Dissertationen zum Thema „Histopathologie digitale“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-23 Dissertationen für die Forschung zum Thema "Histopathologie digitale" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Nisar, Zeeshan. „Self-supervised learning in the presence of limited labelled data for digital histopathology“. Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD016.
Der volle Inhalt der QuelleA key challenge in applying deep learning to histopathology is the variation in stainings, both inter and intra-stain. Deep learning models trained on one stain (or domain) often fail on others, even for the same task (e.g., kidney glomeruli segmentation). Labelling each stain is expensive and time-consuming, prompting researchers to explore domain adaptation based stain-transfer methods. These aim to perform multi-stain segmentation using labels from only one stain but are limited by the introduction of domain shift, reducing performance. Detecting and quantifying this domain shift is important. This thesis focuses on unsupervised methods to develop a metric for detecting domain shift and proposes a novel stain-transfer approach to minimise it. While multi-stain algorithms reduce the need for labels in target stains, they may struggle with tissue types lacking source-stain labels. To address this, the thesis focuses to improve multi-stain segmentation with less reliance on labelled data using self-supervision. While this thesis focused on kidney glomeruli segmentation, the proposed methods are designed to be applicable to other histopathology tasks and domains, including medical imaging and computer vision
Laifa, Oumeima. „A joint discriminative-generative approach for tumour angiogenesis assessment in computational pathology“. Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS230.
Der volle Inhalt der QuelleAngiogenesis is the process through which new blood vessels are formed from pre-existing ones. During angiogenesis, tumour cells secrete growth factors that activate the proliferation and migration of endothelial cells and stimulate over production of the vascular endothelial growth factor (VEGF). The fundamental role of vascular supply in tumour growth and anti-cancer therapies makes the evaluation of angiogenesis crucial in assessing the effect of anti-angiogenic therapies as a promising anti-cancer therapy. In this study, we establish a quantitative and qualitative panel to evaluate tumour blood vessels structures on non-invasive fluorescence images and histopathological slide across the full tumour to identify architectural features and quantitative measurements that are often associated with prediction of therapeutic response. We develop a Markov Random Field (MFRs) and Watershed framework to segment blood vessel structures and tumour micro-enviroment components to assess quantitatively the effect of the anti-angiogenic drug Pazopanib on the tumour vasculature and the tumour micro-enviroment interaction. The anti-angiogenesis agent Pazopanib was showing a direct effect on tumour network vasculature via the endothelial cells crossing the whole tumour. Our results show a specific relationship between apoptotic neovascularization and nucleus density in murine tumor treated by Pazopanib. Then, qualitative evaluation of tumour blood vessels structures is performed in whole slide images, known to be very heterogeneous. We develop a discriminative-generative neural network model based on both learning driven model convolutional neural network (CNN), and rule-based knowledge model Marked Point Process (MPP) to segment blood vessels in very heterogeneous images using very few annotated data comparing to the state of the art. We detail the intuition and the design behind the discriminative-generative model, and we analyze its similarity with Generative Adversarial Network (GAN). Finally, we evaluate the performance of the proposed model on histopathology slide and synthetic data. The limits of this promising framework as its perspectives are shown
Khan, Adnan M. „Algorithms for breast cancer grading in digital histopathology images“. Thesis, University of Warwick, 2014. http://wrap.warwick.ac.uk/66024/.
Der volle Inhalt der QuelleLiu, Jingxin. „Stain separation, cell classification and histochemical score in digital histopathology images“. Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/52290/.
Der volle Inhalt der QuelleKårsnäs, Andreas. „Image Analysis Methods and Tools for Digital Histopathology Applications Relevant to Breast Cancer Diagnosis“. Doctoral thesis, Uppsala universitet, Avdelningen för visuell information och interaktion, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-219306.
Der volle Inhalt der QuelleLakhotia, Kritika. „Visualization and quantification of 3D tumor-host interface architecture reconstructed from digital histopathology slides“. Thesis, State University of New York at Buffalo, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10127616.
