Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Histopathological tumor segmentation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Histopathological tumor segmentation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Histopathological tumor segmentation"
Liu, Yiqing, Qiming He, Hufei Duan, Huijuan Shi, Anjia Han und Yonghong He. „Using Sparse Patch Annotation for Tumor Segmentation in Histopathological Images“. Sensors 22, Nr. 16 (13.08.2022): 6053. http://dx.doi.org/10.3390/s22166053.
Der volle Inhalt der Quellevan der Kamp, Ananda, Thomas de Bel, Ludo van Alst, Jikke Rutgers, Marry M. van den Heuvel-Eibrink, Annelies M. C. Mavinkurve-Groothuis, Jeroen van der Laak und Ronald R. de Krijger. „Automated Deep Learning-Based Classification of Wilms Tumor Histopathology“. Cancers 15, Nr. 9 (08.05.2023): 2656. http://dx.doi.org/10.3390/cancers15092656.
Der volle Inhalt der QuelleZadeh Shirazi, Amin, Eric Fornaciari, Mark D. McDonnell, Mahdi Yaghoobi, Yesenia Cevallos, Luis Tello-Oquendo, Deysi Inca und Guillermo A. Gomez. „The Application of Deep Convolutional Neural Networks to Brain Cancer Images: A Survey“. Journal of Personalized Medicine 10, Nr. 4 (12.11.2020): 224. http://dx.doi.org/10.3390/jpm10040224.
Der volle Inhalt der QuellePark, Youngjae, Jinhee Park und Gil-Jin Jang. „Efficient Perineural Invasion Detection of Histopathological Images Using U-Net“. Electronics 11, Nr. 10 (22.05.2022): 1649. http://dx.doi.org/10.3390/electronics11101649.
Der volle Inhalt der QuelleAltini, Nicola, Emilia Puro, Maria Giovanna Taccogna, Francescomaria Marino, Simona De Summa, Concetta Saponaro, Eliseo Mattioli, Francesco Alfredo Zito und Vitoantonio Bevilacqua. „Tumor Cellularity Assessment of Breast Histopathological Slides via Instance Segmentation and Pathomic Features Explainability“. Bioengineering 10, Nr. 4 (23.03.2023): 396. http://dx.doi.org/10.3390/bioengineering10040396.
Der volle Inhalt der QuelleAlthubaity, DaifAllah D., Faisal Fahad Alotaibi, Abdalla Mohamed Ahmed Osman, Mugahed Ali Al-khadher, Yahya Hussein Ahmed Abdalla, Sadeq Abdo Alwesabi, Elsadig Eltaher Hamed Abdulrahman und Maram Abdulkhalek Alhemairy. „Automated Lung Cancer Segmentation in Tissue Micro Array Analysis Histopathological Images Using a Prototype of Computer-Assisted Diagnosis“. Journal of Personalized Medicine 13, Nr. 3 (23.02.2023): 388. http://dx.doi.org/10.3390/jpm13030388.
Der volle Inhalt der QuelleMusulin, Jelena, Daniel Štifanić, Ana Zulijani, Tomislav Ćabov, Andrea Dekanić und Zlatan Car. „An Enhanced Histopathology Analysis: An AI-Based System for Multiclass Grading of Oral Squamous Cell Carcinoma and Segmenting of Epithelial and Stromal Tissue“. Cancers 13, Nr. 8 (08.04.2021): 1784. http://dx.doi.org/10.3390/cancers13081784.
Der volle Inhalt der QuelleNicolás-Sáenz, Laura, Sara Guerrero-Aspizua, Javier Pascau und Arrate Muñoz-Barrutia. „Nonlinear Image Registration and Pixel Classification Pipeline for the Study of Tumor Heterogeneity Maps“. Entropy 22, Nr. 9 (28.08.2020): 946. http://dx.doi.org/10.3390/e22090946.
Der volle Inhalt der QuelleHuang, Zhi, Anil V. Parwani, Kun Huang und Zaibo Li. „Abstract 5436: Developing artificial intelligence algorithms to predict response to neoadjuvant chemotherapy in HER2-positive breast cancer“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 5436. http://dx.doi.org/10.1158/1538-7445.am2023-5436.
Der volle Inhalt der QuelleFagundes, Theara C., Arnoldo Mafra, Rodrigo G. Silva, Ana C. G. Castro, Luciana C. Silva, Priscilla T. Aguiar, Josiane A. Silva, Eduardo P. Junior, Alexei M. Machado und Marcelo Mamede. „Individualized threshold for tumor segmentation in 18F-FDG PET/CT imaging: The key for response evaluation of neoadjuvant chemoradiation therapy in patients with rectal cancer?“ Revista da Associação Médica Brasileira 64, Nr. 2 (Februar 2018): 119–26. http://dx.doi.org/10.1590/1806-9282.64.02.119.
