Auswahl der wissenschaftlichen Literatur zum Thema „His Bundle Pacing“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "His Bundle Pacing" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "His Bundle Pacing"

1

Zanon, Francesco, Lina Marcantoni, Marco Centioni, Gianni Pastore und Enrico Baracca. „His Bundle Pacing“. Cardiac Electrophysiology Clinics 14, Nr. 2 (Juni 2022): 141–49. http://dx.doi.org/10.1016/j.ccep.2021.12.016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hanley, Alan, und Jagmeet P. Singh. „His Bundle Pacing“. JACC: Clinical Electrophysiology 8, Nr. 1 (Januar 2022): 70–72. http://dx.doi.org/10.1016/j.jacep.2021.08.014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ladia, Vatsal, Komandoor Srivathsan, Siva Mulpuru und Win-Kuang Shen. „His bundle pacing“. Current Opinion in Cardiology 35, Nr. 1 (Januar 2020): 20–29. http://dx.doi.org/10.1097/hco.0000000000000701.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Patel, Brijesh, Jalaj Garg, Rahul Chaudhary, Naveen Sablani, Rahul Gupta, Mahek Shah, Talha Nazir, Babak Bozorgnia und Andrea Natale. „His Bundle Pacing“. Cardiology in Review 26, Nr. 4 (2018): 201–6. http://dx.doi.org/10.1097/crd.0000000000000191.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Deshmukh, Pramod, und Kenneth A. Ellenbogen. „His Bundle Pacing“. Cardiac Electrophysiology Clinics 10, Nr. 3 (September 2018): i. http://dx.doi.org/10.1016/s1877-9182(18)30069-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ellenbogen, Kenneth A., und Pugazhendhi Vijayaraman. „His Bundle Pacing“. JACC: Clinical Electrophysiology 1, Nr. 6 (Dezember 2015): 592–95. http://dx.doi.org/10.1016/j.jacep.2015.09.007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Saini, Aditya, Vigneshwar Kasirajan, Jayanthi Koneru und Kenneth A. Ellenbogen. „His Bundle Pacing“. JACC: Clinical Electrophysiology 5, Nr. 2 (Februar 2019): 256–57. http://dx.doi.org/10.1016/j.jacep.2018.12.009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Payne, Jason, Ann C. Garlitski, Jonathan Weinstock, Munther Homoud, Christopher Madias und N. A. Mark Estes. „His bundle pacing“. Journal of Interventional Cardiac Electrophysiology 52, Nr. 3 (August 2018): 323–34. http://dx.doi.org/10.1007/s10840-018-0412-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ellenbogen, Kenneth A., und Santosh K. Padala. „His Bundle Pacing“. Journal of the American College of Cardiology 71, Nr. 20 (Mai 2018): 2331–34. http://dx.doi.org/10.1016/j.jacc.2018.03.464.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Vijayaraman, Pugazhendhi, Mina K. Chung, Gopi Dandamudi, Gaurav A. Upadhyay, Kousik Krishnan, George Crossley, Kristen Bova Campbell et al. „His Bundle Pacing“. Journal of the American College of Cardiology 72, Nr. 8 (August 2018): 927–47. http://dx.doi.org/10.1016/j.jacc.2018.06.017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "His Bundle Pacing"

1

Chaumont, Corentin. „Stimulatiοn permanente du système de cοnductiοn cardiaque : faisabilité, impact électrοmécanique et applicatiοns cliniques hοrs du champ de la resynchrοnisatiοn cardiaque“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR010.