Der volle Inhalt der QuelleOral cavity cancer (OCC) is a type of cancer of the lip, tongue, salivary glands and other sites in the mouth (buccal or oral cavity) and is the sixth leading cause of cancer worldwide. Patients with OCC are treated based on a staging system: low-stage patients typically receive less aggressive therapy compared to high-stage patients. Unfortunately, low-stage patients are sometimes at risk for locoregional recurrence. Recently, a semi-quantitative risk scoring system has been developed to assess the locoregional recurrence risk for low-stage patients. This risk scoring system is based on tissue characteristics determined on 2D histopathology images under a microscope. This modality limits the appreciation of the 3D architecture of the tumor and its associated morphological features. This thesis aims to visualize 3D models of the tumor-host interface reconstructed from serially-sectioned histopathology slides and quantify their clinically validated morphological features to predict locoregional recurrence after treatment. The 3D models are developed and quantified for 6 patient cases using readily available tools. This pilot study provides a framework for an automated diagnostic technique for 3D visualization and morphological analysis of tumor biology which is traditionally done using 2D analysis.
Kampouraki, Vasileia. „Patch-level classification of brain tumor tissue in digital histopathology slides with Deep Learning“. Thesis, Linköpings universitet, Statistik och maskininlärning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177361.
Der volle Inhalt der QuelleNaylor, Peter. „Du phénotypage cellulaire à la classification de lames digitales : Une application au traitement du cancer du sein triple-négatif“. Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEM051.
Der volle Inhalt der QuelleThe rise of digital pathology and with it the challenges of histopathology analysis have been the focus of a worldwide effort in the overall fight against cancer. In parallel, the recent success of automated decision-making, machine learning, and specifically deep learning, have revolutionised the basis of research as we know today. In this thesis, we tackle the prediction of treatment response in triple-negative breast cancer patients with two different approaches that reach similar outcomes. The first line of approach, based on the recent success of computer vision, extracts learned features from the data in order to perform classification. The second line of approach forces the information flow to pass through nuclei segmentation. In particular, it allows the incorporation of high-resolution information on to a lower resolution overview. Yet while this approach is more appealing as it is based on the analysis and quantification of a precise biological element, nuclei segmentation is troublesome. While solving the task of nuclei segmentation with deep learning, we propose a new formulation for nuclei segmentation which excels at separating touching objects
Hossain, Md Shamim. „An automated deep learning based approach for nuclei segmentation of renal digital histopathology image analysis“. Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2022. https://ro.ecu.edu.au/theses/2611.
Der volle Inhalt der QuelleIrshad, Humayun. „Automated Mitosis Detection in Color and Multi-spectral High-Content Images in Histopathology : Application to Breast Cancer Grading in Digital Pathology“. Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENM007/document.
Der volle Inhalt der QuelleDigital pathology represents one of the major and challenging evolutions in modernmedicine. Pathological exams constitute not only the gold standard in most of medicalprotocols, but also play a critical and legal role in the diagnosis process. Diagnosing adisease after manually analyzing numerous biopsy slides represents a labor-intensive workfor pathologists. Thanks to the recent advances in digital histopathology, the recognitionof histological tissue patterns in a high-content Whole Slide Image (WSI) has the potentialto provide valuable assistance to the pathologist in his daily practice. Histopathologicalclassification and grading of biopsy samples provide valuable prognostic information thatcould be used for diagnosis and treatment support. Nottingham grading system is thestandard for breast cancer grading. It combines three criteria, namely tubule formation(also referenced as glandular architecture), nuclear atypia and mitosis count. Manualdetection and counting of mitosis is tedious and subject to considerable inter- and intrareadervariations. The main goal of this dissertation is the development of a framework ableto provide detection of mitosis on different types of scanners and multispectral microscope.The main contributions of this work are eight fold. First, we present a comprehensivereview on state-of-the-art methodologies in nuclei detection, segmentation and classificationrestricted to two widely available types of image modalities: H&E (HematoxylinEosin) and IHC (Immunohistochemical). Second, we analyse the statistical and morphologicalinformation concerning mitotic cells on different color channels of various colormodels that improve the mitosis detection in color datasets (Aperio and Hamamatsu scanners).Third, we study oversampling methods to increase the number of instances of theminority class (mitosis) by interpolating between several minority class examples that lietogether, which make classification more robust. Fourth, we propose three different methodsfor spectral bands selection including relative spectral absorption of different tissuecomponents, spectral absorption of H&E stains and mRMR (minimum Redundancy MaximumRelevance) technique. Fifth, we compute multispectral spatial features containingpixel, texture and morphological information on selected spectral bands, which leveragediscriminant information for mitosis classification on multispectral dataset. Sixth, we performa comprehensive study on region and patch based features for mitosis classification.Seven, we perform an extensive investigation of classifiers and inference of the best one formitosis classification. Eight, we propose an efficient and generic strategy to explore largeimages like WSI by combining computational geometry tools with a local signal measureof relevance in a dynamic sampling framework.The evaluation of these frameworks is done in MICO (COgnitive MIcroscopy, ANRTecSan project) platform prototyping initiative. We thus tested our proposed frameworks on MITOS international contest dataset initiated by this project. For the color framework,we manage to rank second during the contest. Furthermore, our multispectral frameworkoutperforms significantly the top methods presented during the contest. Finally, ourframeworks allow us reaching the same level of accuracy in mitosis detection on brightlightas multispectral datasets, a promising result on the way to clinical evaluation and routine
Traore, Lamine. „Semantic modeling of an histopathology image exploration and analysis tool“. Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066621/document.
