Zeitschriftenartikel zum Thema „Histopathological tumor segmentation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Histopathological tumor segmentation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Liu, Yiqing, Qiming He, Hufei Duan, Huijuan Shi, Anjia Han und Yonghong He. „Using Sparse Patch Annotation for Tumor Segmentation in Histopathological Images“. Sensors 22, Nr. 16 (13.08.2022): 6053. http://dx.doi.org/10.3390/s22166053.
Der volle Inhalt der Quellevan der Kamp, Ananda, Thomas de Bel, Ludo van Alst, Jikke Rutgers, Marry M. van den Heuvel-Eibrink, Annelies M. C. Mavinkurve-Groothuis, Jeroen van der Laak und Ronald R. de Krijger. „Automated Deep Learning-Based Classification of Wilms Tumor Histopathology“. Cancers 15, Nr. 9 (08.05.2023): 2656. http://dx.doi.org/10.3390/cancers15092656.
Der volle Inhalt der QuelleZadeh Shirazi, Amin, Eric Fornaciari, Mark D. McDonnell, Mahdi Yaghoobi, Yesenia Cevallos, Luis Tello-Oquendo, Deysi Inca und Guillermo A. Gomez. „The Application of Deep Convolutional Neural Networks to Brain Cancer Images: A Survey“. Journal of Personalized Medicine 10, Nr. 4 (12.11.2020): 224. http://dx.doi.org/10.3390/jpm10040224.
Der volle Inhalt der QuellePark, Youngjae, Jinhee Park und Gil-Jin Jang. „Efficient Perineural Invasion Detection of Histopathological Images Using U-Net“. Electronics 11, Nr. 10 (22.05.2022): 1649. http://dx.doi.org/10.3390/electronics11101649.
Der volle Inhalt der QuelleAltini, Nicola, Emilia Puro, Maria Giovanna Taccogna, Francescomaria Marino, Simona De Summa, Concetta Saponaro, Eliseo Mattioli, Francesco Alfredo Zito und Vitoantonio Bevilacqua. „Tumor Cellularity Assessment of Breast Histopathological Slides via Instance Segmentation and Pathomic Features Explainability“. Bioengineering 10, Nr. 4 (23.03.2023): 396. http://dx.doi.org/10.3390/bioengineering10040396.
Der volle Inhalt der QuelleAlthubaity, DaifAllah D., Faisal Fahad Alotaibi, Abdalla Mohamed Ahmed Osman, Mugahed Ali Al-khadher, Yahya Hussein Ahmed Abdalla, Sadeq Abdo Alwesabi, Elsadig Eltaher Hamed Abdulrahman und Maram Abdulkhalek Alhemairy. „Automated Lung Cancer Segmentation in Tissue Micro Array Analysis Histopathological Images Using a Prototype of Computer-Assisted Diagnosis“. Journal of Personalized Medicine 13, Nr. 3 (23.02.2023): 388. http://dx.doi.org/10.3390/jpm13030388.
Der volle Inhalt der QuelleMusulin, Jelena, Daniel Štifanić, Ana Zulijani, Tomislav Ćabov, Andrea Dekanić und Zlatan Car. „An Enhanced Histopathology Analysis: An AI-Based System for Multiclass Grading of Oral Squamous Cell Carcinoma and Segmenting of Epithelial and Stromal Tissue“. Cancers 13, Nr. 8 (08.04.2021): 1784. http://dx.doi.org/10.3390/cancers13081784.
Der volle Inhalt der QuelleNicolás-Sáenz, Laura, Sara Guerrero-Aspizua, Javier Pascau und Arrate Muñoz-Barrutia. „Nonlinear Image Registration and Pixel Classification Pipeline for the Study of Tumor Heterogeneity Maps“. Entropy 22, Nr. 9 (28.08.2020): 946. http://dx.doi.org/10.3390/e22090946.
Der volle Inhalt der QuelleHuang, Zhi, Anil V. Parwani, Kun Huang und Zaibo Li. „Abstract 5436: Developing artificial intelligence algorithms to predict response to neoadjuvant chemotherapy in HER2-positive breast cancer“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 5436. http://dx.doi.org/10.1158/1538-7445.am2023-5436.
Der volle Inhalt der QuelleFagundes, Theara C., Arnoldo Mafra, Rodrigo G. Silva, Ana C. G. Castro, Luciana C. Silva, Priscilla T. Aguiar, Josiane A. Silva, Eduardo P. Junior, Alexei M. Machado und Marcelo Mamede. „Individualized threshold for tumor segmentation in 18F-FDG PET/CT imaging: The key for response evaluation of neoadjuvant chemoradiation therapy in patients with rectal cancer?“ Revista da Associação Médica Brasileira 64, Nr. 2 (Februar 2018): 119–26. http://dx.doi.org/10.1590/1806-9282.64.02.119.