Der volle Inhalt der Quelle
Annotation:
La stimulation ventriculaire droite conventionnelle induit une désynchronisation inter et intraventriculaire gauche, majorant le risque d’insuffisance cardiaque au long cours. Les techniques de stimulation permanente du système de conduction, stimulation Hisienne ou stimulation de l’aire de la branche gauche (SABG), visent à préserver une activation ventriculaire physiologique. Nous avons démontré la faisabilité et la sécurité de la stimulation du système de conduction dans des centres débutant leur expérience avec ces techniques. Une enquête menée à l’échelle nationale a permis de confirmer une diminution de l’utilisation de la stimulation Hisienne aux dépens de la SABG. Nous nous sommes intéressés à l’impact électromécanique et avons démontré que la SABG permettait un maintien de la synchronisation inter et intraventriculaire gauche chez les patients ayant des QRS spontanés fins. En cas d’arythmie atriale non contrôlée, la stimulation Hisienne combinée à l’ablation du nœud atrio-ventriculaire (NAV) était faisable et efficace, mais associée à des difficultés techniques. Dans une seconde étude comparant la stimulation Hisienne et la SABG dans cette indication, la SABG était associée à une diminution du taux de reconduction atrio-ventriculaire sans compromettre l’efficacité clinique. La stimulation du système de conduction constitue également une approche intéressante en cas de troubles de la conduction, notamment chez les patients ayant un taux attendu de stimulation ventriculaire élevé : un score a ainsi été développé pour prédire un taux de stimulation ventriculaire ≥ 40% chez les patients implantés d’un stimulateur cardiaque en post-TAVI. Enfin, nous nous sommes intéressés à une indication future potentielle : la régularisation de la cadence ventriculaire chez les patients en fibrillation atriale (FA) permanente atteints d’insuffisance cardiaque à FEVG préservée (IC-FEp). Nous avons développé un paramètre Holter permettant de mesurer l’irrégularité cycle à cycle en FA. Un modèle expérimental de cœur de rat isolé, perfusé et stimulé a été mis en place pour étudier l’impact hémodynamique de l’irrégularité ventriculaire. Enfin, nous avons proposé une étude randomisée visant à comparer traitement médicamenteux versus une stratégie de régularisation ventriculaire par ablation du NAV et stimulation du système de conduction, chez les patients IC-FEp en FA permanente bien contrôlée
Right ventricular pacing induces inter- and intraventricular dyssynchrony, increasing the long-term risk of heart failure. Permanent conduction system pacing (CSP), either His bundle pacing (HBP) or left bundle branch area pacing (LBBAP), aims to preserve physiological ventricular activation. We have demonstrated the feasibility and safety of CSP in centers initiating their experience with these techniques. A nationwide survey confirmed a decrease in the use of HBP in favor of LBBAP. We investigated the electromechanical impact and demonstrated that LBBAP preserved interventricular and left intraventricular mechanical synchrony in patients with spontaneous narrow QRS. We then focused on the use of these techniques combined with atrioventricular node ablation (AVNA) for non-controlled atrial arrhythmia: HBP was feasible and effective, despite significant technical challenges. In another study comparing HBP and LBBAP in the “ablate and pace” strategy, LBBAP was associated with a reduction in symptomatic AV node reconduction rate without compromising clinical efficacy. CSP is also of major interest in cases of AV conduction disease, especially in patients with an expected high ventricular pacing burden: a score was developed to predict a ventricular pacing rate ≥ 40% in post-TAVI patients undergoing pacemaker implantation. Finally, we explored a potential future indication of CSP: ventricular regularization in patients with permanent atrial fibrillation (AF) and heart failure with preserved ejection fraction (HFpEF). We developed a new Holter parameter to measure beat-to-beat irregularity during AF. An experimental model of isolated, perfused, and stimulated rat heart was established to study the hemodynamic impact of ventricular irregularity. Finally, we proposed a randomized study to compare medical treatment versus ventricular rate regularization (CSP + AVNA) in patients with well-controlled permanent AF and HFpEF
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Jahangir, Ahad. „Electroanatomical mapping of the atrioventricular septum: novel insights into the anatomy, physiology, and pacing of the conduction system“. Thesis, 2019. https://hdl.handle.net/2144/36568.