Der volle Inhalt der QuelleSemantic modelling of a histopathology image exploration and analysis tool. Recently, anatomic pathology (AP) has seen the introduction of several tools such as high-resolution histopathological slide scanners, efficient software viewers for large-scale histopathological images and virtual slide technologies. These initiatives created the conditions for a broader adoption of computer-aided diagnosis based on whole slide images (WSI) with the hope of a possible contribution to decreasing inter-observer variability. Beside this, automatic image analysis algorithms represent a very promising solution to support pathologist’s laborious tasks during the diagnosis process. Similarly, in order to reduce inter-observer variability between AP reports of malignant tumours, the College of American Pathologists edited 67 organ-specific Cancer Checklists and associated Protocols (CAP-CC&P). Each checklist includes a set of AP observations that are relevant in the context of a given organ-specific cancer and have to be reported by the pathologist. The associated protocol includes interpretation guidelines for most of the required observations. All these changes and initiatives bring up a number of scientific challenges such as the sustainable management of the available semantic resources associated to the diagnostic interpretation of AP images by both humans and computers. In this context, reference vocabularies and formalization of the associated knowledge are especially needed to annotate histopathology images with labels complying with semantic standards. In this research work, we present our contribution in this direction. We propose a sustainable way to bridge the content, features, performance and usability gaps between histopathology and WSI analysis
Hrabovszki, Dávid. „Classification of brain tumors in weakly annotated histopathology images with deep learning“. Thesis, Linköpings universitet, Statistik och maskininlärning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177271.
Der volle Inhalt der QuelleBug, Daniel [Verfasser], Dorit [Akademischer Betreuer] Merhof und Horst K. [Akademischer Betreuer] Hahn. „Digital histopathology : Image processing for histological analyses and immune response quantification / Daniel Bug ; Dorit Merhof, Horst K. Hahn“. Aachen : Universitätsbibliothek der RWTH Aachen, 2020. http://d-nb.info/1240689543/34.
Der volle Inhalt der QuelleQuarrie, Karisha Claudia. „Correlation of post mortem LODOX digital radiological images with histopathological findings at autopsy : a prospective autopsy study at the Tygerberg Forensic Pathology Service Facility“. Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/96682.
Der volle Inhalt der QuelleENGLISH ABSTRACT: Background: The LODOX Statscan is a whole-body digital X-ray scanning device which was adapted for medical usage. The LODOX has an established role in the field of Forensic Pathology where it shows high sensitivity and specificity for the detection of skeletal pathology and foreign bodies. The role of the scanner in the detection of soft tissue pathology in the lungs of adults has not been reported and this study aims to review the radio-pathological correlation and the applicability of LODOX as a viable screening tool in the detection of lung pathology in post mortem cases. Methods: We prospectively reviewed cases which were referred for medico-legal autopsy between November 2012 and March 2013 to the Tygerberg Forensic Pathology Service mortuary, Cape Town, South Africa. All cases meeting the prescribed inclusion criteria underwent LODOX scanning as well as macroscopic and microscopic evaluation of the lungs as permitted by the Inquests Act 58 of 1959. The macroscopic and microscopic variables were considered the “gold standard” when compared with the results of the LODOX. The sensitivity, specificity, positive and negative predictive values were assessed. Results: One hundred and fifty nine cases (159) were included in the study. The most common radiographic patterns reported were the presence of ground glass opacities and consolidation. Overall, low to moderate sensitivity of these LODOX patterns in the prediction of pneumonic microscopic pathology (oedema, acute and chronic inflammation and features of diffuse alveolar damage) was noted. These values were lower than that reported for pneumonia using conventional X-rays. Additionally, these LODOX patterns have a high probability of representing oedema or autolytic/decomposition change. Pneumothorax was the most common pleural pathology detected on LODOX, but autopsy correlation could not be performed. Poor to no correlation was noted with the variables of cavity, malignant tumour, and bronchiectasis, but the prevalence of these conditions in our cohort was low. In general, LODOX predictions were better at excluding pathology which was not present rather than confirming pathology which was present. Conclusions: The LODOX offers excellent evidentiary value in the demonstration of a pneumothorax but currently has limited value as a “stand alone” test in the field of Forensic Pathology. However the continued use of the LODOX as an adjunct examination, as well as prospective study of its applicability, is advised.
