Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Hilbert spaces“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Hilbert spaces" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Hilbert spaces"
Sharma, Sumit Kumar, und Shashank Goel. „Frames in Quaternionic Hilbert Spaces“. Zurnal matematiceskoj fiziki, analiza, geometrii 15, Nr. 3 (25.06.2019): 395–411. http://dx.doi.org/10.15407/mag15.03.395.
Der volle Inhalt der QuelleBellomonte, Giorgia, und Camillo Trapani. „Rigged Hilbert spaces and contractive families of Hilbert spaces“. Monatshefte für Mathematik 164, Nr. 3 (08.10.2010): 271–85. http://dx.doi.org/10.1007/s00605-010-0249-1.
Der volle Inhalt der QuelleSánchez, Félix Cabello. „Twisted Hilbert spaces“. Bulletin of the Australian Mathematical Society 59, Nr. 2 (April 1999): 177–80. http://dx.doi.org/10.1017/s0004972700032792.
Der volle Inhalt der QuelleCHITESCU, ION, RAZVAN-CORNEL SFETCU und OANA COJOCARU. „Kothe-Bochner spaces that are Hilbert spaces“. Carpathian Journal of Mathematics 33, Nr. 2 (2017): 161–68. http://dx.doi.org/10.37193/cjm.2017.02.03.
Der volle Inhalt der QuellePisier, Gilles. „Weak Hilbert Spaces“. Proceedings of the London Mathematical Society s3-56, Nr. 3 (Mai 1988): 547–79. http://dx.doi.org/10.1112/plms/s3-56.3.547.
Der volle Inhalt der QuelleFabian, M., G. Godefroy, P. Hájek und V. Zizler. „Hilbert-generated spaces“. Journal of Functional Analysis 200, Nr. 2 (Juni 2003): 301–23. http://dx.doi.org/10.1016/s0022-1236(03)00044-2.
Der volle Inhalt der QuelleRudolph, Oliver. „Super Hilbert Spaces“. Communications in Mathematical Physics 214, Nr. 2 (November 2000): 449–67. http://dx.doi.org/10.1007/s002200000281.
Der volle Inhalt der QuelleNg, Chi-Keung. „Topologized Hilbert spaces“. Journal of Mathematical Analysis and Applications 418, Nr. 1 (Oktober 2014): 108–20. http://dx.doi.org/10.1016/j.jmaa.2014.03.073.
Der volle Inhalt der Quellevan den Boogaart, Karl Gerald, Juan José Egozcue und Vera Pawlowsky-Glahn. „Bayes Hilbert Spaces“. Australian & New Zealand Journal of Statistics 56, Nr. 2 (Juni 2014): 171–94. http://dx.doi.org/10.1111/anzs.12074.
Der volle Inhalt der QuelleSchmitt, L. M. „Semidiscrete Hilbert spaces“. Acta Mathematica Hungarica 53, Nr. 1-2 (März 1989): 103–7. http://dx.doi.org/10.1007/bf02170059.
Der volle Inhalt der QuelleDissertationen zum Thema "Hilbert spaces"
Wigestrand, Jan. „Inequalities in Hilbert Spaces“. Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2008. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9673.
Der volle Inhalt der QuelleThe main result in this thesis is a new generalization of Selberg's inequality in Hilbert spaces with a proof. In Chapter 1 we define Hilbert spaces and give a proof of the Cauchy-Schwarz inequality and the Bessel inequality. As an example of application of the Cauchy-Schwarz inequality and the Bessel inequality, we give an estimate for the dimension of an eigenspace of an integral operator. Next we give a proof of Selberg's inequality including the equality conditions following [Furuta]. In Chapter 2 we give selected facts on positive semidefinite matrices with proofs or references. Then we use this theory for positive semidefinite matrices to study inequalities. First we give a proof of a generalized Bessel inequality following [Akhiezer,Glazman], then we use the same technique to give a new proof of Selberg's inequality. We conclude with a new generalization of Selberg's inequality with a proof. In the last section of Chapter 2 we show how the matrix approach developed in Chapter 2.1 and Chapter 2.2 can be used to obtain optimal frame bounds. We introduce a new notation for frame bounds.
Ameur, Yacin. „Interpolation of Hilbert spaces“. Doctoral thesis, Uppsala universitet, Matematiska institutionen, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-1753.
