quellevon Bally, G. „Holography in Medical Diagnostics“. In Optronic Techniques in Diagnostic and Therapeutic Medicine, 61–72. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3766-3_5.
Der volle Inhalt der QuellePodbielska, H. „Laser Holography as a Technique in Experimental Medicine“. In NATO ASI Series, 247–55. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-7287-5_27.
Der volle Inhalt der QuelleBally, G. „Holography in Medicine and Biology - State of the Art and the Problem of Increasing Militarization“. In Optical Metrology, 441–58. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3609-6_28.
Der volle Inhalt der QuelleSugimoto, Maki. „Extended Reality (XR:VR/AR/MR), 3D Printing, Holography, A.I., Radiomics, and Online VR Tele-Medicine for Precision Surgery“. In Surgery and Operating Room Innovation, 65–70. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8979-9_7.
Der volle Inhalt der QuelleYang, Weijian, und Rafael Yuste. „Holographic Imaging and Stimulation of Neural Circuits“. In Advances in Experimental Medicine and Biology, 613–39. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8763-4_43.
Der volle Inhalt der QuelleYang, Weijian, und Rafael Yuste. „Correction to: Holographic Imaging and Stimulation of Neural Circuits“. In Advances in Experimental Medicine and Biology, C1—C2. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8763-4_45.
Der volle Inhalt der QuelleHauze, Sean W., Helina H. Hoyt, James P. Frazee, Philip A. Greiner und James M. Marshall. „Enhancing Nursing Education Through Affordable and Realistic Holographic Mixed Reality: The Virtual Standardized Patient for Clinical Simulation“. In Advances in Experimental Medicine and Biology, 1–13. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-06070-1_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Holography in medicine"
von Bally, G. „Holography in medicine“. In ICALEO® ‘87: Proceedings of the Laser Research in Medicine Conference. Laser Institute of America, 1987. http://dx.doi.org/10.2351/1.5057917.
Der volle Inhalt der QuelleTsujiuchi, Jumpei. „Multiplex Holograms And Their Applications In Medicine“. In Holography Applications, herausgegeben von Jingtang Ke und Ryszard J. Pryputniewicz. SPIE, 1988. http://dx.doi.org/10.1117/12.939080.
Der volle Inhalt der QuelleMyers, Bert. „Use of holography in medicine“. In Display Holography: Fifth International Symposium, herausgegeben von Tung H. Jeong. SPIE, 1995. http://dx.doi.org/10.1117/12.201910.
Der volle Inhalt der QuelleGomez-Gonzalez, Emilio. „Virtual holographic recognition and its applications in medicine and other fields“. In Holography 2000, herausgegeben von Tung H. Jeong und Werner K. Sobotka. SPIE, 2000. http://dx.doi.org/10.1117/12.402476.
Der volle Inhalt der Quellevon Bally, G. „State Of The Art Of Applications Of Holography In Medicine And Biology“. In SPIE International Symposium on Optical Engineering and Industrial Sensing for Advance Manufacturing Technologies, herausgegeben von Chander P. Grover. SPIE, 1989. http://dx.doi.org/10.1117/12.947616.
Der volle Inhalt der QuelleWang, Huaying, Zhongjia Guo, Wei Liao und Zhihui Zhang. „The application of digital image plane holography technology to identify Chinese herbal medicine“. In Photonics and Optoelectronics Meetings 2011. SPIE, 2012. http://dx.doi.org/10.1117/12.917295.
Der volle Inhalt der QuelleWos, Henryk, Lennart Svensson und Staffan Norlander. „Evaluation of whole-body vibration in the sitting position by double-pulse holography and electromyography“. In ICALEO® ‘87: Proceedings of the Laser Research in Medicine Conference. Laser Institute of America, 1987. http://dx.doi.org/10.2351/1.5057898.
Der volle Inhalt der QuelleArroyo, Junior, und Benjamin Castaneda. „Shear wave estimation by using Shear Wave Holography with normal vibration: Preliminary results“. In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2017. http://dx.doi.org/10.1109/embc.2017.8037489.
Der volle Inhalt der QuelleMarzo, Asier, Tatsuki Fushimi, Tom Hill und Bruce W. Drinkwater. „Holographic acoustic tweezers: future applications in medicine and acoustophoretic displays“. In Optical Trapping and Optical Micromanipulation XVI, herausgegeben von Kishan Dholakia und Gabriel C. Spalding. SPIE, 2019. http://dx.doi.org/10.1117/12.2527533.
Der volle Inhalt der Quellevon Bally, G. „Holographic endoscopy“. In ICALEO® ‘87: Proceedings of the Laser Research in Medicine Conference. Laser Institute of America, 1987. http://dx.doi.org/10.2351/1.5057899.
Der volle Inhalt der Quelle