AFRIKAANSE OPSOMMING: Agtergrond: Die LODOX Statscan is ‘n heel-liggaam digitale X-straal skandeer apparaat wat aangepas is vir mediese gebruik. Die LODOX het ‘n gevestigde rol in Geregtelike Patologie, waar dit ‘n hoë sensitiwiteit en spesifisiteit het in die opsporing van skeletale patologie en vreemde voorwerpe. Die rol van die skandeerder in die opspoor van sagte weefsel patologie in die longe van volwassenes is nog nie gerapporteer nie, en hierdie studie ondersoek die radio-patologiese korrelasie en toepaslikheid van LODOX as ‘n doeltreffende siftingsmeganisme om long patologie op te spoor in post-mortale gevalle. Metode: Gevalle wat verwys is na die Tygerberg Geregtelike Patologie Diens lykshuis in Kaapstad, Suid-Afrika vir medies-geregtelike outopsies tussen November 2012 en Maart 2013, is prospektief geëvalueer. Alle gevalle wat die voorgeskrewe insluitingskriteria nagekom het, het LODOX skandering asook makroskopiese en mikroskopiese ondersoek van die longe ondergaan, soos toegelaat deur die Wet op Geregtelike Doodsondersoeke Nr 58 van 1959. Die makroskopiese en mikroskopiese veranderlikes is beskou as die “goud standaard” in vergelyking met die resultate van die LODOX. Die sensitiwiteit, spesifisiteit, positiewe en negatiewe voorspellingswaardes is beoordeel. Resultate: Eenhonderd-nege-en-vyftig gevalle (159) is ingesluit in die studie. Die algemeenste radiografiese pattroon wat gerapporteer is, was die teenwoordigheid van gemaalde glas opasiteit en konsolidasie. In geheel is lae to matige sensitiwiteit van hierdie LODOX beelde waargeneem in die voorspelling van pneumoniese mikroskopiese patologie (edeem, akute en chroniese ontsteking, en eienskappe van diffuse alveolêre skade). Hierdie waardes was laer as die wat gerapporteer is vir pneumonie met konvensionele X-strale. Verder het hierdie LODOX beelde ‘n hoë waarskynlikheid om edeem en/of outolise/ontbinding uit te beeld. Pneumotoraks was die algemeenste pleurale patologie wat waargeneem is met die LODOX, maar outopsie korrelasie kon nie gedoen word nie. Swak tot geen korrelasie is gemerk vir die veranderlikes kaviteit, maligne tumor en brongi-ektase, maar die prevalensie van hierdie toestande in ons kohort was laag. Oor die algemeen was LODOX voorspellings beter om patologie wat nie teenwoordig is nie, uit te skakel, eerder as om patologie wat teenwoordig is, te bevestig. Gevolgtrekking: The LODOX is ‘n uitstekende bewysstuk in die aantoon van ‘n pneumotoraks, maar huidiglik het dit beperkte waarde as onafhanklike toets in die veld van Geregtelike Patologie. Desnieteenstaande word die verdere gebruik van LODOX as bydraende ondersoek, sowel as die prospektiewe studie van sy toepaslikheid aanbeveel.
Azar, Jimmy. „Automated Tissue Image Analysis Using Pattern Recognition“. Doctoral thesis, Uppsala universitet, Bildanalys och människa-datorinteraktion, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-231039.
Der volle Inhalt der QuelleSharma, Harshita [Verfasser], Olaf [Akademischer Betreuer] Hellwich, Olaf [Gutachter] Hellwich, Niels [Gutachter] Grabe und Peter [Gutachter] Hufnagl. „Medical image analysis of gastric cancer in digital histopathology: methods, applications and challenges / Harshita Sharma ; Gutachter: Olaf Hellwich, Niels Grabe, Peter Hufnagl ; Betreuer: Olaf Hellwich“. Berlin : Technische Universität Berlin, 2017. http://d-nb.info/1156180163/34.
