Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Histopathologie digitale“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Histopathologie digitale" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Histopathologie digitale"
Braun, Stephan A., und Doris Helbig. „Infantile digitale Fibromatose: ein seltener myofibrozytärer Tumor mit charakteristischer Histopathologie“. JDDG: Journal der Deutschen Dermatologischen Gesellschaft 12, Nr. 12 (Dezember 2014): 1141–42. http://dx.doi.org/10.1111/ddg.12450_suppl.
Der volle Inhalt der QuelleCummins, Donna M., Iskander H. Chaudhry und Matthew Harries. „Scarring Alopecias: Pathology and an Update on Digital Developments“. Biomedicines 9, Nr. 12 (24.11.2021): 1755. http://dx.doi.org/10.3390/biomedicines9121755.
Der volle Inhalt der QuelleTawfeeq, Furat Nidhal, Nada A. S. Alwan und Basim M. Khashman. „Optimization of Digital Histopathology Image Quality“. IAES International Journal of Artificial Intelligence (IJ-AI) 7, Nr. 2 (20.04.2018): 71. http://dx.doi.org/10.11591/ijai.v7.i2.pp71-77.
Der volle Inhalt der QuelleAmgad Mohamed Khater, Nesma. „Review on Advancements in Histopathology Education through Virtual Labs, Digital Microscopy and AI“. International Journal of Science and Research (IJSR) 13, Nr. 11 (05.11.2024): 807–8. http://dx.doi.org/10.21275/sr241113034953.
Der volle Inhalt der QuelleMin, Eunjung, Nurbolat Aimakov, Sangjin Lee, Sungbea Ban, Hyunmo Yang, Yujin Ahn, Joon S. You und Woonggyu Jung. „Multi-contrast digital histopathology of mouse organs using quantitative phase imaging and virtual staining“. Biomedical Optics Express 14, Nr. 5 (18.04.2023): 2068. http://dx.doi.org/10.1364/boe.484516.
Der volle Inhalt der QuelleCiga, Ozan, Tony Xu und Anne Louise Martel. „Self supervised contrastive learning for digital histopathology“. Machine Learning with Applications 7 (März 2022): 100198. http://dx.doi.org/10.1016/j.mlwa.2021.100198.
Der volle Inhalt der QuelleAmrania, Hemmel, Giuseppe Antonacci, Che-Hung Chan, Laurence Drummond, William R. Otto, Nicholas A. Wright und Chris Phillips. „Digistain: a digital staining instrument for histopathology“. Optics Express 20, Nr. 7 (15.03.2012): 7290. http://dx.doi.org/10.1364/oe.20.007290.
Der volle Inhalt der QuelleHuss, Ralf, und Sarah E. Coupland. „Software‐assisted decision support in digital histopathology“. Journal of Pathology 250, Nr. 5 (25.02.2020): 685–92. http://dx.doi.org/10.1002/path.5388.
Der volle Inhalt der QuelleMartines, Roosecelis B., Jana M. Ritter, Joy Gary, Wun-Ju Shieh, Jaume Ordi, Martin Hale, Carla Carrilho et al. „Pathology and Telepathology Methods in the Child Health and Mortality Prevention Surveillance Network“. Clinical Infectious Diseases 69, Supplement_4 (09.10.2019): S322—S332. http://dx.doi.org/10.1093/cid/ciz579.
Der volle Inhalt der QuelleMungenast, Felicitas, Achala Fernando, Robert Nica, Bogdan Boghiu, Bianca Lungu, Jyotsna Batra und Rupert C. Ecker. „Next-Generation Digital Histopathology of the Tumor Microenvironment“. Genes 12, Nr. 4 (07.04.2021): 538. http://dx.doi.org/10.3390/genes12040538.
Der volle Inhalt der QuelleDissertationen zum Thema "Histopathologie digitale"
Nisar, Zeeshan. „Self-supervised learning in the presence of limited labelled data for digital histopathology“. Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD016.