Der volle Inhalt der QuelleDissertationen zum Thema "Histopathological tumor segmentation"
Lerousseau, Marvin. „Weakly Supervised Segmentation and Context-Aware Classification in Computational Pathology“. Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG015.
Der volle Inhalt der QuelleAnatomic pathology is the medical discipline responsible for the diagnosis and characterization of diseases through the macroscopic, microscopic, molecular and immunologic inspection of tissues. Modern technologies have made possible the digitization of tissue glass slides into whole slide images, which can themselves be processed by artificial intelligence to enhance the capabilities of pathologists. This thesis presented several novel and powerful approaches that tackle pan-cancer segmentation and classification of whole slide images. Learning segmentation models for whole slide images is challenged by an annotation bottleneck which arises from (i) a shortage of pathologists, (ii) an intense cumbersomeness and boring annotation process, and (iii) major inter-annotators discrepancy. My first line of work tackled pan-cancer tumor segmentation by designing two novel state-of-the-art weakly supervised approaches that exploit slide-level annotations that are fast and easy to obtain. In particular, my second segmentation contribution was a generic and highly powerful algorithm that leverages percentage annotations on a slide basis, without needing any pixelbased annotation. Extensive large-scale experiments showed the superiority of my approaches over weakly supervised and supervised methods for pan-cancer tumor segmentation on a dataset of more than 15,000 unfiltered and extremely challenging whole slide images from snap-frozen tissues. My results indicated the robustness of my approaches to noise and systemic biases in annotations. Digital slides are difficult to classify due to their colossal sizes, which range from millions of pixels to billions of pixels, often weighing more than 500 megabytes. The straightforward use of traditional computer vision is therefore not possible, prompting the use of multiple instance learning, a machine learning paradigm consisting in assimilating a whole slide image as a set of patches uniformly sampled from it. Up to my works, the greater majority of multiple instance learning approaches considered patches as independently and identically sampled, i.e. discarded the spatial relationship of patches extracted from a whole slide image. Some approaches exploited such spatial interconnection by leveraging graph-based models, although the true domain of whole slide images is specifically the image domain which is more suited with convolutional neural networks. I designed a highly powerful and modular multiple instance learning framework that leverages the spatial relationship of patches extracted from a whole slide image by building a sparse map from the patches embeddings, which is then further processed into a whole slide image embedding by a sparse-input convolutional neural network, before being classified by a generic classifier model. My framework essentially bridges the gap between multiple instance learning, and fully convolutional classification. I performed extensive experiments on three whole slide image classification tasks, including the golden task of cancer pathologist of subtyping tumors, on a dataset of more than 20,000 whole slide images from public data. Results highlighted the superiority of my approach over all other widespread multiple instance learning methods. Furthermore, while my experiments only investigated my approach with sparse-input convolutional neural networks with two convolutional layers, the results showed that my framework works better as the number of parameters increases, suggesting that more sophisticated convolutional neural networks can easily obtain superior results
Huang, Pei-Chen, und 黃珮楨. „Real Time Automatic Lung Tumor Segmentation in Whole-slide Histopathological Images“. Thesis, 2019. http://ndltd.ncl.edu.tw/handle/2h8u6r.
Der volle Inhalt der QuelleBuchteile zum Thema "Histopathological tumor segmentation"
Lerousseau, Marvin, Maria Vakalopoulou, Marion Classe, Julien Adam, Enzo Battistella, Alexandre Carré, Théo Estienne, Théophraste Henry, Eric Deutsch und Nikos Paragios. „Weakly Supervised Multiple Instance Learning Histopathological Tumor Segmentation“. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, 470–79. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59722-1_45.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Histopathological tumor segmentation"
Huang, Xiansong, Hongliang He, Pengxu Wei, Chi Zhang, Juncen Zhang und Jie Chen. „Tumor Tissue Segmentation for Histopathological Images“. In MMAsia '19: ACM Multimedia Asia. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3338533.3372210.
Der volle Inhalt der QuelleMusulin, Jelena, Daniel Štifanić, Ana Zulijani und Zlatan Car. „SEMANTIC SEGMENTATION OF ORAL SQUAMOUS CELL CARCINOMA ON EPITHELLIAL AND STROMAL TISSUE“. In 1st INTERNATIONAL Conference on Chemo and BioInformatics. Institute for Information Technologies, University of Kragujevac, 2021. http://dx.doi.org/10.46793/iccbi21.194m.
Der volle Inhalt der Quelle