Der volle Inhalt der QuelleBarros, George Oliveira. „PathoSpotter: um sistema para classifica??o de glomerulopatias a partir de imagens histol?gicas renais“. Universidade Estadual de Feira de Santana, 2016. http://localhost:8080/tede/handle/tede/389.
Der volle Inhalt der QuelleMade available in DSpace on 2016-09-13T21:44:53Z (GMT). No. of bitstreams: 1 Disserta??o_George.pdf: 4996097 bytes, checksum: ece2301b72ccb1d9d33a2e2837531079 (MD5) Previous issue date: 2016-02-29
Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES
The realization of an accurate diagnosis from histological images requires pathologists with practical experience because the characteristics of these images lead to a subjective analysis, which often hamper the accuracy of diagnosis. Systems that help to achieve better diagnoses can minimize doubts and improve the quality of diagnosis, influencing on increasing the effectiveness of medical treatments. This paper describes the research and development of PathoSpotter, a computer system to aid in the identification of diseases from histological images. The PathoSpotter proposes to reduce the lack of support work to histopathological diagnosis of renal diseases since much has been done in the area of cancer, but there is few published material in relation to the Digital Pathology applied to nephrology and hepatology. Our goal in this study was to apply the PathoSpotter the classification of proliferative glomerulopathy, which is a family of primary diseases affecting the kidneys. The work was based on a data set consisting of 811 histological pictures glomeruli and classical techniques of processing digital images and histopathology were used. The PathoSpotter presented a performance of 88.4% accuracy, which was similar to other Digital Pathology jobs that can be found in the literature.
A realiza??o do diagn?stico preciso a partir de imagens histol?gicas requer m?dicos patologistas com vasta experi?ncia pr?tica, pois as caracter?sticas dessas imagens conduzem a uma an?lise subjetiva que muitas vezes dificultam a exatid?o do diagn?stico. Sistemas que auxiliam a obten??o de melhores diagn?sticos podem minimizar d?vidas e melhorar a qualidade dos diagn?sticos, influenciando no aumento da efic?cia dos tratamentos m?dicos. Este trabalho descreve a pesquisa e o desenvolvimento do PathoSpotter, um sistema computacional para aux?lio na identifica??o de patologias a partir de imagens histol?gicas. O PathoSpotter se prop?e a reduzir a car?ncia de trabalhos de apoio ao diagn?stico histopatol?gico das doen?as renais, j? que muito tem sido feito na ?rea de neoplasias, mas h? pouco material publicado em rela??o ? Patologia Digital aplicada ? nefrologia ou hepatologia. Nosso objetivo neste trabalho foi aplicar o PathoSpotter na classifica??o das glomerulopatias proliferativas, que ? uma fam?lia de doen?as prim?rias que afetam os rins. O trabalho se baseou em um conjunto de dados composto por 811 imagens histol?gicas de glom?rulos, e foram utilizadas t?cnicas cl?ssicas de processamento de imagens e histopatologia digital. O PathoSpotter apresentou um desempenho de 88,4% de acur?cia, resultado similar ao de outros trabalhos de Patologia Digital que podem ser encontrados na literatura especializada.
Gavrilovic, Milan. „Spectral Image Processing with Applications in Biotechnology and Pathology“. Doctoral thesis, Uppsala universitet, Centrum för bildanalys, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-160574.
Der volle Inhalt der QuelleAlsheh, Ali Maya. „Analyse statistique de populations pour l'interprétation d'images histologiques“. Electronic Thesis or Diss., Sorbonne Paris Cité, 2015. https://wo.app.u-paris.fr/cgi-bin/WebObjects/TheseWeb.woa/wa/show?t=1017&f=2491.