Der volle Inhalt der QuelleAnghel, Cristian, Mugur Cristian Grasu, Denisa Andreea Anghel, Gina-Ionela Rusu-Munteanu, Radu Lucian Dumitru und Ioana Gabriela Lupescu. „Pancreatic Adenocarcinoma: Imaging Modalities and the Role of Artificial Intelligence in Analyzing CT and MRI Images“. Diagnostics 14, Nr. 4 (16.02.2024): 438. http://dx.doi.org/10.3390/diagnostics14040438.
Der volle Inhalt der QuelleCancian, Pierandrea, Nina Cortese, Matteo Donadon, Marco Di Maio, Cristiana Soldani, Federica Marchesi, Victor Savevski et al. „Development of a Deep-Learning Pipeline to Recognize and Characterize Macrophages in Colo-Rectal Liver Metastasis“. Cancers 13, Nr. 13 (01.07.2021): 3313. http://dx.doi.org/10.3390/cancers13133313.
Der volle Inhalt der QuelleMahmoudi, Keon, Daniel H. Kim, Elham Tavakkol, Shingo Kihira, Adam Bauer, Nadejda Tsankova, Fahad Khan, Adilia Hormigo, Vivek Yedavalli und Kambiz Nael. „Multiparametric Radiogenomic Model to Predict Survival in Patients with Glioblastoma“. Cancers 16, Nr. 3 (30.01.2024): 589. http://dx.doi.org/10.3390/cancers16030589.
Der volle Inhalt der QuelleZováthi, Bendegúz H., Réka Mohácsi, Attila Marcell Szász und György Cserey. „Breast Tumor Tissue Segmentation with Area-Based Annotation Using Convolutional Neural Network“. Diagnostics 12, Nr. 9 (06.09.2022): 2161. http://dx.doi.org/10.3390/diagnostics12092161.
Der volle Inhalt der QuelleZhang, Xiaoxuan, Xiongfeng Zhu, Kai Tang, Yinghua Zhao, Zixiao Lu und Qianjin Feng. „DDTNet: A dense dual-task network for tumor-infiltrating lymphocyte detection and segmentation in histopathological images of breast cancer“. Medical Image Analysis 78 (Mai 2022): 102415. http://dx.doi.org/10.1016/j.media.2022.102415.
Der volle Inhalt der QuelleHosainey, Sayied Abdol Mohieb, David Bouget, Ingerid Reinertsen, Lisa Millgård Sagberg, Sverre Helge Torp, Asgeir Store Jakola und Ole Solheim. „Are there predilection sites for intracranial meningioma? A population-based atlas“. Neurosurgical Review 45, Nr. 2 (21.10.2021): 1543–52. http://dx.doi.org/10.1007/s10143-021-01652-9.
Der volle Inhalt der QuelleBundschuh, Lena, Vesna Prokic, Matthias Guckenberger, Stephanie Tanadini-Lang, Markus Essler und Ralph A. Bundschuh. „A Novel Radiomics-Based Tumor Volume Segmentation Algorithm for Lung Tumors in FDG-PET/CT after 3D Motion Correction—A Technical Feasibility and Stability Study“. Diagnostics 12, Nr. 3 (23.02.2022): 576. http://dx.doi.org/10.3390/diagnostics12030576.
Der volle Inhalt der QuelleZhou, Wentong, Ziheng Deng, Yong Liu, Hui Shen, Hongwen Deng und Hongmei Xiao. „Global Research Trends of Artificial Intelligence on Histopathological Images: A 20-Year Bibliometric Analysis“. International Journal of Environmental Research and Public Health 19, Nr. 18 (15.09.2022): 11597. http://dx.doi.org/10.3390/ijerph191811597.
Der volle Inhalt der QuelleJaber, Mustafa I., Christopher W. Szeto, Bing Song, Liudmila Beziaeva, Stephen C. Benz, Patrick Soon-Shiong und Shahrooz Rabizadeh. „Pathology image-based lung cancer subtyping using deeplearning features and cell-density maps“. Electronic Imaging 2020, Nr. 10 (26.01.2020): 64–1. http://dx.doi.org/10.2352/issn.2470-1173.2020.10.ipas-064.