Der volle Inhalt der Quelle
Annotation:
BACKGROUND: His bundle pacing (HBP) is a relatively new treatment modality for patients experiencing issues with the cardiac conduction system. The treatment is thought to be an advantageous therapy compared with the standard treatment because it uses the native conduction pathway instead of introducing a non-physiological correction pathway which has been documented to increase the risk of heart failure. First carried out in humans in 2000 (Deshmukh, Casavant, Romanyshyn, & Anderson, 2000), HBP has been shown to be superior to right ventricular pacing and equivalent to cardiac resynchronization therapy. Because of the relative recency of the application of this technique in humans, there is a need for more studies to understand the long-term effectiveness and to guide training for new clinicians. 
OBJECTIVES: The objectives of this study were to (1) define the utility of three-dimensional mapping as a guiding tool for lead placement in HBP, (2) investigate the electroanatomical imaging of the atrioventricular (AV) septum, bundle of His, and other areas of the conduction system, (3) apply these observations to guide optimal pacing lead placement in the clinical setting, and (4) describe the correction of right and left bundle branch blocks by HBP. METHODS: Patients with pacemaker indication due to diseased conduction system were identified and recommended to undergo His bundle lead implantation. The lead was navigated into the heart by fluoroscopy and progressing the catheter through the axillary, subclavian, and cephalic veins. During the procedure, electroanatomical mapping was conducted by a quadripolar catheter to guide lead placement. His cloud, non-selective capture, and selective capture areas were marked and used to generate a 3D model layering the patient conduction system onto the physical anatomy. Pacemapping was then utilized to identify the most suitable area for disease correction.
Results: HBP mapping data were available in 24 patients. Several different responses to pacemapping were observed in the area of the AV septum including selective HBP (S-HBP), non-selective HBP (NS-HBP) (with upper, lower, and common variants), and right bundle branch (RBB) capture. Capture areas were superimposed onto the 3D model in real time and used to guide lead implantation for purposes of correcting various forms of conduction disease. The use of electroanatomical mapping (EAM) reduced the need for fluoroscopic guidance compared with the non-EAM-assisted procedure. Four common patterns were observed while mapping: (1) pattern 1, selective capture surrounded by upper and lower non-selective regions of capture; (2) pattern 2, selective capture surrounded by a common non-selective region of capture; (3) pattern 3, two separate non-selective capture areas with no selective capture; (4) pattern 4, common non-selective capture area with no selective capture. There was no correlation between capture threshold voltage and location of non-selective capture. Also, no correlation was found between capture threshold voltage and presence of common non-selective versus upper and lower non-selective capture areas. Patients with left bundle branch block (LBBB) and RBBB had similar His capture anatomy and were correctable by NS-HBP. CONCLUSIONS: HBP guided by electroanatomical mapping should be considered as a standard approach during pacemaker implantation. Because the underlying conduction anatomy is variable among patients, the use of EAM can direct lead positioning at a more physiologic location. In addition, EAM-guided implantation can reduce the need for fluoroscopy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "His Bundle Pacing"

1

His Bundle Pacing, an Issue of Cardiac Electrophysiology Clinics. Elsevier, 2018.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Lavalle, Carlo, Renato Pietro Ricci und Massimo Santini. Conduction disturbances and pacemaker. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199687039.003.0055.

Der volle Inhalt der Quelle
Annotation:
The most frequent clinical conditions complicated by bradyarrhythmias or atrioventricular blocks seen in an emergency setting are the degeneration of the conduction system, acute myocardial infarction, drug toxicity, and hyperkalaemia. Pacemaker malfunction is another cause of potentially life-threatening bradyarrhythmias. The presence of signs/symptoms of hypoperfusion and the localization of the block condition the therapeutic approach. Treatment of bradyarrhythmias and atrioventricular block in a critical care setting may be preventative or therapeutic. A preventative approach is necessary when the risk of a sudden block with an inadequate ventricular escape rhythm is present, but the patient is asymptomatic. Symptomatic patients require immediate treatment. If the block is located at His bundle level or at bundle branch level, atropine may be ineffective and may even worsen the degree of the block. If drug administration is ineffective, transvenous temporary pacing is indicated. Transcutaneous cardiac pacing is another temporary method of pacing indicated in various critical clinical settings.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "His Bundle Pacing"