Der volle Inhalt der QuelleDuring the last decade, digital pathology has been improved thanks to the advance of image analysis algorithms and calculus power. However, the diagnosis from histopathology images by an expert remains the gold standard in a considerable number of diseases especially cancer. This type of images preserves the tissue structures as close as possible to their living state. Thus, it allows to quantify the biological objects and to describe their spatial organization in order to provide a more specific characterization of diseased tissues. The automated analysis of histopathological images can have three objectives: computer-aided diagnosis, disease grading, and the study and interpretation of the underlying disease mechanisms and their impact on biological objects. The main goal of this dissertation is first to understand and address the challenges associated with the automated analysis of histology images. Then it aims at describing the populations of biological objects present in histology images and their relationships using spatial statistics and also at assessing the significance of their differences according to the disease through statistical tests. After a color-based separation of the biological object populations, an automated extraction of their locations is performed according to their types, which can be point or areal data. Distance-based spatial statistics for point data are reviewed and an original function to measure the interactions between point and areal data is proposed. Since it has been shown that the tissue texture is altered by the presence of a disease, local binary patterns methods are discussed and an approach based on a modification of the image resolution to enhance their description is introduced. Finally, descriptive and inferential statistics are applied in order to interpret the extracted features and to study their discriminative power in the application context of animal models of colorectal cancer. This work advocates the measure of associations between different types of biological objects to better understand and compare the underlying mechanisms of diseases and their impact on the tissue structure. Besides, our experiments confirm that the texture information plays an important part in the differentiation of two implemented models of the same disease
Alsheh, Ali Maya. „Analyse statistique de populations pour l'interprétation d'images histologiques“. Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015PA05S001/document.
Der volle Inhalt der QuelleDuring the last decade, digital pathology has been improved thanks to the advance of image analysis algorithms and calculus power. However, the diagnosis from histopathology images by an expert remains the gold standard in a considerable number of diseases especially cancer. This type of images preserves the tissue structures as close as possible to their living state. Thus, it allows to quantify the biological objects and to describe their spatial organization in order to provide a more specific characterization of diseased tissues. The automated analysis of histopathological images can have three objectives: computer-aided diagnosis, disease grading, and the study and interpretation of the underlying disease mechanisms and their impact on biological objects. The main goal of this dissertation is first to understand and address the challenges associated with the automated analysis of histology images. Then it aims at describing the populations of biological objects present in histology images and their relationships using spatial statistics and also at assessing the significance of their differences according to the disease through statistical tests. After a color-based separation of the biological object populations, an automated extraction of their locations is performed according to their types, which can be point or areal data. Distance-based spatial statistics for point data are reviewed and an original function to measure the interactions between point and areal data is proposed. Since it has been shown that the tissue texture is altered by the presence of a disease, local binary patterns methods are discussed and an approach based on a modification of the image resolution to enhance their description is introduced. Finally, descriptive and inferential statistics are applied in order to interpret the extracted features and to study their discriminative power in the application context of animal models of colorectal cancer. This work advocates the measure of associations between different types of biological objects to better understand and compare the underlying mechanisms of diseases and their impact on the tissue structure. Besides, our experiments confirm that the texture information plays an important part in the differentiation of two implemented models of the same disease
Clarke, Gina Maria. „A system for three-dimensional breast digital histopathology imaging“. 2007. http://link.library.utoronto.ca/eir/EIRdetail.cfm?Resources__ID=742432&T=F.
Der volle Inhalt der QuelleSeabra, Carolina Alexandra Carrapiço. „Prostate cancer biochemical recurrence prediction after radical prostatectomy using machine learning analysis of histopathology“. Master's thesis, 2019. http://hdl.handle.net/10451/40425.