Der volle Inhalt der QuelleA key challenge in applying deep learning to histopathology is the variation in stainings, both inter and intra-stain. Deep learning models trained on one stain (or domain) often fail on others, even for the same task (e.g., kidney glomeruli segmentation). Labelling each stain is expensive and time-consuming, prompting researchers to explore domain adaptation based stain-transfer methods. These aim to perform multi-stain segmentation using labels from only one stain but are limited by the introduction of domain shift, reducing performance. Detecting and quantifying this domain shift is important. This thesis focuses on unsupervised methods to develop a metric for detecting domain shift and proposes a novel stain-transfer approach to minimise it. While multi-stain algorithms reduce the need for labels in target stains, they may struggle with tissue types lacking source-stain labels. To address this, the thesis focuses to improve multi-stain segmentation with less reliance on labelled data using self-supervision. While this thesis focused on kidney glomeruli segmentation, the proposed methods are designed to be applicable to other histopathology tasks and domains, including medical imaging and computer vision
Laifa, Oumeima. „A joint discriminative-generative approach for tumour angiogenesis assessment in computational pathology“. Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS230.
Der volle Inhalt der QuelleAngiogenesis is the process through which new blood vessels are formed from pre-existing ones. During angiogenesis, tumour cells secrete growth factors that activate the proliferation and migration of endothelial cells and stimulate over production of the vascular endothelial growth factor (VEGF). The fundamental role of vascular supply in tumour growth and anti-cancer therapies makes the evaluation of angiogenesis crucial in assessing the effect of anti-angiogenic therapies as a promising anti-cancer therapy. In this study, we establish a quantitative and qualitative panel to evaluate tumour blood vessels structures on non-invasive fluorescence images and histopathological slide across the full tumour to identify architectural features and quantitative measurements that are often associated with prediction of therapeutic response. We develop a Markov Random Field (MFRs) and Watershed framework to segment blood vessel structures and tumour micro-enviroment components to assess quantitatively the effect of the anti-angiogenic drug Pazopanib on the tumour vasculature and the tumour micro-enviroment interaction. The anti-angiogenesis agent Pazopanib was showing a direct effect on tumour network vasculature via the endothelial cells crossing the whole tumour. Our results show a specific relationship between apoptotic neovascularization and nucleus density in murine tumor treated by Pazopanib. Then, qualitative evaluation of tumour blood vessels structures is performed in whole slide images, known to be very heterogeneous. We develop a discriminative-generative neural network model based on both learning driven model convolutional neural network (CNN), and rule-based knowledge model Marked Point Process (MPP) to segment blood vessels in very heterogeneous images using very few annotated data comparing to the state of the art. We detail the intuition and the design behind the discriminative-generative model, and we analyze its similarity with Generative Adversarial Network (GAN). Finally, we evaluate the performance of the proposed model on histopathology slide and synthetic data. The limits of this promising framework as its perspectives are shown
Khan, Adnan M. „Algorithms for breast cancer grading in digital histopathology images“. Thesis, University of Warwick, 2014. http://wrap.warwick.ac.uk/66024/.
Der volle Inhalt der QuelleLiu, Jingxin. „Stain separation, cell classification and histochemical score in digital histopathology images“. Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/52290/.
Der volle Inhalt der QuelleKårsnäs, Andreas. „Image Analysis Methods and Tools for Digital Histopathology Applications Relevant to Breast Cancer Diagnosis“. Doctoral thesis, Uppsala universitet, Avdelningen för visuell information och interaktion, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-219306.
Der volle Inhalt der QuelleLakhotia, Kritika. „Visualization and quantification of 3D tumor-host interface architecture reconstructed from digital histopathology slides“. Thesis, State University of New York at Buffalo, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10127616.
Der volle Inhalt der QuelleOral cavity cancer (OCC) is a type of cancer of the lip, tongue, salivary glands and other sites in the mouth (buccal or oral cavity) and is the sixth leading cause of cancer worldwide. Patients with OCC are treated based on a staging system: low-stage patients typically receive less aggressive therapy compared to high-stage patients. Unfortunately, low-stage patients are sometimes at risk for locoregional recurrence. Recently, a semi-quantitative risk scoring system has been developed to assess the locoregional recurrence risk for low-stage patients. This risk scoring system is based on tissue characteristics determined on 2D histopathology images under a microscope. This modality limits the appreciation of the 3D architecture of the tumor and its associated morphological features. This thesis aims to visualize 3D models of the tumor-host interface reconstructed from serially-sectioned histopathology slides and quantify their clinically validated morphological features to predict locoregional recurrence after treatment. The 3D models are developed and quantified for 6 patient cases using readily available tools. This pilot study provides a framework for an automated diagnostic technique for 3D visualization and morphological analysis of tumor biology which is traditionally done using 2D analysis.