Der volle Inhalt der QuelleKurczyk, Agata, Marta Gawin, Piotr Paul, Ewa Chmielik, Tomasz Rutkowski, Monika Pietrowska und Piotr Widłak. „Prognostic Value of Molecular Intratumor Heterogeneity in Primary Oral Cancer and Its Lymph Node Metastases Assessed by Mass Spectrometry Imaging“. Molecules 27, Nr. 17 (25.08.2022): 5458. http://dx.doi.org/10.3390/molecules27175458.
Der volle Inhalt der QuelleEminaga, Okyaz, Mahmoud Abbas, Axel Semjonow, James D. Brooks und Daniel Rubin. „Determination of biologic and prognostic feature scores from whole slide histology images using deep learning.“ Journal of Clinical Oncology 38, Nr. 15_suppl (20.05.2020): e17527-e17527. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.e17527.
Der volle Inhalt der QuelleJung, Jiyoon, Eunsu Kim, Hyeseong Lee, Sung Hak Lee und Sangjeong Ahn. „Automated Hybrid Model for Detecting Perineural Invasion in the Histology of Colorectal Cancer“. Applied Sciences 12, Nr. 18 (13.09.2022): 9159. http://dx.doi.org/10.3390/app12189159.
Der volle Inhalt der QuelleLiu, Yan, Fadila Zerka, Sylvain Bodard, Mehdi Felfli, Charles Voyton, Alexandre Thinnes, Sebastien Jacques und Antoine Iannessi. „CT based radiomics signature for phenotyping histopathological subtype in patients with non-small cell lung cancer.“ Journal of Clinical Oncology 41, Nr. 16_suppl (01.06.2023): e20599-e20599. http://dx.doi.org/10.1200/jco.2023.41.16_suppl.e20599.
Der volle Inhalt der QuelleTalwar, Vineet, Kundan Singh Chufal und Srujana Joga. „Artificial Intelligence: A New Tool in Oncologist's Armamentarium“. Indian Journal of Medical and Paediatric Oncology 42, Nr. 06 (Dezember 2021): 511–17. http://dx.doi.org/10.1055/s-0041-1735577.
Der volle Inhalt der QuelleKhalil, Muhammad-Adil, Yu-Ching Lee, Huang-Chun Lien, Yung-Ming Jeng und Ching-Wei Wang. „Fast Segmentation of Metastatic Foci in H&E Whole-Slide Images for Breast Cancer Diagnosis“. Diagnostics 12, Nr. 4 (14.04.2022): 990. http://dx.doi.org/10.3390/diagnostics12040990.
Der volle Inhalt der QuelleGrewal, Mahip, Taha Ahmed und Ammar Asrar Javed. „Current state of radiomics in hepatobiliary and pancreatic malignancies“. Artificial Intelligence Surgery 3, Nr. 4 (28.11.2023): 217–32. http://dx.doi.org/10.20517/ais.2023.28.
Der volle Inhalt der QuelleRigamonti, Alessandra, Marika Viatore, Rebecca Polidori, Marco Erreni, Maria Fumagalli, Daoud Rahal, Massimo Locati, Alberto Mantovani und Federica Marchesi. „Abstract 5783: Integration of AI-powered digital pathology and imaging mass cytometry to identify relevant features of the tumor microenvironment“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 5783. http://dx.doi.org/10.1158/1538-7445.am2023-5783.
Der volle Inhalt der QuelleWu, Wei, Lauren Cech, Victor Olivas, Aubhishek Zaman, Daniel Lucas Kerr und Trever G. Bivona. „Deep learning-based characterization of the drug tolerant persister cell state in lung cancer.“ JCO Global Oncology 9, Supplement_1 (August 2023): 141. http://dx.doi.org/10.1200/go.2023.9.supplement_1.141.
Der volle Inhalt der QuelleDi Dio, Michele, Simona Barbuto, Claudio Bisegna, Andrea Bellin, Mario Boccia, Daniele Amparore, Paolo Verri et al. „Artificial Intelligence-Based Hyper Accuracy Three-Dimensional (HA3D®) Models in Surgical Planning of Challenging Robotic Nephron-Sparing Surgery: A Case Report and Snapshot of the State-of-the-Art with Possible Future Implications“. Diagnostics 13, Nr. 14 (10.07.2023): 2320. http://dx.doi.org/10.3390/diagnostics13142320.
Der volle Inhalt der QuellePasello, Giulia, Alessandra Ferro, Elena Scagliori, Gisella Gennaro, Matilde Costa, Matteo Sepulcri, Marco Schiavon et al. „Exploratory radiomic analysis of stage III non-small cell lung cancer CT images: Correlation with clinical-pathological characteristics.“ Journal of Clinical Oncology 40, Nr. 16_suppl (01.06.2022): e20574-e20574. http://dx.doi.org/10.1200/jco.2022.40.16_suppl.e20574.