1

Payne, Jason, und Jonathan Weinstock. „His Bundle Pacing“. In Cardiac Electrophysiology, 51–54. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-28533-3_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Habel, Nicole, und Daniel L. Lustgarten. „His Bundle Pacing Versus Biventricular Pacing for CRT“. In Clinical Controversies in Device Therapy for Cardiac Arrhythmias, 87–100. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22882-8_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Occhetta, E., M. Bortnik, G. Francalacci, A. Magnani, C. PIccinino und C. Vassanelli. „Permanent His Bundle Pacing: A Good Unconventional Mode of Right Ventricular Pacing?“ In Cardiac Arrhythmias 2003, 843–49. Milano: Springer Milan, 2004. http://dx.doi.org/10.1007/978-88-470-2137-2_112.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Schricker, Amir A., und Jonathan Salcedo. „His Bundle and Physiologic Pacing for Cardiac Resynchronization Therapy“. In Case-Based Device Therapy for Heart Failure, 323–35. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70038-6_21.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Habel, Nicole, und Daniel L. Lustgarten. „Failure of LV Lead Placement for Biventricular Pacing: His Bundle Pacing for CRT“. In Cardiac Electrophysiology, 567–68. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-28533-3_133.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Das, Asit. „Selective Site: His Bundle Pacing“. In Cardiac Pacing: A Physiological Approach, 90. Jaypee Brothers Medical Publishers (P) Ltd., 2016. http://dx.doi.org/10.5005/jp/books/12849_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Karpenko, Iurii, Dmytro Skoryi und Dmytro Volkov. „The Evolving Concept of Cardiac Conduction System Pacing“. In Cardiac Arrhythmias - Translational Approach from Pathophysiology to Advanced Care. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.99987.

Der volle Inhalt der Quelle
Annotation:
Cardiac pacing is an established treatment option for patients with bradycardia and heart failure. In the recent decade, there is an increasing scientific and clinical interest in the topic of direct His bundle pacing (HBP) and left bundle branch pacing (LBBP) as options for cardiac conduction system pacing (CSP). The concept of CSP started evolving from the late 1970s, passing several historical landmarks. HBP and LBBP used in CSP proved to be successful in small cohorts of patients with various clinical conditions, including binodal disease, atrioventricular blocks, and in patients with bundle branch blocks with indications for cardiac resynchronization therapy. The scope of this chapter is synthesis and analysis of works devoted to this subject, as well as representation of the author’s experience in this topic. The chapter includes historical background, technical, anatomical, and clinical considerations of CSP, covers evidence base, discusses patient outcomes in line with the pros and cons of the abovementioned methods. The separate part describes practical aspects of different pacing modalities, including stages of the operation and pacemaker programming. The textual content of the chapter is accompanied by illustrations, ECGs, and intracardiac electrograms.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Burri, Haran, Jens Brock Johansen, Nicholas J. Linker und Dominic Theuns. „Case 18“. In The EHRA Book of Pacemaker, ICD and CRT Troubleshooting Vol. 2, herausgegeben von Haran Burri, Jens Brock Johansen, Nicholas J. Linker und Dominic Theuns, 70–73. Oxford University Press, 2022. http://dx.doi.org/10.1093/med/9780192844170.003.0018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Alabdulgader, Abdullah. „CRT Past, Present, and Future Directions: Toward Intelligent Responders Selection and Optimizing Pacing Modalities“. In Pacemakers and Defibrillators [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.101608.

