Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „High speed maneuver“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "High speed maneuver" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "High speed maneuver"
Li, Hao, Yuping Li, Zhongliang Zhao, Xiaobing Wang, Haiyong Yang und Shang Ma. „High-Speed Virtual Flight Testing Platform for Performance Evaluation of Pitch Maneuvers“. Aerospace 10, Nr. 11 (15.11.2023): 962. http://dx.doi.org/10.3390/aerospace10110962.
Der volle Inhalt der QuelleCai, Haohao, und Xiaomei Xu. „Lateral Stability Control of a Tractor-Semitrailer at High Speed“. Machines 10, Nr. 8 (20.08.2022): 716. http://dx.doi.org/10.3390/machines10080716.
Der volle Inhalt der QuelleRodriguez, Renato, Yan Wang, Joseph Ozanne, Dogan Sumer, Dimitar Filev und Damoon Soudbakhsh. „Adaptive Takeoff Maneuver Optimization of a Sailing Boat for America’s Cup“. Journal of Sailing Technology 7, Nr. 01 (17.10.2022): 88–103. http://dx.doi.org/10.5957/jst/2022.7.4.88.
Der volle Inhalt der QuelleKitano, M., K. Watanabe, Y. Takaba und K. Togo. „Lane-change maneuver of high speed tracked vehicles“. Journal of Terramechanics 25, Nr. 2 (Januar 1988): 91–102. http://dx.doi.org/10.1016/0022-4898(88)90017-1.
Der volle Inhalt der QuelleHirano, Masahiro, Akihito Noda, Masatoshi Ishikawa und Yuji Yamakawa. „Networked high-speed vision for evasive maneuver assist“. ICT Express 3, Nr. 4 (Dezember 2017): 178–82. http://dx.doi.org/10.1016/j.icte.2017.11.008.
Der volle Inhalt der QuelleQuinn, Daniel, Daniel Kress, Eric Chang, Andrea Stein, Michal Wegrzynski und David Lentink. „How lovebirds maneuver through lateral gusts with minimal visual information“. Proceedings of the National Academy of Sciences 116, Nr. 30 (09.07.2019): 15033–41. http://dx.doi.org/10.1073/pnas.1903422116.
Der volle Inhalt der QuelleHARA, Kiyoshi. „Safety of Collision Avoidance Maneuver under High Speed-Navigation“. Journal of Japan Institute of Navigation 82 (1990): 69–75. http://dx.doi.org/10.9749/jin.82.69.
Der volle Inhalt der QuelleChen, Wenyu, Weimin Li, Lei Shao und Tao Zhang. „Correction Strategy of Online Midcourse Guidance for High-Speed Gliding Target Interceptor“. Applied Sciences 13, Nr. 11 (30.05.2023): 6661. http://dx.doi.org/10.3390/app13116661.
Der volle Inhalt der QuelleYasukawa, Hironori, Noritaka Hirata und Yoshiyuki Nakayama. „High-Speed Ship Maneuverability“. Journal of Ship Research 60, Nr. 04 (01.12.2016): 239–58. http://dx.doi.org/10.5957/jsr.2016.60.4.239.
Der volle Inhalt der QuelleYang, Yun Gang, Feng Wang und Zhao Wei Sun. „A Rapid Maneuver Method with High Accuracy for Spacecraft Based on CMG and RW“. Advanced Materials Research 591-593 (November 2012): 2395–400. http://dx.doi.org/10.4028/www.scientific.net/amr.591-593.2395.
Der volle Inhalt der QuelleDissertationen zum Thema "High speed maneuver"
Penco, Dario. „Contrôle véhicule autonome. Contrôle robuste et haute performance pour permettre les manœuvres à haute dynamique des véhicules autonomes“. Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG039.