Der volle Inhalt der QuellePasello, Giulia, Alessandra Ferro, Elena Scagliori, Gisella Gennaro, Matilde Costa, Matteo Sepulcri, Marco Schiavon et al. „Exploratory radiomic analysis of stage III non-small cell lung cancer CT images: Correlation with clinical-pathological characteristics.“ Journal of Clinical Oncology 40, Nr. 16_suppl (01.06.2022): e20574-e20574. http://dx.doi.org/10.1200/jco.2022.40.16_suppl.e20574.
Der volle Inhalt der QuelleCanola, Julio Carlos, und Fabrício Singaretti de Oliveira. „Three-dimensional magnetic resonance reconstruction images before and after surgical therapy of spontaneous canine brain tumors“. Ciência Rural 37, Nr. 4 (August 2007): 1174–77. http://dx.doi.org/10.1590/s0103-84782007000400044.
Der volle Inhalt der QuelleDionisio, Fernando Carrasco Ferreira, Larissa Santos Oliveira, Mateus de Andrade Hernandes, Edgard Eduard Engel, Paulo Mazzoncini de Azevedo-Marques und Marcello Henrique Nogueira-Barbosa. „Manual versus semiautomatic segmentation of soft-tissue sarcomas on magnetic resonance imaging: evaluation of similarity and comparison of segmentation times“. Radiologia Brasileira 54, Nr. 3 (Juni 2021): 155–64. http://dx.doi.org/10.1590/0100-3984.2020.0028.
Der volle Inhalt der QuelleAlvarsson, Alexandra, Carl Storey, Brandy Olin Pope, Caleb Stoltzfus, Robert Vierkant, Jessica Tufariello, Aaron Bungum et al. „Abstract 6624: 3D assessment of the lung cancer microenvironment using multi-resolution open-top light-sheet microscopy“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 6624. http://dx.doi.org/10.1158/1538-7445.am2023-6624.
Der volle Inhalt der QuelleHempel, Johann-Martin, Cornelia Brendle, Sasan Darius Adib, Felix Behling, Ghazaleh Tabatabai, Salvador Castaneda Vega, Jens Schittenhelm, Ulrike Ernemann und Uwe Klose. „Glioma-Specific Diffusion Signature in Diffusion Kurtosis Imaging“. Journal of Clinical Medicine 10, Nr. 11 (26.05.2021): 2325. http://dx.doi.org/10.3390/jcm10112325.
Der volle Inhalt der Quellede Matos, Jonathan, Steve Ataky, Alceu de Souza Britto, Luiz Soares de Oliveira und Alessandro Lameiras Koerich. „Machine Learning Methods for Histopathological Image Analysis: A Review“. Electronics 10, Nr. 5 (27.02.2021): 562. http://dx.doi.org/10.3390/electronics10050562.
Der volle Inhalt der QuelleWarman, Pranav, Syed M. Adil, Andreas Seas, Daniel Sexton, Evan Calabrese, Nandan P. Lad, Brad Kolls et al. „381 Glioma Three-Dimensional Shape Predicts Underlying Genetic Mutations“. Neurosurgery 70, Supplement_1 (April 2024): 115. http://dx.doi.org/10.1227/neu.0000000000002809_381.
Der volle Inhalt der QuelleHulahan, Taylor S., Elizabeth N. Wallace, Siri H. Strand, Graham A. Colditz, E. Shelley Hwang, Robert West, Laura Spruill, Jeffrey Marks, Richard R. Drake und Peggi M. Angel. „Abstract P2-21-03: Unique Collagen Peptide Signatures between Ductal Carcinoma in Situ and Invasive Breast Cancer by Mass Spectrometry Tissue Imaging“. Cancer Research 83, Nr. 5_Supplement (01.03.2023): P2–21–03—P2–21–03. http://dx.doi.org/10.1158/1538-7445.sabcs22-p2-21-03.
Der volle Inhalt der QuelleHulahan, Taylor S., Elizabeth N. Wallace, Siri H. Strand, Robert Michael Angelo, Graham Colditz, Eun-Sil Shelley Hwang, Robert West et al. „Abstract B019: Discrete regulation of the collagen proteome among pathological features in DCIS and invasive breast cancer by mass spectrometry tissue imaging“. Cancer Prevention Research 15, Nr. 12_Supplement_1 (01.12.2022): B019. http://dx.doi.org/10.1158/1940-6215.dcis22-b019.
