Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Histopathologie – Innovation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Histopathologie – Innovation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Histopathologie – Innovation"
Danks, Janine A., Roula Papadopoulos und Nicholas J. Vardaxis. „Innovation in Histopathology Teaching“. Journal of Histotechnology 32, Nr. 3 (September 2009): 119–21. http://dx.doi.org/10.1179/his.2009.32.3.119.
Der volle Inhalt der QuelleTacha, David E., Linda C. Bloom und Ball Lauren R. „Histopathology Instrumentation: Innovations in the 1980s“. Laboratory Medicine 18, Nr. 8 (01.08.1987): 519–23. http://dx.doi.org/10.1093/labmed/18.8.519.
Der volle Inhalt der QuelleNaik, Paras, Jem Rashbass, Mark Bennett, Sue Cossins und Nick R. Griffin. „IT innovation in histopathology recruitment, training and research“. British Journal of Hospital Medicine 66, Nr. 10 (Oktober 2005): 563–65. http://dx.doi.org/10.12968/hmed.2005.66.10.19893.
Der volle Inhalt der QuelleBardhan, Neelkanth M., Vivek Rastogi, Rebecca L. Stone und Angela M. Belcher. „Abstract 6166: A whole-organ ex vivo optical imaging technique for non-destructive, more precise identification of serous tubal intraepithelial carcinoma (STIC) in fallopian tubes“. Cancer Research 84, Nr. 6_Supplement (22.03.2024): 6166. http://dx.doi.org/10.1158/1538-7445.am2024-6166.
Der volle Inhalt der QuelleKarthikeyan Ramalingam,. „Innovations in Oral Pathology Laboratory - A Mini Review“. International Journal of Head and Neck Pathology 6, Nr. 2 (13.10.2023): 1–5. http://dx.doi.org/10.56501/intjheadneckpathol.v6i1.914.
Der volle Inhalt der QuelleAhmed, Shakil, Asadullah Shaikh, Hani Alshahrani, Abdullah Alghamdi, Mesfer Alrizq, Junaid Baber und Maheen Bakhtyar. „Transfer Learning Approach for Classification of Histopathology Whole Slide Images“. Sensors 21, Nr. 16 (09.08.2021): 5361. http://dx.doi.org/10.3390/s21165361.
Der volle Inhalt der QuelleHegde, Sankalp, und Bhavadharini RM. „LuCoNet: A Convolutional Neural Network Model for Lung Cancer and Colon Cancer Prediction Using Histopathological Images“. International Research Journal of Multidisciplinary Scope 05, Nr. 03 (2024): 407–19. http://dx.doi.org/10.47857/irjms.2024.v05i03.0766.
Der volle Inhalt der QuelleHabawel, Candice Mabette, Listya Purnamasari, Joseph Peñano Olarve und Joseph Flores dela Cruz. „Comparative Efficacy of Different Fixed Drug Combination on Clinical Signs of Respiratory Disease in Starter Pigs“. Jurnal Veteriner 23, Nr. 3 (30.09.2022): 297–305. http://dx.doi.org/10.19087/jveteriner.2022.23.3.297.
Der volle Inhalt der QuelleMurthy, M. S. N., M. G. Jones, J. D. Davies, P. C. Jackson, J. Kulka, P. N. T. Wells, M. Halliwell und D. R. Bull. „Scanning confocal near-infra-red microscopy: a new microscopy technique for three-dimensional histopathology“. Engineering Science & Education Journal 4, Nr. 5 (01.10.1995): 223–30. http://dx.doi.org/10.1049/esej:19950509.
Der volle Inhalt der QuelleKirchhof, Nicole. „What Is “Preclinical Device Pathology”: An Introduction of the Unfamiliar“. Toxicologic Pathology 47, Nr. 3 (05.02.2019): 205–12. http://dx.doi.org/10.1177/0192623319827502.
Der volle Inhalt der QuelleDissertationen zum Thema "Histopathologie – Innovation"
Habis, Antoine Aurélien. „Developing interactive artificial intelligence tools to assist pathologists with histology annotation“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAT022.
Der volle Inhalt der QuelleHistopathology on Whole Slide Images (WSI) represents a very valuable field of medicine since the study of biopsies with microscopes can reveal several diseases that are sometimes difficult or impossible to diagnose with the naked eye or other imaging techniques. With the advent of deep learning, which requires a large number of annotated images to be effective, the need to obtain quickly high-quality annotations became clear. The purpose of this thesis is to develop artificial intelligence algorithms for fast interactive annotations and corrections to facilitate user supervision in histopathology image segmentation. This thesis presents our contributions using three different interaction strategies and underlying deep-learning mathematical formalisms. Together, our contributions cover a wide range of use cases:(1) The first tool is completely supervised and tackles the task of correcting nuclei segmentation. Nuclei are biological structures that can be observed distinctly at ×40 magnification and which are essential for several diagnosis tasks. In fact, markers such as the density of nuclei or the ratio between the area of the nucleusand that of the cytoplasm are indicative of certain conditions. The proposed tool proposes a Click and Refine pipeline, exploiting novel metrics on patch similarities and novel architecture training designs to refine four types of segmentation errors, specific to nuclei.(2) The second tool consists of a weakly supervised segmentation method tested on tumoral regions in lymph node metastatic breast cancer. These tumoral regions are biological structures clearly visible at low magnification(×5 or × 10). The first part of our algorithm provides an initial coarse segmentation of the entire WSI based on scribbles, which can then be corrected using fast interactive and non-local segmentation correction inputs.(3) Finally, the third tool proposes a completely unsupervised segmentation tool and a one-shot variant to segment complex heterogeneous biological structures on whole WSIs. The One-Shot learning version is evaluated on a dataset of kidney-dilated tubules. Dilated tubules are medium-sized biological structures that can be observed at an average magnification of ×10-20. They are indicative of some diseases such as urinary tract obstruction. The underlying proposed Deep ContourFlow method translates concepts of active contours into differentiable loss functions exploited in deep-learning architectures
Buchteile zum Thema "Histopathologie – Innovation"
Singh, Pushap Deep, Arnav Bhavsar und K. K. Harinarayanan. „Histopathology Whole Slide Image Analysis for Breast Cancer Detection“. In EAI/Springer Innovations in Communication and Computing, 31–56. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15816-2_2.