Der volle Inhalt der QuelleO cancro de próstata é o segundo tipo de cancro com maior prevalência nos homens, em todo o mundo. A deteção inicial desta doença ocorre, geralmente, durante exames e consultas de rotina, quando níveis aumentados do antigénio prostático específico e/ou um exame retal anormal são descobertos. Contudo, apenas a avaliação histopatológica, inicialmente baseada em amostras extraídas através de uma biópsia, é capaz de fornecer um diagnóstico definitivo, permitindo não só orientar o tratamento do doente, assim como o processo de tomada de decisão associado. Após esta avaliação inicial, se o doente for diagnosticado com cancro da próstata localizado, ou seja, um tumor confinado à próstata, o tratamento mais adotado é a prostatectomia radical. Este último é o tratamento padrão utilizado quando se pretende uma terapia com curativa. A vantagem da técnica de prostatectomia radical é que, toda a próstata, onde o tumor se encontra confinado, é removida cirurgicamente, auxiliando na redução do risco de metástases. A posterior análise da peça prostática permite ao patologista avaliar diversas características tumorais, determinantes no prognóstico do doente. Para este fim, o microscópio tem sido a principal ferramenta utilizada, uma vez que proporciona imagens ao vivo com uma ótima resolução. No entanto, desde a introdução do primeiro sistema automatizado de digitalização de lâminas em imagens de alta resolução, o interesse da comunidade de anatomia patológica em explorar este tipo de métodos para diferentes aplicações tem crescido exponencialmente. O potencial desta nova área não é, todavia, a simples transferência de uma imagem da lâmina de vidro para um monitor, nem tão pouco a flexibilidade de distribuição e modificação da própria imagem digital, mas sim, a possibilidade de aprimorar a avaliação do patologista com informações e inteligência que não podem ser detetados pela análise humana. Por conseguinte, a implementação de algoritmos de aprendizagem automática capazes de executar tarefas como deteção, classificação e segmentação de imagens digitais histopatológicas é, finalmente, possível. Estes métodos de análise automatizada permitem explorar todo o panorama morfológico do tumor e dos seus elementos mais invasivos presentes, capturando, por exemplo, a orientação nuclear, a textura, a forma e a arquitetura. A complexidade e densidade inerente a este tipo de imagens, oferecem uma abundância de informação, ideal para estimular e promover o desenvolvimento de algoritmos baseados em deep learning. No que diz respeito ao cancro da próstata, os algoritmos desenvolvidos visam apoiar as avaliações efetuados pelos patologistas, nomeadamente, estadiamento e classificação, sendo, portanto, focados no sistema de classificação utilizada para a próstata - o Gleason score. Contudo, problemáticas alternativas podem também beneficiar da aplicação destas t´técnicas, nomeadamente métodos capazes de distinguir imagens que apenas contêm tecido benigno de imagens em que tumor esteja presente. Por outro lado, modelos capazes de prever a recidiva bioquímica de cancro da próstata permitiriam aos médicos modificar estratégias de tratamento e pós-tratamento, a fim de equilibrar benefícios e efeitos adversos de um terapia específica. A previsão de recidiva permite, também, que os pacientes escolham com responsabilidade os diferentes tratamentos e estratégias que lhes são propostos pelos médicos, possibilitando, em última análise, uma maior sua satisfação após o tratamento. Desta forma, com o objetivo de explorar os referidos problemas, a presente dissertação apresenta procedimentos de recolha, processamento e anotação de dados, que permitiram a criação de uma base digital de dados histológicos anotados da próstata. Com base nestes dados dois modelos distintos de deep learning, especificamente Convolutional Neural Networks foram desenvolvidos. O modelo I propõe a identificação de cancro da próstata e diferenciação entre tumor e tecido benigno. O modelo II pretende prever a condição de recidiva bioquímica do cancro de próstata, para um período de tempo posterior `a cirurgia em dois anos. Relativamente ao desenvolvimento da base de dados, 200 casos de cancro da próstata, tratados através de prostatectomia radical, foram selecionados. As lâminas correspondentes à lesão índice, ou seja, à lesão principal, foram identificadas e, apenas estas foram incluídas na amostra final. A adoção desta abordagem deveu-se ao facto de que cada peça origina entre 15-45 lâminas, sendo que a maioria não contém tumor. Por outro lado, dado o período de tempo para a realização de todo este projeto, seria inviável a utilização de todas as lâminas. Assim, as lâminas selecionadas foram digitalizadas e processadas. Uma t´técnica de normalização de contraste foi aplicada, de forma a uniformizar as cores das diferentes imagens digitais, evitando uma elevada variabilidade de contraste e cor que advém da utilização de diferentes protocolos de cor, bem como da própria digitalização da lâmina. As imagens histológicas digitalizadas e normalizadas foram posteriormente divididas em imagens mais pequenas, isto é, subimagens, uma vez que desta forma existe uma otimização da extração de características por parte dos algoritmos. Estas subimagens foram individualmente visualizadas e anotadas, originando um total de cerca de 160,000 subimagens, correspondentes aos 200 casos diferentes selecionados. Para o desenvolvimento do modelo de classificação do cancro de próstata, a arquitetura Inception v3 foi implementada e treinada utilizando as subimagens da base de dados. Este modelo foi capaz de identificar três classes distintas: negativa (tecido benigno), positiva (tecido maligno) e neoplasia intraepitelial da próstata, esta última, embora com menor precisão dada a quantidade reduzida de exemplos pertencentes a esta classe. Um valor de 93 % de precisão foi obtido, o que corresponde a valores equiparados ao estado da arte para este tipo de técnicas. Este valor, contudo, demonstra ainda potencial para otimização e melhoria, uma vez que as diferentes classes dos dados utilizados seguiam uma distribuição não equilibrada. A inclusão de mais casos clínicos e a aplicação de técnicas de aumento de dados, podem ser facilmente realizadas, o que culminará num modelo com ainda melhor precisão de classificação. Relativamente ao modelo referente à previsão de recidiva bioquímica, a mesma arquitetura foi utilizada, mas neste caso, treinada apenas com base nas subimagens positivas, isto ´e, as subimagens contendo tecido maligno da próstata. Os resultados obtidos revelaram que este modelo não tem a capacidade de extrair informação relevante correlacionada com o objetivo do estudo, e portanto, não consegue distinguir com sucesso casos não recorrentes de casos recorrentes, produzindo apenas uma precisão de 60 %. Contudo, apesar do referido modelo falhar na execução do objetivo estipulado, é fundamental notar que a tarefa de predição de recidiva bioquímica é de complexidade elevada, não sendo possível aos patologistas, através da observação das imagens histológicas, retirar nenhuma conclusão que diretamente se correlacione com esta condição. Diferentes abordagens, como por exemplo, o aumento da quantidade de dados utilizados, a introdução no modelo de características clínicas relevantes no prognóstico da doença poderão apresentar melhorias substanciais, no que diz respeito à capacidade preditiva deste modelo. Concluindo, a capacidade de algoritmos de deep learning para extrair informação relevante de imagens digitais da histopatologia da próstata foi demonstrada através do presente estudo. O desenvolvimento e o criação de uma base de dados anotados, fornece a base fundamental para o desenvolvimento de modelos adicionais, onde diversas questões podem ser exploradas. O desenvolvimento de uma interface que permita implementar o modelo de deteção de cancro da próstata desenvolvido é também uma possibilidade, uma vez que fornece eficiência e consistência, beneficiando a prática da patologia clinica.
Prostate cancer is the second most prevalent cancer in men, worldwide. Histopathological assessment plays an indispensable role in understanding the disease mechanisms, providing definitive diagnosis to guide patient treatment and management decisions. The microscope has been the primary tool to this end, producing images at increased resolution. However, with the development of the first automated high resolution whole-slide imaging system, which allows the digitisation of glass slides, interest in using this system for different applications in pathology practice has steadily grown, giving rise to the digital pathology field. The promise of digital pathology is not, however, the simple transfer of an image from a glass slide to a monitor, not even the flexibility of distribution and modification of the image, but instead the potential to enhance the pathologist’s assessment with information and artificial intelligence that cannot be perceived by human examination. With the advent of digital pathology and the recent expert-level accuracy achieved by machine learning based algorithms in medical image detection, classification and segmentation, new possibilities to develop automated image analysis methods arise. As far as prostate cancer is concerned, these models have been aimed at supporting pathologist’s image descriptions such as staging and grading, being hence, focused on the Gleason grading system. In order to explore alternative problems, the present dissertation presents data collection, processing and annotation procedures, that allowed the creation of an annotated digital histology database of prostate resection cases. These data was used to develop deep learning models not only to classify prostate cancer, but also to predict prostate cancer biochemical recurrence. Inception v3 architecture was implemented and trained from scratch for the proposed assignments. The prostate cancer classification model yielded an accuracy of 93%, being able to identify three distinct classes: negative (benign tissue), positive (malignant tissue) and high-grade prostate intraepithelium neoplasia, the latter, although, with lower precision, given to unbalanced class distributions. The prostate cancer biochemical prediction model was not able to successfully distinguish between non-recurrent and recurrent cases, yielding an accuracy of 60%. This value was accomplished, nevertheless, due to the fact that the model was classifying all entries as negative, and therefore, the value of accuracy corresponds to the percentage of negative cases present in the dataset. Although not all models here developed achieved good results, the capacity of deep learning algorithms to harvest relevant features from prostate histopathology digital images has been demonstrated. The development and establishment of an annotated database provides the fundamental basis to further develop additional models, and mainly to improve the biochemical recurrence prediction model by applying more sophisticated methods, given the complexity of this problem.
Greenberg, Alexandra Rachel. „Longitudinal histopathological, immunohistochemical, and In Situ hybridization analysis of host and viral biomarkers in liver tissue sections of Ebola (EBOV) infected rhesus macaques“. Thesis, 2019. https://hdl.handle.net/2144/36565.
Der volle Inhalt der Quelle