Der volle Inhalt der QuelleXu, Rui, Zhizhen Wang, Zhenbing Liu, Chu Han, Lixu Yan, Huan Lin, Zeyan Xu et al. „Histopathological Tissue Segmentation of Lung Cancer with Bilinear CNN and Soft Attention“. BioMed Research International 2022 (07.07.2022): 1–10. http://dx.doi.org/10.1155/2022/7966553.
Der volle Inhalt der QuelleZadeh Shirazi, Amin, Mark D. McDonnell, Eric Fornaciari, Narjes Sadat Bagherian, Kaitlin G. Scheer, Michael S. Samuel, Mahdi Yaghoobi et al. „A deep convolutional neural network for segmentation of whole-slide pathology images identifies novel tumour cell-perivascular niche interactions that are associated with poor survival in glioblastoma“. British Journal of Cancer 125, Nr. 3 (29.04.2021): 337–50. http://dx.doi.org/10.1038/s41416-021-01394-x.
Der volle Inhalt der QuelleAlGhamdi, Rayed. „Mitotic Nuclei Segmentation and Classification Using Chaotic Butterfly Optimization Algorithm with Deep Learning on Histopathology Images“. Biomimetics 8, Nr. 6 (05.10.2023): 474. http://dx.doi.org/10.3390/biomimetics8060474.
Der volle Inhalt der QuelleJakola, Asgeir S., David Bouget, Ingerid Reinertsen, Anne J. Skjulsvik, Lisa Millgård Sagberg, Hans Kristian Bø, Sasha Gulati, Kristin Sjåvik und Ole Solheim. „Spatial distribution of malignant transformation in patients with low-grade glioma“. Journal of Neuro-Oncology 146, Nr. 2 (Januar 2020): 373–80. http://dx.doi.org/10.1007/s11060-020-03391-1.
Der volle Inhalt der QuelleWang, Edmond. „Glioblastoma Synthesis and Segmentation with 3D Multi-Modal MRI: A Study using Generative Adversarial Networks“. International Journal on Computational Science & Applications 11, Nr. 6 (31.12.2021): 1–14. http://dx.doi.org/10.5121/ijcsa.2021.11601.
Der volle Inhalt der QuelleVerghese, Gregory, Mengyuan Li, Amit Lohan, Nikhil Cherian, Swapnil Rane, Fangfang Liu, Aekta Shah et al. „Abstract 6233: A deep learning pipeline to capture the prognostic immune responses in lymph nodes of breast cancer patients“. Cancer Research 82, Nr. 12_Supplement (15.06.2022): 6233. http://dx.doi.org/10.1158/1538-7445.am2022-6233.
Der volle Inhalt der QuelleHeiland, Dieter, Robin Ohle, Simon Behringer, Juergen Beck und Oliver Schnell. „NIMG-63. LONGITUDINAL ANALYSIS OF OLIGODENDROGLIOMA GROWTH PATTERN REVEALED SPATIAL HETEROGENEITY AND DIVERSE TREATMENT RESPONSE“. Neuro-Oncology 21, Supplement_6 (November 2019): vi175. http://dx.doi.org/10.1093/neuonc/noz175.732.
Der volle Inhalt der QuelleWach, Johannes, Claudia Goetz, Kasra Shareghi, Torben Scholz, Volker Heßelmann, Ann-Kathrin Mager, Joachim Gottschalk, Hartmut Vatter und Paul Kremer. „Dual-Use Intraoperative MRI in Glioblastoma Surgery: Results of Resection, Histopathologic Assessment, and Surgical Site Infections“. Journal of Neurological Surgery Part A: Central European Neurosurgery 80, Nr. 06 (04.07.2019): 413–22. http://dx.doi.org/10.1055/s-0039-1692975.
Der volle Inhalt der QuelleWalkowski, Slawomir, und Janusz Szymas. „Histopathologic Patterns of Nervous System Tumors Based on Computer Vision Methods and Whole Slide Imaging (WSI)“. Analytical Cellular Pathology 35, Nr. 2 (2012): 117–22. http://dx.doi.org/10.1155/2012/483525.
Der volle Inhalt der QuelleKanta Maitra, Indra, und Samir Kumar Bandyopadhyay. „CAD Based Method for Detection of Breast Cancer“. Oriental journal of computer science and technology 11, Nr. 3 (10.09.2018): 154–68. http://dx.doi.org/10.13005/ojcst11.03.04.
Der volle Inhalt der QuelleGui, Chloe, Jonathan C. Lau und Joseph F. Megyesi. „30 Perceived versus quantified growth trajectory of serially-imaged low-grade gliomas“. Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques 45, S3 (Juni 2018): S6. http://dx.doi.org/10.1017/cjn.2018.274.
Der volle Inhalt der Quelle