Der volle Inhalt der QuelleTayel, Mazhar B., Mohamed-Amr A. Mokhtar und Ahmed F. Kishk. „Breast Cancer Diagnosis Using Histopathology and Convolution Neural Network CNN Method“. In International Conference on Innovative Computing and Communications, 585–600. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2821-5_49.
Der volle Inhalt der QuelleFridrihsone, Ilze, Ilze Strumfa, Boriss Strumfs, Andrejs Vanags, Dainis Balodis, Arvids Jakovlevs, Arnis Abolins und Janis Gardovskis. „Thyroid Nodules in Diagnostic Pathology: From Classic Concepts to Innovations“. In Histopathology - An Update. InTech, 2018. http://dx.doi.org/10.5772/intechopen.77117.
Der volle Inhalt der QuelleBrosnan, Bríd, Inna Skarga-Bandurova, Tetiana Biloborodova und Illia Skarha-Bandurov. „An Integrated Approach to Automated Diagnosis of Cervical Intraepithelial Neoplasia in Digital Histology Images“. In Caring is Sharing – Exploiting the Value in Data for Health and Innovation. IOS Press, 2023. http://dx.doi.org/10.3233/shti230220.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Histopathologie – Innovation"
Bhatt, Chandradeep, Vaibhav Kumar Kapriyal, Yash Kharola, Rama Koranga, Ishita Chhetri und Teekam Singh. „Advanced Automation for Colorectal Tissue Classification in Histopathology“. In 2024 Asia Pacific Conference on Innovation in Technology (APCIT), 1–9. IEEE, 2024. http://dx.doi.org/10.1109/apcit62007.2024.10673436.
Der volle Inhalt der QuelleT, Soumya. „Detection and Differentiation of blood cancer cells using Edge Detection method“. In The International Conference on scientific innovations in Science, Technology, and Management. International Journal of Advanced Trends in Engineering and Management, 2023. http://dx.doi.org/10.59544/zbua6077/ngcesi23p138.
Der volle Inhalt der QuelleKonstantinov, Andrei, und Lev Utkin. „Multiple Instance Learning through Explanation by Using a Histopathology Example“. In 2022 31st Conference of Open Innovations Association (FRUCT). IEEE, 2022. http://dx.doi.org/10.23919/fruct54823.2022.9770901.
Der volle Inhalt der QuelleGopalan, Vinod, Erick Chan, Debbie Ho und Alfred Lam. „EXPLORING MEDICAL STUDENT ENGAGEMENT, PERCEPTION AND COMPETENCY IN CLINICALLY INTEGRATED HISTOPATHOLOGY“. In 10th annual International Conference of Education, Research and Innovation. IATED, 2017. http://dx.doi.org/10.21125/iceri.2017.2204.
Der volle Inhalt der QuelleM. D, Tharun Kumar, Soniya Priyatharsini G. und Geetha S. „Breast Cancer Detection Using Machine Learning Classifier“. In The International Conference on scientific innovations in Science, Technology, and Management. International Journal of Advanced Trends in Engineering and Management, 2023. http://dx.doi.org/10.59544/ovzf8018/ngcesi23p140.
Der volle Inhalt der QuelleKoyun, Onur Can, und Tulay Yildirim. „Adversarial Nuclei Segmentation on H&E Stained Histopathology Images“. In 2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA). IEEE, 2019. http://dx.doi.org/10.1109/inista.2019.8778369.
Der volle Inhalt der QuelleNawandhar, Archana, Navin Kumar und Lakshmi Yamujala. „Performance Analysis of Neighborhood Component Feature Selection for Oral Histopathology Images“. In 2019 PhD Colloquium on Ethically Driven Innovation and Technology for Society (PhD EDITS). IEEE, 2019. http://dx.doi.org/10.1109/phdedits47523.2019.8986921.
Der volle Inhalt der QuelleLaxmisagar, H. S., und M. C. Hanumantharaju. „A Survey on Automated Detection of Breast Cancer based Histopathology Images“. In 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). IEEE, 2020. http://dx.doi.org/10.1109/icimia48430.2020.9074915.
Der volle Inhalt der QuelleFadhlia, Fadhlia, und Elvita Nora Susana. „Unilateral Benign Thyroid Lesion Management with Histopathology Results Following Surgery Was a Malignancy“. In 2nd Global Health and Innovation in conjunction with 6th ORL Head and Neck Oncology Conference (ORLHN 2021). Paris, France: Atlantis Press, 2021. http://dx.doi.org/10.2991/ahsr.k.220206.042.
Der volle Inhalt der QuelleSukweenadhi, Johan, Risma Ikawaty, Yohanes Bosko Anne Marie, Farizky Martriano Humardani, Lisa Thalia Mulyanata, Lady Theresa Adeodata Tanaya und Sulistyo Emantoko Dwi Putra. „Changes of histopathology and PPAR-ɣ gene expression in hyperglycaemia-mice“. In 12TH INTERNATIONAL SEMINAR ON NEW PARADIGM AND INNOVATION ON NATURAL SCIENCES AND ITS APPLICATIONS (12TH ISNPINSA): Contribution of Science and Technology in the Changing World. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0218053.
Der volle Inhalt der Quelle