Kampouraki, Vasileia. „Patch-level classification of brain tumor tissue in digital histopathology slides with Deep Learning“. Thesis, Linköpings universitet, Statistik och maskininlärning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177361.
Der volle Inhalt der QuelleNaylor, Peter. „Du phénotypage cellulaire à la classification de lames digitales : Une application au traitement du cancer du sein triple-négatif“. Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEM051.
Der volle Inhalt der QuelleThe rise of digital pathology and with it the challenges of histopathology analysis have been the focus of a worldwide effort in the overall fight against cancer. In parallel, the recent success of automated decision-making, machine learning, and specifically deep learning, have revolutionised the basis of research as we know today. In this thesis, we tackle the prediction of treatment response in triple-negative breast cancer patients with two different approaches that reach similar outcomes. The first line of approach, based on the recent success of computer vision, extracts learned features from the data in order to perform classification. The second line of approach forces the information flow to pass through nuclei segmentation. In particular, it allows the incorporation of high-resolution information on to a lower resolution overview. Yet while this approach is more appealing as it is based on the analysis and quantification of a precise biological element, nuclei segmentation is troublesome. While solving the task of nuclei segmentation with deep learning, we propose a new formulation for nuclei segmentation which excels at separating touching objects
Hossain, Md Shamim. „An automated deep learning based approach for nuclei segmentation of renal digital histopathology image analysis“. Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2022. https://ro.ecu.edu.au/theses/2611.
Der volle Inhalt der QuelleIrshad, Humayun. „Automated Mitosis Detection in Color and Multi-spectral High-Content Images in Histopathology : Application to Breast Cancer Grading in Digital Pathology“. Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENM007/document.
Der volle Inhalt der QuelleDigital pathology represents one of the major and challenging evolutions in modernmedicine. Pathological exams constitute not only the gold standard in most of medicalprotocols, but also play a critical and legal role in the diagnosis process. Diagnosing adisease after manually analyzing numerous biopsy slides represents a labor-intensive workfor pathologists. Thanks to the recent advances in digital histopathology, the recognitionof histological tissue patterns in a high-content Whole Slide Image (WSI) has the potentialto provide valuable assistance to the pathologist in his daily practice. Histopathologicalclassification and grading of biopsy samples provide valuable prognostic information thatcould be used for diagnosis and treatment support. Nottingham grading system is thestandard for breast cancer grading. It combines three criteria, namely tubule formation(also referenced as glandular architecture), nuclear atypia and mitosis count. Manualdetection and counting of mitosis is tedious and subject to considerable inter- and intrareadervariations. The main goal of this dissertation is the development of a framework ableto provide detection of mitosis on different types of scanners and multispectral microscope.The main contributions of this work are eight fold. First, we present a comprehensivereview on state-of-the-art methodologies in nuclei detection, segmentation and classificationrestricted to two widely available types of image modalities: H&E (HematoxylinEosin) and IHC (Immunohistochemical). Second, we analyse the statistical and morphologicalinformation concerning mitotic cells on different color channels of various colormodels that improve the mitosis detection in color datasets (Aperio and Hamamatsu scanners).Third, we study oversampling methods to increase the number of instances of theminority class (mitosis) by interpolating between several minority class examples that lietogether, which make classification more robust. Fourth, we propose three different methodsfor spectral bands selection including relative spectral absorption of different tissuecomponents, spectral absorption of H&E stains and mRMR (minimum Redundancy MaximumRelevance) technique. Fifth, we compute multispectral spatial features containingpixel, texture and morphological information on selected spectral bands, which leveragediscriminant information for mitosis classification on multispectral dataset. Sixth, we performa comprehensive study on region and patch based features for mitosis classification.Seven, we perform an extensive investigation of classifiers and inference of the best one formitosis classification. Eight, we propose an efficient and generic strategy to explore largeimages like WSI by combining computational geometry tools with a local signal measureof relevance in a dynamic sampling framework.The evaluation of these frameworks is done in MICO (COgnitive MIcroscopy, ANRTecSan project) platform prototyping initiative. We thus tested our proposed frameworks on MITOS international contest dataset initiated by this project. For the color framework,we manage to rank second during the contest. Furthermore, our multispectral frameworkoutperforms significantly the top methods presented during the contest. Finally, ourframeworks allow us reaching the same level of accuracy in mitosis detection on brightlightas multispectral datasets, a promising result on the way to clinical evaluation and routine
Bücher zum Thema "Histopathologie digitale"
Y, Mary J., Rigaut J. P, Unité de recherches biomathématiques et biostatistiques., Institut national de la santé et de la recherche médicale., Association pour la recherche sur le cancer. und European Society of Pathology, Hrsg. Quantitative image analysis in cancer cytology and histology. Amsterdam: Elsevier Science, 1986.