Der volle Inhalt der Quelle
Annotation:
Congestive heart failure (CHF) is a serious health problem affecting all nations of world. Its impact is increasing with increasing individual age. Ventricular dyssynchrony is well known to contribute to pathophysiological deterioration in more than one-third of CHF subjects. The therapeutic choices of CHF witnessed long decades of stagnant periods and a relative paucity of effective treatment. The discovery of the electrical therapy that is capable of reversing ventricular dyssynchrony, in the form of cardiac resynchronization therapy (CRT), is a true revolution in the timeline of CHF management. Despite the early enthusiasm associated with CRT implantations started in 2001, we know from the last two decades’ experience that non-responders constitute to nearly 40% of all CRT patients. This chapter is devoted to reviewing the past, present and future of CRT with special attention on better intelligent detection of the electrical substrate responsive to CRT as well as optimizing the choice of CRT subjects using the latest knowledge in electrocardiographic and state-of-art imagining technologies. Novel future directions are discussed with new scientific philosophies capable of optimizing CRT. Promising new implants techniques such as endocardial pacing of the left ventricle, His bundle pacing as well as His-optimized cardiac resynchronization therapy are discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ferrari, Andrés Di Leoni, Alejandro Ventura und Luciana Viola. „Ventricular synchrony in artificial cardiac pacing the role of the helical myocardium and fulcrum in the electromechanical coupling of the heart“. In INNOVATION IN HEALTH RESEARCH ADVANCING THE BOUNDARIES OF KNOWLEDGE. Seven Editora, 2023. http://dx.doi.org/10.56238/innovhealthknow-029.

Der volle Inhalt der Quelle
Annotation:
About 30% of patients with heart failure have wide QRS complexes. In left bundle branch block (BRI) the activation sequence in the left ventricle (LV) is asynchronous with impaired pump function, increased frequency of hospitalizations and mortality. The definitive stimulation of the apex of the Right Ventricular (RV) leads to an identical ventricular activation and as antiphysiological as the BRI, therefore in a percentage of cases there is a worsening of the degree of HF and a higher incidence of atrial arrhythmias.In search of a "physiological" stimulation, alternative sites of pacemaker in the non-apical RV, such as stimulation of the bundle of His or the left branch, have been evaluated with promising results to preserve and / or restore electrical synchrony, however, due to their technical complexity they have not had the consensus or the expected growth. On the other hand, Biventricular Resynchronization Therapy (CRT) is ineffective in about 30% of patients (non-responders). Francisco Torrent Guasp, showed that the ventricular myocardium is constituted by a continuous muscular band with helical shape, which explains the great efficiency of cardiac systole, where blood is expelled through torsion-detorsion contraction mechanisms, with an active suction phase in protodiastole. The cardiac fulcrum functions as a fulcrum and support point of the helical myocardium. According to this author, the propagation of the electrical stimulus and the contraction of the myocardium begin in the region of the TSVD anatomically related to the cardiac fulcrum, advancing towards the rest of the segments of the helical myocardium and following the longitudinal direction of the muscle bundles, which could explain the results of the definitive stimulation in the septum of the TSVD with electrical synchrony. The Synchromax (Sy) is a device capable of non-invasively identifying electrical dyssynchrony. In our experience, using the Sy as a guide to identify the appropriate implant site of the VD cable in real time, we managed to implant more than 90% of the pacemakers in the septum of the TSVD with synchrony.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "His Bundle Pacing"