Der volle Inhalt der QuelleThe work proposed in this thesis is in the context of autonomous driving. In particular, the objective is the development of a control law for path tracking of collision avoidance maneuvers for an autonomous vehicle.Several non-linear models of the vehicle, capable of representing its behavior in high dynamics maneuvers, are presented. The purpose is to obtain a model for the synthesis of the controllers. The different vehicle models proposed take into consideration the dynamics of the longitudinal, lateral and yaw vehicle speeds. That allows to use the models for the synthesis of controllers that deals simultaneously with vehicle longitudinal and lateral control. Moreover, a non-linear model for tire forces and the variable representation for load transfer have been used for the vehicle models. In fact, the representation of the non-linear behavior of the tires, influenced by the load transfer, is critical in high dynamics maneuvers. Some simulation results allow to compare the different vehicle models and to choose the model used for the controllers synthesis.A linear time-variant model is obtained through the linearization of the chosen non-linear model. The LPV polytopic and grid-based approaches are then used to define two LPV models.Several controllers, static and dynamic, have been developed using the two LPV models. These controllers combine the wheels steering ang torques to stabilize the vehicle and to guarantee the vehicle path tracking on a set of collision avoidance maneuvers. The synthesis of the controllers is done using robust and optimal control methods, through the resolution of optimization problems subjected to LMI constraints. The saturations of the control signals and of the tire forces are taken into consideration in the control synthesis in order to maximize the region of attraction of the system in closed loop.Several simulation results, obtained using a high representativity simulation model, allow to asses the closed loop system performances in presence of non-zero initial conditions and parameter dispersions
Buchteile zum Thema "High speed maneuver"
Hui, Xiangyang, Fenghua Chi, Zheng Qi, Meng Wu und Fei Li. „High-Speed Reentry Vehicle Trajectory Optimization and Guidance with Lateral Maneuver“. In Lecture Notes in Electrical Engineering, 4151–66. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8155-7_346.
Der volle Inhalt der QuelleFlorence, Pete, John Carter und Russ Tedrake. „Integrated Perception and Control at High Speed: Evaluating Collision Avoidance Maneuvers Without Maps“. In Springer Proceedings in Advanced Robotics, 304–19. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43089-4_20.
Der volle Inhalt der QuelleMaisser, P., und U. Jungnickel. „Stability of Controlled Motion of a Gymnast in High-Speed Mid Air Maneuvers“. In IUTAM Symposium on Recent Developments in Non-linear Oscillations of Mechanical Systems, 121–29. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4150-5_13.
Der volle Inhalt der QuelleCushman, Stephen. „The Merit of Philip H. Sheridan’s Memoir Campaign“. In The Generals' Civil War, 135–60. University of North Carolina Press, 2021. http://dx.doi.org/10.5149/northcarolina/9781469666020.003.0006.
Der volle Inhalt der Quelle„Scott and Tabibi phase into the other by feeding it into the vicinity of the mixing/dispersing element. In this way, the phase being added is quickly dispersed into the continuous phase. Although it is widely accepted that the higher the shear rate produced by the mixer the smaller the droplets and, hence, the more stable the emulsion, there is a major prob-lem that must be avoided if good results are to be obtained with high-speed mixing equipment. Every effort should be made to avoid incorporating air into the mix. Air forms a third phase that could ruin emulsion stability in a number of ways. Air usu-ally reduces the viscosity. The addition steps should be organized such that the impel-ler of the mixture is always submerged deeply enough to avoid surface turbulence or splashing. The arrangement of the mixer angle and/or baffles should avoid vortexing. Another alternative is to perform all of the emulsion-making steps in a vacuum-pro-cessing vessel. An additional method is to premix the components at low speeds and shear rates and then subsequently execute the high-shear portion of the process with in-line equipment in the absence of air. In short, aeration should be avoided. Sometimes the direct approach is not the most effective one. When one phase is first added to another, the small amount of liquid being added forms the internal phase. If more of this liquid is added there comes a point where the continuous phase loses its ability to hold all of the internal phase and the emulsion inverts to the opposite type, e.g., from O/W to W/O. Since it has been found that this practice (phase inversion) can yield small droplet sizes, this method is widely used in batch processing. To ex-ecute this maneuver, one needs to begin mixing with only a small amount of liquid in a batch that will later increase to usually more than four times the starting volume. Therefore, the mixer has to extend well to the bottom of the vessel. One way to avoid this small volume of starting liquid is by using an in-line mixer in a recirculation loop attached to the main mixing vessel as illustrated in Fig. 5. The initial phase is recirculated through the in-line high mixer and the phase to be inverted is then carefully metered directly into the recirculation line. This avoids Fig. 5 In-line mixer in recirculation loop to kettle.“ In Pharmaceutical Dosage Forms, 326–33. CRC Press, 1998. http://dx.doi.org/10.1201/9781420000955-37.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "High speed maneuver"
JONSSON, H. „High-speed Offensive Missile Evasive maneuver“. In Astrodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-2039.