Den vollen Inhalt der Quelle findenY, Mary J., Rigaut J. P, Institut national de la santé et de la recherche médicale (France). Unité de recherches biomathématiques et biostatistiques., Association pour le développment de la recherche sur le cancer (France) und European Society of Pathology, Hrsg. Quantitative image analysis in cancer cytology and histology: Based on a symposium. Amsterdam: Elsevier, 1986.
Den vollen Inhalt der Quelle finden(Editor), L. Frappart, B. Fontaniere (Editor) und E. Lucas (Editor), Hrsg. Histopathology and Cytopathology of the Uterine Cervix: Digital Atlas. International Agency for Research on Cancer, 2004.
Den vollen Inhalt der Quelle findenSybert, Virginia P. Disorders of Epidermal Appendages. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190276478.003.0003.
Der volle Inhalt der QuelleBuchteile zum Thema "Histopathologie digitale"
Singh, Rishita, Nitu Dogra, Ravina Yadav, Angamba Meetei Potshangbam, Deepshikha Pande Katare und Ruchi Jakhmola Mani. „Digital Histopathology“. In Handbook of AI-Based Models in Healthcare and Medicine, 347–77. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003363361-18.
Der volle Inhalt der QuelleChenni, Wafa, Habib Herbi, Morteza Babaie und Hamid R. Tizhoosh. „Patch Clustering for Representation of Histopathology Images“. In Digital Pathology, 28–37. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23937-4_4.
Der volle Inhalt der QuelleKhan, Umair Akhtar Hasan, Carolin Stürenberg, Oguzhan Gencoglu, Kevin Sandeman, Timo Heikkinen, Antti Rannikko und Tuomas Mirtti. „Improving Prostate Cancer Detection with Breast Histopathology Images“. In Digital Pathology, 91–99. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23937-4_11.
Der volle Inhalt der QuelleBabaie, Morteza, und Hamid R. Tizhoosh. „Deep Features for Tissue-Fold Detection in Histopathology Images“. In Digital Pathology, 125–32. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23937-4_15.
Der volle Inhalt der QuelleDey, Pranab. „Digital Pathology“. In Basic and Advanced Laboratory Techniques in Histopathology and Cytology, 195–203. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6616-3_18.
Der volle Inhalt der QuelleBenomar, Mohammed Lamine, Nesma Settouti, Rudan Xiao, Damien Ambrosetti und Xavier Descombes. „Convolutional Neuronal Networks for Tumor Regions Detection in Histopathology Images“. In Digital Technologies and Applications, 13–23. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73882-2_2.
Der volle Inhalt der QuelleRymarczyk, Dawid, Adam Pardyl, Jarosław Kraus, Aneta Kaczyńska, Marek Skomorowski und Bartosz Zieliński. „ProtoMIL: Multiple Instance Learning with Prototypical Parts for Whole-Slide Image Classification“. In Machine Learning and Knowledge Discovery in Databases, 421–36. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-26387-3_26.
Der volle Inhalt der QuelleXu, Jun, Chengfei Cai, Yangshu Zhou, Bo Yao, Geyang Xu, Xiangxue Wang, Ke Zhao, Anant Madabhushi, Zaiyi Liu und Li Liang. „Multi-tissue Partitioning for Whole Slide Images of Colorectal Cancer Histopathology Images with Deeptissue Net“. In Digital Pathology, 100–108. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23937-4_12.