Der volle Inhalt der QuelleAmeur, Yacin. „Interpolation of Hilbert spaces /“. Uppsala : Matematiska institutionen, Univ. [distributör], 2001. http://publications.uu.se/theses/91-506-1531-9/.
Der volle Inhalt der QuellePanayotov, Ivo. „Conjugate gradient in Hilbert spaces“. Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82402.
Der volle Inhalt der QuelleBahmani, Fatemeh. „Ternary structures in Hilbert spaces“. Thesis, Queen Mary, University of London, 2011. http://qmro.qmul.ac.uk/xmlui/handle/123456789/697.
Der volle Inhalt der QuelleDas, Tushar. „Kleinian Groups in Hilbert Spaces“. Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc149579/.
Der volle Inhalt der QuelleHarris, Terri Joan Mrs. „HILBERT SPACES AND FOURIER SERIES“. CSUSB ScholarWorks, 2015. https://scholarworks.lib.csusb.edu/etd/244.
Der volle Inhalt der QuelleDieuleveut, Aymeric. „Stochastic approximation in Hilbert spaces“. Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEE059/document.
Der volle Inhalt der QuelleThe goal of supervised machine learning is to infer relationships between a phenomenon one seeks to predict and “explanatory” variables. To that end, multiple occurrences of the phenomenon are observed, from which a prediction rule is constructed. The last two decades have witnessed the apparition of very large data-sets, both in terms of the number of observations (e.g., in image analysis) and in terms of the number of explanatory variables (e.g., in genetics). This has raised two challenges: first, avoiding the pitfall of over-fitting, especially when the number of explanatory variables is much higher than the number of observations; and second, dealing with the computational constraints, such as when the mere resolution of a linear system becomes a difficulty of its own. Algorithms that take their roots in stochastic approximation methods tackle both of these difficulties simultaneously: these stochastic methods dramatically reduce the computational cost, without degrading the quality of the proposed prediction rule, and they can naturally avoid over-fitting. As a consequence, the core of this thesis will be the study of stochastic gradient methods. The popular parametric methods give predictors which are linear functions of a set ofexplanatory variables. However, they often result in an imprecise approximation of the underlying statistical structure. In the non-parametric setting, which is paramount in this thesis, this restriction is lifted. The class of functions from which the predictor is proposed depends on the observations. In practice, these methods have multiple purposes, and are essential for learning with non-vectorial data, which can be mapped onto a vector in a functional space using a positive definite kernel. This allows to use algorithms designed for vectorial data, but requires the analysis to be made in the non-parametric associated space: the reproducing kernel Hilbert space. Moreover, the analysis of non-parametric regression also sheds some light on the parametric setting when the number of predictors is much larger than the number of observations. The first contribution of this thesis is to provide a detailed analysis of stochastic approximation in the non-parametric setting, precisely in reproducing kernel Hilbert spaces. This analysis proves optimal convergence rates for the averaged stochastic gradient descent algorithm. As we take special care in using minimal assumptions, it applies to numerous situations, and covers both the settings in which the number of observations is known a priori, and situations in which the learning algorithm works in an on-line fashion. The second contribution is an algorithm based on acceleration, which converges at optimal speed, both from the optimization point of view and from the statistical one. In the non-parametric setting, this can improve the convergence rate up to optimality, even inparticular regimes for which the first algorithm remains sub-optimal. Finally, the third contribution of the thesis consists in an extension of the framework beyond the least-square loss. The stochastic gradient descent algorithm is analyzed as a Markov chain. This point of view leads to an intuitive and insightful interpretation, that outlines the differences between the quadratic setting and the more general setting. A simple method resulting in provable improvements in the convergence is then proposed
Boralugoda, Sanath Kumara. „Prox-regular functions in Hilbert spaces“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0006/NQ34740.pdf.
Der volle Inhalt der QuelleLapinski, Felicia. „Hilbert spaces and the Spectral theorem“. Thesis, Uppsala universitet, Analys och sannolikhetsteori, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-454412.
Der volle Inhalt der QuelleBücher zum Thema "Hilbert spaces"
Gaussian Hilbert spaces. Cambridge, U.K: Cambridge University Press, 1997.
Den vollen Inhalt der Quelle findenDebnath, Lokenath. Hilbert spaces with applications. 3. Aufl. Oxford: Academic, 2005.
Den vollen Inhalt der Quelle findenMlak, W. Hilbert spaces and operator theory. Dordrecht: Boston, 1991.
Den vollen Inhalt der Quelle findenMashreghi, Javad. Hilbert spaces of analytic functions. Providence, R.I: American Mathematical Society, 2010.
Den vollen Inhalt der Quelle findenMashreghi, Javad. Hilbert spaces of analytic functions. Providence, R.I: American Mathematical Society, 2010.
Den vollen Inhalt der Quelle findenJavad, Mashreghi, Ransford Thomas und Seip Kristian 1962-, Hrsg. Hilbert spaces of analytic functions. Providence, R.I: American Mathematical Society, 2010.
Den vollen Inhalt der Quelle findenBanach-Hilbert spaces, vector measures, and group representations. River Edge, NJ: World Scientific, 2002.
Den vollen Inhalt der Quelle findenSarason, Donald. Sub-Hardy Hilbert spaces in the unit disk. New York: Wiley, 1994.
Den vollen Inhalt der Quelle findenSimon, Jacques. Banach, Fréchet, Hilbert and Neumann Spaces. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119426516.
Der volle Inhalt der Quelle1964-, McCarthy John E., Hrsg. Pick interpolation and Hilbert function spaces. Providence, R.I: American Mathematical Society, 2002.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Hilbert spaces"
D’Angelo, John P. „Hilbert Spaces“. In Hermitian Analysis, 45–94. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8526-1_2.
Der volle Inhalt der QuelleRoman, Steven. „Hilbert Spaces“. In Advanced Linear Algebra, 263–90. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-2178-2_14.
Der volle Inhalt der QuelleOvchinnikov, Sergei. „Hilbert Spaces“. In Universitext, 149–91. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91512-8_7.
Der volle Inhalt der QuelleCicogna, Giampaolo. „Hilbert Spaces“. In Undergraduate Lecture Notes in Physics, 1–55. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76165-7_1.
Der volle Inhalt der QuelleGasquet, Claude, und Patrick Witomski. „Hilbert Spaces“. In Texts in Applied Mathematics, 141–52. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1598-1_16.
Der volle Inhalt der QuelleKomornik, Vilmos. „Hilbert Spaces“. In Lectures on Functional Analysis and the Lebesgue Integral, 3–54. London: Springer London, 2016. http://dx.doi.org/10.1007/978-1-4471-6811-9_1.
Der volle Inhalt der QuelleShima, Hiroyuki, und Tsuneyoshi Nakayama. „Hilbert Spaces“. In Higher Mathematics for Physics and Engineering, 73–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/b138494_4.
Der volle Inhalt der Quellevan der Vaart, Aad W., und Jon A. Wellner. „Hilbert Spaces“. In Weak Convergence and Empirical Processes, 49–51. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4757-2545-2_8.
Der volle Inhalt der QuelleBrokate, Martin, und Götz Kersting. „Hilbert Spaces“. In Compact Textbooks in Mathematics, 137–52. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15365-0_12.
Der volle Inhalt der QuelleKubrusly, Carlos S. „Hilbert Spaces“. In Elements of Operator Theory, 311–440. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4757-3328-0_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Hilbert spaces"
RANDRIANANTOANINA, BEATA. „A CHARACTERIZATION OF HILBERT SPACES“. In Proceedings of the Sixth Conference. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704450_0021.
Der volle Inhalt der QuelleTaddei, Valentina, Luisa Malaguti und Irene Benedetti. „Nonlocal problems in Hilbert spaces“. In The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications (Madrid, Spain). American Institute of Mathematical Sciences, 2015. http://dx.doi.org/10.3934/proc.2015.0103.
Der volle Inhalt der QuelleTang, Wai-Shing. „Biorthogonality and multiwavelets in Hilbert spaces“. In International Symposium on Optical Science and Technology, herausgegeben von Akram Aldroubi, Andrew F. Laine und Michael A. Unser. SPIE, 2000. http://dx.doi.org/10.1117/12.408620.
Der volle Inhalt der QuellePope, Graeme, und Helmut Bolcskei. „Sparse signal recovery in Hilbert spaces“. In 2012 IEEE International Symposium on Information Theory - ISIT. IEEE, 2012. http://dx.doi.org/10.1109/isit.2012.6283506.
Der volle Inhalt der QuelleMałkiewicz, Przemysław. „Physical Hilbert spaces in quantum gravity“. In Proceedings of the MG14 Meeting on General Relativity. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813226609_0514.
Der volle Inhalt der QuelleKhimshiashvili, G. „Loop spaces and Riemann-Hilbert problems“. In Geometry and Topology of Manifolds. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc76-0-19.
Der volle Inhalt der QuelleDeepshikha, Saakshi Garg, Lalit K. Vashisht und Geetika Verma. „On weaving fusion frames for Hilbert spaces“. In 2017 International Conference on Sampling Theory and Applications (SampTA). IEEE, 2017. http://dx.doi.org/10.1109/sampta.2017.8024363.
Der volle Inhalt der QuelleGritsutenko, Stanislav, Elina Biberdorf und Rui Dinis. „On the Sampling Theorem in Hilbert Spaces“. In Computer Graphics and Imaging. Calgary,AB,Canada: ACTAPRESS, 2013. http://dx.doi.org/10.2316/p.2013.798-012.
Der volle Inhalt der QuelleTuia, Devis, Gustavo Camps-Valls und Manel Martinez-Ramon. „Explicit recursivity into reproducing kernel Hilbert spaces“. In ICASSP 2011 - 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011. http://dx.doi.org/10.1109/icassp.2011.5947266.
Der volle Inhalt der QuelleSUQUET, CHARLES. „REPRODUCING KERNEL HILBERT SPACES AND RANDOM MEASURES“. In Proceedings of the 5th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812835635_0013.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Hilbert spaces"
Saraivanov, Michael. Quantum Circuit Synthesis using Group Decomposition and Hilbert Spaces. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.1108.
Der volle Inhalt der QuelleKorezlioglu, H., und C. Martias. Stochastic Integration for Operator Valued Processes on Hilbert Spaces and on Nuclear Spaces. Revision. Fort Belvoir, VA: Defense Technical Information Center, März 1986. http://dx.doi.org/10.21236/ada168501.
Der volle Inhalt der QuelleFukumizu, Kenji, Francis R. Bach und Michael I. Jordan. Dimensionality Reduction for Supervised Learning With Reproducing Kernel Hilbert Spaces. Fort Belvoir, VA: Defense Technical Information Center, Mai 2003. http://dx.doi.org/10.21236/ada446572.
Der volle Inhalt der QuelleTeolis, Anthony. Discrete Representation of Signals from Infinite Dimensional Hilbert Spaces with Application to Noise Suppression and Compression. Fort Belvoir, VA: Defense Technical Information Center, Januar 1993. http://dx.doi.org/10.21236/ada453215.
Der volle Inhalt der QuelleSalamon, Dietmar. Realization Theory in Hilbert Space. Fort Belvoir, VA: Defense Technical Information Center, Juli 1985. http://dx.doi.org/10.21236/ada158172.
Der volle Inhalt der QuelleYao, Jen-Chih. A monotone complementarity problem in Hilbert space. Office of Scientific and Technical Information (OSTI), April 1990. http://dx.doi.org/10.2172/7043013.
Der volle Inhalt der QuelleYao, Jen-Chih. A generalized complementarity problem in Hilbert space. Office of Scientific and Technical Information (OSTI), März 1990. http://dx.doi.org/10.2172/6930669.
Der volle Inhalt der QuelleCottle, Richard W., und Jen-Chih Yao. Pseudo-Monotone Complementarity Problems in Hilbert Space. Fort Belvoir, VA: Defense Technical Information Center, Juli 1990. http://dx.doi.org/10.21236/ada226477.
Der volle Inhalt der QuelleKallianpur, G., und V. Perez-Abreu. Stochastic Evolution Equations with Values on the Dual of a Countably Hilbert Nuclear Space. Fort Belvoir, VA: Defense Technical Information Center, Juli 1986. http://dx.doi.org/10.21236/ada174876.
Der volle Inhalt der QuelleMonrad, D., und W. Philipp. Nearby Variables with Nearby Conditional Laws and a Strong Approximation Theorem for Hilbert Space Valued Martingales. Fort Belvoir, VA: Defense Technical Information Center, April 1989. http://dx.doi.org/10.21236/ada225992.
Der volle Inhalt der Quelle