Der volle Inhalt der QuelleIrwanto, Herma Yudhi. „Increase maneuver performance of high speed UAV“. In 2017 International Seminar on Sensors, Instrumentation, Measurement and Metrology (ISSIMM). IEEE, 2017. http://dx.doi.org/10.1109/issimm.2017.8124253.
Der volle Inhalt der QuelleLawitzky, Andreas, Dirk Wollherr und Martin Buss. „Maneuver-based risk assessment for high-speed automotive scenarios“. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012). IEEE, 2012. http://dx.doi.org/10.1109/iros.2012.6385825.
Der volle Inhalt der QuelleBumbaugh, James, John Tritschler, Christopher Mattei, Michael Mosher und Robert Barthelmes. „Flight Test Evaluation of Proposed High-Speed Break Turn MTE“. In Vertical Flight Society 75th Annual Forum & Technology Display. The Vertical Flight Society, 2019. http://dx.doi.org/10.4050/f-0075-2019-14594.
Der volle Inhalt der QuelleLi, Jingliang, Yang Zhang, Jingang Yi und Zhaodu Liu. „Understanding Agile-Maneuver Driving Strategies Using Coupled Longitudinal/Lateral Vehicle Dynamics“. In ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control. ASMEDC, 2011. http://dx.doi.org/10.1115/dscc2011-6152.
Der volle Inhalt der QuelleLucet, E., Ch Grand, D. Salle und Ph Bidaud. „Stabilization Algorithm for a High Speed Car-Like Robot Achieving Steering Maneuver“. In 2008 IEEE International Conference on Robotics and Automation. The Half-Day Workshop on: Towards Autonomous Agriculture of Tomorrow. IEEE, 2008. http://dx.doi.org/10.1109/robot.2008.4543595.
Der volle Inhalt der QuelleSteinbock, Nathaniel, Laura Prange und Brian C. Fabien. „Active Torque Vectoring in High Speed Lane Change Maneuvers“. In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65539.
Der volle Inhalt der QuelleOh, Kyeung Heub, Jin Kwon Hwang und Chul Ki Song. „Fuzzy Estimation of Vehicle Speed“. In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84029.
Der volle Inhalt der QuelleHuang, Adam, und Eui-Hyeok Yang. „MEMS Thruster System for CubeSat Orbital Maneuver Applications“. In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12675.
Der volle Inhalt der QuelleCatania, Giuseppe, Luca Leonelli und Nicolò Mancinelli. „A Multibody Motorcycle Model for the Analysis and Prediction of Chatter Vibrations“. In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62903.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "High speed maneuver"
Buck, Nicole L., Barry A. Coutermarsh und Sally A. Shoop. Loose-Surface Tire-Terrain Interaction During High-Speed Maneuvers. Fort Belvoir, VA: Defense Technical Information Center, November 2010. http://dx.doi.org/10.21236/ada533233.
Der volle Inhalt der QuelleVolunteer Kinematics and Reaction in Lateral Emergency Maneuver Tests. SAE International, November 2013. http://dx.doi.org/10.4271/2013-22-0013.
Der volle Inhalt der Quelle