Der volle Inhalt der QuelleDey, Pranab. „Digital Image Analysis and Virtual Microscopy in Pathology“. In Basic and Advanced Laboratory Techniques in Histopathology and Cytology, 185–92. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8252-8_18.
Der volle Inhalt der QuelleHering, Jan, und Jan Kybic. „Generalized Multiple Instance Learning for Cancer Detection in Digital Histopathology“. In Lecture Notes in Computer Science, 274–82. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50516-5_24.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Histopathologie digitale"
Anand, Deepak, Shrey Gadiya und Amit Sethi. „Histographs: graphs in histopathology“. In Digital Pathology, herausgegeben von John E. Tomaszewski und Aaron D. Ward. SPIE, 2020. http://dx.doi.org/10.1117/12.2550114.
Der volle Inhalt der QuelleAshman, Kimberly, Brian Summa, Sharon Fox und J. Quincy Brown. „Visualizing Analog and Digital Diagnostic Provenance in Pathology“. In Microscopy Histopathology and Analytics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/microscopy.2022.mw4a.6.
Der volle Inhalt der QuelleCunningham, Brian T. „Photonic Crystal Resonant Coupling to Nanoantennas and Applications for Digital Resolution Biosensing“. In Microscopy Histopathology and Analytics. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/microscopy.2018.mw2a.3.
Der volle Inhalt der QuelleAshman, Kimberly, Max S. Cooper, Sharon Fox, Brian Summa und J. Quincy Brown. „Reconstructing a Multiscale Digital Record of Clinical Pathology Slide Review Using Onboard-Cameras“. In Microscopy Histopathology and Analytics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/microscopy.2022.mw4a.2.
Der volle Inhalt der QuelleGupta, Deven K., Trey Highland, David A. Miller und Adam Wax. „Utilizing Quantitative Phase Microscopy to Localize Fluorescence Imaging Using the Transport of Intensity Equation“. In Microscopy Histopathology and Analytics. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/microscopy.2024.mw3a.5.
Der volle Inhalt der QuelleLi, Wenjing, Rich W. Lieberman, Sixiang Nie, Yihua Xie, Michael Eldred und Jody Oyama. „Histopathology reconstruction on digital imagery“. In SPIE Medical Imaging, herausgegeben von Berkman Sahiner und David J. Manning. SPIE, 2009. http://dx.doi.org/10.1117/12.811344.
Der volle Inhalt der QuelleZhuge, Huimin, David Manthey, Kimberly Ashman, Brian Summa, Roni Choudhury und J. Quincy Brown. „Interactive WSI Review and Annotation Tracker, and Digital Visualization Tool for Pathologist Diagnosis of Whole Slide Images“. In Microscopy Histopathology and Analytics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/microscopy.2022.mw3a.4.
Der volle Inhalt der QuelleHan, Wenchao, Carol Johnson, Mena Gaed, Jose Gomez-Lemus, Madeleine Moussa, Joseph Chin, Stephen Pautler, Glenn Bauman und Aaron Ward. „Automatic high-grade cancer detection on prostatectomy histopathology images“. In Digital Pathology, herausgegeben von John E. Tomaszewski und Aaron D. Ward. SPIE, 2019. http://dx.doi.org/10.1117/12.2512916.
Der volle Inhalt der QuelleHan, Wenchao, Aaron D. Ward, Carol Johnson, José Gomez, Mena Gaed, Joseph Chin, Stephen Pautler, Glenn Bauman und Madeleine Moussa. „Automatic cancer detection and localization on prostatectomy histopathology images“. In Digital Pathology, herausgegeben von Metin N. Gurcan und John E. Tomaszewski. SPIE, 2018. http://dx.doi.org/10.1117/12.2292450.
Der volle Inhalt der QuelleClarke, G. M., C. Peressotti, G. E. Mawdsley, S. Eidt, M. Ge, T. Morgan, J. T. Zubovits und M. J. Yaffe. „Three-dimensional digital breast histopathology imaging“. In Medical Imaging, herausgegeben von Robert L. Galloway, Jr. und Kevin R. Cleary. SPIE, 2005. http://dx.doi.org/10.1117/12.593484.
Der volle Inhalt der Quelle