1

Strocchi, Marina, Aurel Neic, Matthias Gsell, Christoph Augustin, Julien Bouyssier, Karli Gillette, Mark Elliot et al. „His Bundle Pacing but not Left Bundle Pacing Corrects Septal Flash in Left Bundle Branch Block Patients“. In 2020 Computing in Cardiology Conference. Computing in Cardiology, 2020. http://dx.doi.org/10.22489/cinc.2020.030.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Malik, Jahanzeb, Syed Muhammad Jawad Zaidi und Danish Iltaf Satti. „103 Incidence of tricuspid regurgitation in his-bundle pacing“. In British Cardiovascular Society Annual Conference, ‘100 years of Cardiology’, 6–8 June 2022. BMJ Publishing Group Ltd and British Cardiovascular Society, 2022. http://dx.doi.org/10.1136/heartjnl-2022-bcs.103.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Touze, Alex, Javed Iqbal, Tim Edwards und Holly Cousins. „103 Painful left bundle brach block syndrome at rest treated with his-bundle pacing“. In British Cardiovascular Society Virtual Annual Conference, ‘Cardiology and the Environment’, 7–10 June 2021. BMJ Publishing Group Ltd and British Cardiovascular Society, 2021. http://dx.doi.org/10.1136/heartjnl-2021-bcs.102.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Caffey, David, und W. A. Clarkson. „Non-imaging Laser Diode Array Beam Shaper“. In Semiconductor Lasers: Advanced Devices and Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/slada.1995.mc.4.

Der volle Inhalt der Quelle
Annotation:
Laser diode arrays are inexpensive, compact, efficient, and reliable light sources. However, the output beam, which is highly elliptical, is difficult to both efficiently collect and concentrate. This has limited continuous wave (CW) diode sources to power levels under 100 Watts. The fast axis of the laser diode array output tends to have good beam quality, M2~ 2, and a source size of ~ 1 um. The slow axis of laser diode broad stripes and of array bars is highly multimode, typically having an angular distribution of 10 degrees at the 1/e2 power points. The slow axis beam quality for a 500 um wide stripe is thus M2~ 70, and M2~ 1400 for a one centimeter array. One means of improving the brightness is to individually fiber couple broad stripe diodes, and then bundle the fiber ends together. Another is to collimate the fast axis of one centimeter arrays using a fiber lens1, and then fiber couple into a linear array of fibers. The output ends of the fibers are also bundled together. Both techniques are compact and relatively simple, and power is scaled by increasing the number of fibers in the bundle. M2 ~ 350 are available at 60 Watts output using the latter technique. It is difficult to scale beyond 100 Watts without increasing M2 to values greater than 500. This is due to loss of brightness in fiber coupling, as an essentially linear source is being coupled into a round fiber, or in mode mixing as light propagates through the fiber. Brightness is further reduced in fiber bundling by the presence of the fiber cladding, and by the less than unity packing factor of round fibers.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Toprak, Kasim, und Yildiz Bayazitoglu. „Interface Thermal Resistance and Length Effect on Thermal Conductivitiy of SWNT Bundles“. In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-89935.

Der volle Inhalt der Quelle
Annotation:
Using different calculations and measurement methods, the results for the thermal conductivity in a single wall carbon nanotube (SWNT) are compared. Then, the interface thermal resistance effects on the effective thermal conductivity of multiple SWNTs in a hexagonal packing system submerged in oil, air, and water are studied. The results show that as the interface thermal resistance increases, the effective thermal conductivity decreases. Moreover, length, length fraction, and volume fraction effects on the thermal conductivity of the system submerged in a water medium are approximated by including the interface thermal resistances of the nanotube-matrix and nanotube-nanotube. The systems’ length ranged between 500–3000 nm. The created models contain either vertically aligned or non-straight nanotubes. Non-straight nanotubes systems make one or two contact points with other nanotubes. These contact points’ location vary based on the length ratio known as the length fraction. It is found that the effective thermal conductivity of the SWNT bundle has the highest value when they are uniformly aligned and dispersed without contact. As the density and length of the SWNTs increase, the effective thermal conductivity of the bundle system also increases.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "His Bundle Pacing"

1

Zhang, Yongzhang, und Mingwang Ding. His bundle pacing therapy for patients with chronic heart failure: a protocol for meta-analysis based on prospective studies. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, Januar 2021. http://dx.doi.org/10.37766/inplasy2021.1.0109.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie