Zeitschriftenartikel zum Thema „High strength concrete Testing“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "High strength concrete Testing" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Price, W. F., und J. P. Hynes. „In-situ strength testing of high strength concrete“. Magazine of Concrete Research 48, Nr. 176 (September 1996): 189–97. http://dx.doi.org/10.1680/macr.1996.48.176.189.
Der volle Inhalt der QuelleJohnson, Claude D., und S. Ali Mirza. „Confined capping system for compressive strength testing of high performance concrete cylinders“. Canadian Journal of Civil Engineering 22, Nr. 3 (01.06.1995): 617–20. http://dx.doi.org/10.1139/l95-070.
Der volle Inhalt der QuelleSolikin, Mochamad. „Compressive Strength Development of High Strength High Volume Fly Ash Concrete by Using Local Material“. Materials Science Forum 872 (September 2016): 271–75. http://dx.doi.org/10.4028/www.scientific.net/msf.872.271.
Der volle Inhalt der QuelleHooton, RD, M. Sonebi und KH Khayat. „Testing Abrasion Resistance of High-Strength Concrete“. Cement, Concrete and Aggregates 23, Nr. 1 (2001): 34. http://dx.doi.org/10.1520/cca10523j.
Der volle Inhalt der QuelleDavidyuk, Artem, und Igor Rumyantsev. „Quality control of high-performance concrete in high-rise construction during operation“. MATEC Web of Conferences 170 (2018): 01035. http://dx.doi.org/10.1051/matecconf/201817001035.
Der volle Inhalt der QuelleSovová, Kateřina, Karel Mikulica, Adam Hubáček und Karel Dvořák. „Behavior of High Strength Concrete at High Temperatures“. Solid State Phenomena 276 (Juni 2018): 259–64. http://dx.doi.org/10.4028/www.scientific.net/ssp.276.259.
Der volle Inhalt der QuelleChen, Bo, Yue Bo Cai, Jian Tong Ding und Yao Jian. „Crack Resistance Evaluating of HSC Based on Thermal Stress Testing“. Advanced Materials Research 168-170 (Dezember 2010): 716–20. http://dx.doi.org/10.4028/www.scientific.net/amr.168-170.716.
Der volle Inhalt der QuelleVincent, Thomas, und Togay Ozbakkloglu. „An Experimental Study on the Compressive Behavior of CFRP-Confined High- and Ultra High-Strength Concrete“. Advanced Materials Research 671-674 (März 2013): 1860–64. http://dx.doi.org/10.4028/www.scientific.net/amr.671-674.1860.
Der volle Inhalt der QuelleWedatalla, Afaf M. O., Yanmin Jia und Abubaker A. M. Ahmed. „Curing Effects on High-Strength Concrete Properties“. Advances in Civil Engineering 2019 (06.03.2019): 1–14. http://dx.doi.org/10.1155/2019/1683292.
Der volle Inhalt der QuelleBickley, J. A., J. Ryell, C. Rogers und R. D. Hooton. „Some characteristics of high-strength structural concrete“. Canadian Journal of Civil Engineering 18, Nr. 5 (01.10.1991): 885–89. http://dx.doi.org/10.1139/l91-107.
Der volle Inhalt der QuelleSucharda, O., V. Bilek und P. Mateckova. „Testing and mechanical properties of high strength concrete“. IOP Conference Series: Materials Science and Engineering 549 (18.06.2019): 012012. http://dx.doi.org/10.1088/1757-899x/549/1/012012.
Der volle Inhalt der QuelleJacobsen, Stefan, Hans Christian Gran, Erik J. Sellevold und Jon Arne Bakke. „High strength concrete — Freeze/thaw testing and cracking“. Cement and Concrete Research 25, Nr. 8 (Dezember 1995): 1775–80. http://dx.doi.org/10.1016/0008-8846(95)00173-5.
Der volle Inhalt der QuelleWang, Zheng Jun, Mei Han und Felix Zhao. „Applying Research on Testing Technique of High Performance Concrete“. Advanced Materials Research 378-379 (Oktober 2011): 226–29. http://dx.doi.org/10.4028/www.scientific.net/amr.378-379.226.
Der volle Inhalt der QuelleMarzouk, H., und Z. W. Chen. „Nonlinear analysis of normal- and high-strength concrete slabs“. Canadian Journal of Civil Engineering 20, Nr. 4 (01.08.1993): 696–707. http://dx.doi.org/10.1139/l93-086.
Der volle Inhalt der QuelleStehlík, Michal. „TESTING THE STRENGTH OF CONCRETE MADE FROM RAW AND DISPERSION-TREATED CONCRETE RECYCLATE BY ADDITION OF ADDITIVES AND ADMIXTURES“. Journal of Civil Engineering and Management 19, Nr. 1 (16.01.2013): 107–12. http://dx.doi.org/10.3846/13923730.2012.734853.
Der volle Inhalt der QuelleGunay, Ahmet Reha, Sami Karadeniz und Mustafa Kaya. „An Experimental Study on the Dynamic Behavior of an Ultra High-Strength Concrete“. Applied Sciences 10, Nr. 12 (17.06.2020): 4170. http://dx.doi.org/10.3390/app10124170.
Der volle Inhalt der QuelleKong, Xu Wen, Long Cui und Jin Shan Wang. „Experimental Study of Green High Performance Concrete Strength Testing by Rebound Method“. Applied Mechanics and Materials 71-78 (Juli 2011): 737–43. http://dx.doi.org/10.4028/www.scientific.net/amm.71-78.737.
Der volle Inhalt der QuelleYi, Wei Jian, und Yan Mei Lv. „Experimental Study on Shear Failure of High-Strength Concrete Beams with High-Strength Stirrups“. Key Engineering Materials 400-402 (Oktober 2008): 857–63. http://dx.doi.org/10.4028/www.scientific.net/kem.400-402.857.
Der volle Inhalt der QuelleYu, Le Hua, Shuang Xi Zhou und Hui Ou. „Experimental Investigation on Properties of High Performance Concrete with Mineral Admixtures in Pavement of Highway“. Advanced Materials Research 723 (August 2013): 345–52. http://dx.doi.org/10.4028/www.scientific.net/amr.723.345.
Der volle Inhalt der QuelleElbasha, N., und M. N. S. Hadi. „Experimental testing of helically confined high-strength concrete beams“. Structural Concrete 6, Nr. 2 (Juni 2005): 43–48. http://dx.doi.org/10.1680/stco.2005.6.2.43.
Der volle Inhalt der QuelleKumar, C. Naga Satish, und T. D. Gunneswara Rao. „Fracture parameters of high-strength concrete – mode II testing“. Magazine of Concrete Research 62, Nr. 3 (März 2010): 157–62. http://dx.doi.org/10.1680/macr.2010.62.3.157.
Der volle Inhalt der QuelleThomas, C., J. Sainz-Aja, J. Setien, A. Cimentada und J. A. Polanco. „Resonance fatigue testing on high-strength self-compacting concrete“. Journal of Building Engineering 35 (März 2021): 102057. http://dx.doi.org/10.1016/j.jobe.2020.102057.
Der volle Inhalt der QuelleGaidhane, Ms Sakshi Harish. „“Testing of High-Performance Concrete using Recycled Aggregates”“. International Journal for Research in Applied Science and Engineering Technology 9, Nr. 9 (30.09.2021): 495–98. http://dx.doi.org/10.22214/ijraset.2021.37970.
Der volle Inhalt der QuelleLee, Taegyu, Jaehyun Lee und Hyeonggil Choi. „Assessment of Strength Development at Hardened Stage on High-Strength Concrete Using NDT“. Applied Sciences 10, Nr. 18 (09.09.2020): 6261. http://dx.doi.org/10.3390/app10186261.
Der volle Inhalt der QuelleWang, Zheng Jun, und Felix Zhao. „Applying Research on Testing Compressive Strength of High Performance Concrete with Rebound Method“. Advanced Materials Research 452-453 (Januar 2012): 106–9. http://dx.doi.org/10.4028/www.scientific.net/amr.452-453.106.
Der volle Inhalt der QuelleBaranova, Al'bina, und Ol'ga Yazina. „FOAM CONCRETES BASED ON HIGH-STRENGTH BINDERS“. Modern Technologies and Scientific and Technological Progress 2018, Nr. 1 (23.03.2020): 97–98. http://dx.doi.org/10.36629/2686-9896-2020-2018-1-97-98.
Der volle Inhalt der QuelleFlores, Elsy Y., Jordan Varbel, Craig M. Newtson und Brad D. Weldon. „Ultra-High-Performance Concrete Shear Keys in Concrete Bridge Superstructures“. MATEC Web of Conferences 271 (2019): 07006. http://dx.doi.org/10.1051/matecconf/201927107006.
Der volle Inhalt der QuelleWardi, Adil Hadi, Gökhan Tunç und Khalil Ibraheem. „Structural behavior of shear connectors embedded in different types of concrete“. Challenge Journal of Structural Mechanics 6, Nr. 4 (20.12.2020): 160. http://dx.doi.org/10.20528/cjsmec.2020.04.001.
Der volle Inhalt der QuelleMohtasham Moein, Mohammad, Ashkan Saradar, Komeil Rahmati, Arman Hatami Shirkouh, Iman Sadrinejad, Vartenie Aramali und Moses Karakouzian. „Investigation of Impact Resistance of High-Strength Portland Cement Concrete Containing Steel Fibers“. Materials 15, Nr. 20 (14.10.2022): 7157. http://dx.doi.org/10.3390/ma15207157.
Der volle Inhalt der QuelleZhang, Nan, Juan Liao, Tao Zhang, Wen Zhan Ji, Bao Hua Wang und Dong Hua Zhang. „The Effect of Mineral Admixtures on Mechanical Properties of High Performance Concrete at very Low Temperature“. Applied Mechanics and Materials 584-586 (Juli 2014): 1509–13. http://dx.doi.org/10.4028/www.scientific.net/amm.584-586.1509.
Der volle Inhalt der QuelleKorolev, Evgeniy Valerjevich, und Alexandr Sergeevich Inozemtcev. „Preparation and Research of the High-Strength Lightweight Concrete Based on Hollow Microspheres“. Advanced Materials Research 746 (August 2013): 285–88. http://dx.doi.org/10.4028/www.scientific.net/amr.746.285.
Der volle Inhalt der QuelleOh, Bo Hwan, Hong C. Rhim und Hyo Seon Park. „Effect of Confining Pressure on Modeling High Early Strength Concrete under Uniaxial Loading“. Key Engineering Materials 321-323 (Oktober 2006): 367–70. http://dx.doi.org/10.4028/www.scientific.net/kem.321-323.367.
Der volle Inhalt der QuelleA.M. Mhamoud, Hassan, und Jia Yanmin. „Effect of different additives on high temperatures of concrete“. Journal of Structural Fire Engineering 9, Nr. 2 (11.06.2018): 161–70. http://dx.doi.org/10.1108/jsfe-01-2017-0021.
Der volle Inhalt der QuelleLi, Cao, und Wang Qing Gao. „Experimental Study on Rebound Curve of High-Strength Concrete“. Key Engineering Materials 881 (April 2021): 137–41. http://dx.doi.org/10.4028/www.scientific.net/kem.881.137.
Der volle Inhalt der QuelleStepanova, V. F., G. V. Chehniy, I. M. Parshina, S. A. Orekhov und A. I. Kruglov. „Study into the freeze-thaw/ frost-salt resistance of high-strength B60–B100 concrete“. Bulletin of Science and Research Center of Construction 33, Nr. 2 (19.04.2022): 183–93. http://dx.doi.org/10.37538/2224-9494-2022-2(33)-183-193.
Der volle Inhalt der QuelleVarona, Francisco B., Francisco Baeza-Brotons, Antonio J. Tenza-Abril, F. Javier Baeza und Luis Bañón. „Residual Compressive Strength of Recycled Aggregate Concretes after High Temperature Exposure“. Materials 13, Nr. 8 (23.04.2020): 1981. http://dx.doi.org/10.3390/ma13081981.
Der volle Inhalt der QuelleKUTSYK, Olena, und Oleksandr ZHURAVSKYI. „EXPERIMENTAL AND THEORETICAL STUDIES OF REINFORCED CONCRETE BENDING ELEMENTS MADE OF HIGH-STRENGTH CONCRETE“. Building constructions. Theory and Practice, Nr. 9 (28.12.2021): 87–93. http://dx.doi.org/10.32347/2522-4182.9.2021.87-93.
Der volle Inhalt der QuelleRizkiasari, Anggia Eta, und Abdul Rouf. „Analisis Hubungan Kecepatan Gelombang Dengan Kuat Tekan Beton Menggunakan Metode UPV“. IJEIS (Indonesian Journal of Electronics and Instrumentation Systems) 10, Nr. 1 (30.04.2020): 11. http://dx.doi.org/10.22146/ijeis.33414.
Der volle Inhalt der QuelleHosseini Mehrab, Alireza, Seyedmahdi Amirfakhrian und M. Reza Esfahani. „Fracture characteristics of various concrete composites containing polypropylene fibers through five fracture mechanics methods“. Materials Testing 65, Nr. 1 (01.01.2023): 10–32. http://dx.doi.org/10.1515/mt-2022-0210.
Der volle Inhalt der QuelleHuang, Peng Fei. „Patent Analysis of Concrete Testing Technology“. Key Engineering Materials 726 (Januar 2017): 120–24. http://dx.doi.org/10.4028/www.scientific.net/kem.726.120.
Der volle Inhalt der QuelleLee, Ming Gin, Yung Chih Wang, Wan Xuan Xiao, Ming Ju Lee und Tuz Yuan Huang. „Effect of CO2 Curing on the Strength of High Strength Pervious Concrete“. Key Engineering Materials 846 (Juni 2020): 207–12. http://dx.doi.org/10.4028/www.scientific.net/kem.846.207.
Der volle Inhalt der QuelleYue, Zhong Wen, Hui Zhang und Bo Yang Dou. „Industrial Test on Outer Frozen Shaft Wall of High Strength and High Performance Concrete“. Advanced Materials Research 179-180 (Januar 2011): 569–74. http://dx.doi.org/10.4028/www.scientific.net/amr.179-180.569.
Der volle Inhalt der QuelleWang, Jiantao, und Qing Sun. „Cyclic testing of Q690 circular high-strength concrete-filled thin-walled steel tubular columns“. Advances in Structural Engineering 22, Nr. 2 (14.08.2018): 444–58. http://dx.doi.org/10.1177/1369433218790769.
Der volle Inhalt der QuelleSiregar, Atur P. N. „Experimental investigation of the flexural ductility of singly reinforced concrete beam using normal and high strength concrete“. Journal of Sustainable Engineering: Proceedings Series 1, Nr. 2 (30.09.2019): 218–24. http://dx.doi.org/10.35793/joseps.v1i2.30.
Der volle Inhalt der QuelleLiu, Feng, Gui Xuan Chen und Li Juan Li. „Performance of Rubberized High Strength Concrete after Fire“. Advanced Materials Research 163-167 (Dezember 2010): 1403–8. http://dx.doi.org/10.4028/www.scientific.net/amr.163-167.1403.
Der volle Inhalt der QuelleAli, A., Z. Soomro, S. Iqbal, N. Bhatti und A. F. Abro. „Prediction of Corner Columns’ Load Capacity Using Composite Material Analogy“. Engineering, Technology & Applied Science Research 8, Nr. 2 (19.04.2018): 2745–49. http://dx.doi.org/10.48084/etasr.1879.
Der volle Inhalt der QuelleDvořák, Richard, Zdeněk Chobola und Ivo Kusák. „Acoustic non-destructive testing of high temperature degraded concrete with comparison of acoustic impedance“. MATEC Web of Conferences 219 (2018): 03003. http://dx.doi.org/10.1051/matecconf/201821903003.
Der volle Inhalt der QuelleLiu, Guan Guo, Guo Rong Zhang, Yun Sheng Zhang und Lu Lu. „Study on Tensile Creep Characteristics of High Strength Concrete“. Applied Mechanics and Materials 835 (Mai 2016): 535–41. http://dx.doi.org/10.4028/www.scientific.net/amm.835.535.
Der volle Inhalt der QuelleKadam, Shriganesh Shantikumar, V. V. Karjinni und C. S. Jarali. „Prediction of Fiber Reinforced Concrete Strength Properties by Micromechanics Method“. Civil Engineering Journal 5, Nr. 1 (27.01.2019): 200. http://dx.doi.org/10.28991/cej-2019-03091238.
Der volle Inhalt der QuelleDel Savio, Alexandre Almeida, Darwin La Torre und Juan P. Cedrón. „Experimental Volume Incidence Study and the Relationship of Polypropylene Macrofiber Slenderness to the Mechanical Strengths of Fiber-Reinforced Concretes“. Applied Sciences 12, Nr. 18 (11.09.2022): 9126. http://dx.doi.org/10.3390/app12189126.
Der volle Inhalt der Quelle